Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.
Article
PubMed
Google Scholar
Żmigrodzki J, Cygan S, Leśniak-Plewińska B, Kowalski M, Kałużyński K. Effect of transmural extent of the simulated infarction in a left ventricular model on displacement and strain distribution estimated from synthetic ultrasonic data. Ultrasound Med Biol. 2017;43:206–17.
Article
PubMed
Google Scholar
Lee W-N, Provost J, Fujikura K, Wang J, Konofagou EE. In vivo study of myocardial elastography under graded ischemia conditions. Phys Med Biol. 2011;56:1155.
Article
PubMed
PubMed Central
Google Scholar
Mele D, Fiorencis A, Chiodi E, Gardini C, Benea G, Ferrari R. Polar plot maps by parametric strain echocardiography allow accurate evaluation of non-viable transmural scar tissue in ischaemic heart disease. Eur Heart J Cardiovasc Imaging. 2016;17:668–77.
Article
PubMed
Google Scholar
Tabassian M, Ünlü S, Mirea O, Voigt J, D’hooge J. Assessment of myocardial viability using speckle tracking echocardiography at high spatial resolution. In: 2017 IEEE international ultrasonics symposium (IUS). 2017. p. 1.
Chakraborty B, Giffard-Roisin S, Alessandrini M, Heyde B, Sermesant M, D’hooge J. Estimation of the spatial resolution of a 2D strain estimator using synthetic cardiac images. In: 2018 IEEE international ultrasonics symposium (IUS). 2018. p. 1–9.
Żmigrodzki J, Cygan S, Wilczewska A, Kałużyński K. Quantitative assessment of the effect of the out-of-plane movement of the homogenous ellipsoidal model of the left ventricle on the deformation measures estimated using 2-D speckle tracking—an in-silico study. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65:1789–803.
Article
PubMed
Google Scholar
Lee W-N, Ingrassia CM, Fung-Kee-Fung SD, Costa KD, Holmes JW, Konofagou EE. Theoretical quality assessment of myocardial elastography with in vivo validation. IEEE Trans Ultrason Ferroelectr Freq Control. 2007;54:2233–45.
Article
PubMed
Google Scholar
De Craene M, Marchesseau S, Heyde B, Gao H, Alessandrini M, Bernard O, et al. 3D strain assessment in ultrasound (straus): a synthetic comparison of five tracking methodologies. IEEE Trans Med Imaging. 2013;32:1632–46.
Article
PubMed
Google Scholar
Tobon-Gomez C, De Craene M, McLeod K, Tautz L, Shi W, Hennemuth A, et al. Benchmarking framework for myocardial tracking and deformation algorithms: an open access database. Med Image Anal. 2013;17:632–48.
Article
CAS
PubMed
Google Scholar
Lopata RGP, Nillesen MM, Hansen HHG, Gerrits IH, Thijssen JM, de Korte CL. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data. Ultrasound Med Biol. 2009;35:796–812.
Article
PubMed
Google Scholar
Altiok E, Neizel M, Tiemann S, Krass V, Becker M, Zwicker C, et al. Layer-specific analysis of myocardial deformation for assessment of infarct transmurality: comparison of strain-encoded cardiovascular magnetic resonance with 2D speckle tracking echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:570–8.
Article
PubMed
Google Scholar
D’hooge J, Barbosa D, Gao H, Claus P, Prater D, Hamilton J, et al. Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. Eur Heart J Cardiovasc Imaging. 2015;66:jev197.
Google Scholar
Luo J, Lee W-N, Konofagou E. Fundamental performance assessment of 2-D myocardial elastography in a phased-array configuration. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:2320–7.
Article
PubMed
Google Scholar
Lamacie MM, Thavendiranathan P, Hanneman K, Greiser A, Jolly M-P, Ward R, et al. Quantification of global myocardial function by cine MRI deformable registration-based analysis: comparison with MR feature tracking and speckle-tracking echocardiography. Eur Radiol. 2017;27:1404–15.
Article
PubMed
Google Scholar
Grondin J, Sayseng V, Konofagou EE. Cardiac strain imaging with coherent compounding of diverging waves. IEEE Trans Ultrason Ferroelectr Freq Control. 2017;64:1212–22.
Article
PubMed
PubMed Central
Google Scholar
Korinek J, Kjaergaard J, Sengupta PP, Yoshifuku S, McMahon EM, Cha SS, et al. High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography. J Am Soc Echocardiogr. 2007;20:165–70.
Article
PubMed
Google Scholar
Curiale AH, Vegas-Sánchez-Ferrero G, Aja-Fernández S. Influence of ultrasound speckle tracking strategies for motion and strain estimation. Med Image Anal. 2016;32:184–200.
Article
PubMed
Google Scholar
Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith H-J, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.
Article
PubMed
Google Scholar
Alessandrini M, Heyde B, Tong L, Bernard O, D’hooge J. Tracking quality in plane-wave versus conventional cardiac ultrasound: a preliminary evaluation in-silico based on a state-of-the-art simulation pipeline. In: 2015 IEEE international ultrasonics symposium (IUS). 2015. p. 1–4.
Luo J, Konofagou EE. Effects of various parameters on lateral displacement estimation in ultrasound elastography. Ultrasound Med Biol. 2009;35:1352–66.
Article
PubMed
PubMed Central
Google Scholar
Sivesgaard K, Christensen SD, Nygaard H, Hasenkam JM, Sloth E. Speckle tracking ultrasound is independent of insonation angle and gain: an in vitro investigation of agreement with sonomicrometry. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22:852–8.
Article
Google Scholar
Rösner A, Barbosa D, Aarsæther E, Kjønås D, Schirmer H, D’hooge J. The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. Eur Heart J Cardiovasc Imaging. 2015;16:1137–47.
Article
PubMed
Google Scholar
Ophir J, Kallel F, Varghese T, Bertrand M, Céspedes I, Ponnekanti H. Elastography: a systems approach. Int J Imaging Syst Technol. 1997;8:89–103.
Article
Google Scholar
Varghese T, Ophir J. The nonstationary strain filter in elastography: Part I. Frequency dependent attenuation. Ultrasound Med Biol. 1997;23:1343–56.
Article
CAS
PubMed
Google Scholar
Kallel F, Varghese T, Ophir J, Bilgen M. The nonstationary strain filter in elastography: Part II. Lateral and elevational decorrelation. Ultrasound Med Biol. 1997;23:1357–69.
Article
CAS
PubMed
Google Scholar
Mele D, Trevisan F, D’Andrea A, Luisi GA, Smarrazzo V, Pestelli G, et al. Speckle tracking echocardiography in non–ST-segment elevation acute coronary syndromes. Curr Probl Cardiol. 2021;6:46.
Google Scholar
Shi J, Pan C, Kong D, Cheng L, Shu X. Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiogr Mt Kisco N. 2016;33:510–8.
Article
CAS
Google Scholar
Alessandrini M, Chakraborty B, Heyde B, Bernard O, Craene MD, Sermesant M, et al. Realistic vendor-specific synthetic ultrasound data for quality assurance of 2-D speckle tracking echocardiography: simulation pipeline and open access database. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65:411–22.
Article
PubMed
Google Scholar
Cygan S, Kumor M, Żmigrodzki J, Leśniak-Plewińska B, Kowalski M, Kałużyński K. Left ventricular phantoms with inclusions simulating transmural and non-transmural infarctions: FEM and EchoPAC study. In: Medical imaging 2017: ultrasonic imaging and tomography. International Society for Optics and Photonics; 2017. p. 1013918. https://doi.org/10.1117/12.2254350.
Cygan S, Żmigrodzki J, Leśniak-Plewińska B, Karny M, Pakieła Z, Kałużyński K. Influence of polivinylalcohol cryogel material model in FEM simulations on deformation of LV phantom. In: Assen H van, Bovendeerd P, Delhaas T, editors. Functional imaging and modeling of the heart. Springer; 2015. p. 313–20. https://doi.org/10.1007/978-3-319-20309-6_36. Accessed 8 July 2015.
Żmigrodzki J. Ograniczenia oceny lokalnej funkcji skurczowej lewej komory serca z wykorzystaniem dwuwymiarowych danych echograficznych i metody śledzenia markerów akustycznych—badania „in silico”. I. Warszawa: Akademicka Oficyna Wydawnicza EXIT; 2019. http://www.exit.pl/zmi.htm.
Cygan S. Modelowanie numeryczne fantomów serca na potrzeby obrazowania odkształceń w echokardiografii (Numerical modeling of heart phantoms as a support for strain imaging in echocardiography). 1st edition. Warszawa: Akademicka Oficyna Wydawnicza EXIT; 2019.
Choi JH, Sung J. Left ventricular sphericity index in asymptomatic population. J Cardiovasc Ultrasound. 2009;17:54–9.
Article
Google Scholar
Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014;15:680–90.
Article
PubMed
PubMed Central
Google Scholar
Macedo R, Fernandes JL, Andrade SS, Rochitte CE, Lima KC, Maciel ÁCC, et al. Morphological and functional measurements of the heart obtained by magnetic resonance imaging in Brazilians. Arq Bras Cardiol. 2013;101:68–77.
PubMed
PubMed Central
Google Scholar
Puntmann VO, Gebker R, Duckett S, Mirelis J, Schnackenburg B, Graefe M, et al. Left ventricular chamber dimensions and wall thickness by cardiovascular magnetic resonance: comparison with transthoracic echocardiography. Eur Heart J Cardiovasc Imaging. 2013;14:240–6.
Article
PubMed
Google Scholar
Augustine D, Lewandowski AJ, Lazdam M, Rai A, Francis J, Myerson S, et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magn Reson. 2013;15:8.
Article
PubMed
PubMed Central
Google Scholar
Bogaert J, Rademakers FE. Regional nonuniformity of normal adult human left ventricle. Am J Physiol Heart Circ Physiol. 2001;280:H610-620.
Article
CAS
PubMed
Google Scholar
Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, et al. Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol. 2010;11:176–83.
Article
Google Scholar
Kleijn SA, Pandian NG, Thomas JD, Perez de Isla L, Kamp O, Zuber M, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:410–6.
Article
PubMed
Google Scholar
Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, et al. Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol Engl Ed. 2014;67:651–8.
Article
PubMed
Google Scholar
Moreira HT, Nwabuo CC, Armstrong AC, Kishi S, Gjesdal O, Reis JP, et al. Reference ranges and regional patterns of left ventricular strain and strain rate using two-dimensional speckle-tracking echocardiography in a Healthy Middle-Aged Black and White Population: the CARDIA Study. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2017;30:647-658.e2.
Article
Google Scholar
Nagata Y, Wu VC-C, Otsuji Y, Takeuchi M. Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography. PLoS ONE. 2017;12:e0180584.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rogers WJ, Shapiro EP, Weiss JL, Buchalter MB, Rademakers FE, Weisfeldt ML, et al. Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation. 1991;84:721–31.
Article
PubMed
Google Scholar
Sun JP, Lee AP-W, Wu C, Lam Y-Y, Hung M-J, Chen L, et al. Quantification of left ventricular regional myocardial function using two-dimensional speckle tracking echocardiography in healthy volunteers—a multi-center study. Int J Cardiol. 2013;167:495–501.
Article
PubMed
Google Scholar
Wang H, Liu J, Yao X, Li J, Yang Y, Cao T, et al. Multidirectional myocardial systolic function in hemodialysis patients with preserved left ventricular ejection fraction and different left ventricular geometry. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc Eur Ren Assoc. 2012;27:4422–9.
Google Scholar
Rabben SI, Haukanes AL, Irgens F. A kinematic model for simulating physiological left ventricular deformation patterns—a tool for evaluation of myocardial strain imaging. In: IEEE symposium on ultrasonics, vol 1, 2003. sp. 134–137.
Slager CJ, Hooghoudt TE, Serruys PW, Schuurbiers JC, Reiber JH, Meester GT, et al. Quantitative assessment of regional left ventricular motion using endocardial landmarks. J Am Coll Cardiol. 1986;7:317–26.
Article
CAS
PubMed
Google Scholar
Jensen JA. Field: a program for simulating ultrasound systems. Med Biol Eng Comput. 1996;34:351–3.
Article
Google Scholar
Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1992;39:262–7.
Article
CAS
PubMed
Google Scholar
Bierling M. Displacement estimation by hierarchical blockmatching. In: Visual communications and image processing ’88: third in a series. International Society for Optics and Photonics; 1988. p. 942–54. https://doi.org/10.1117/12.969046.
Boor C de. A practical guide to splines. New York: Springer; 1978. www.springer.com/us/book/9780387953663. Accessed 13 July 2018.
Shi H, Varghese T. Two-dimensional multi-level strain estimation for discontinuous tissue. Phys Med Biol. 2007;52:389.
Article
PubMed
Google Scholar
Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values. Comput Stat Data Anal. 2010;54:1167–78.
Article
PubMed
PubMed Central
Google Scholar
Wang G, Garcia D, Liu Y, de Jeu R, Johannes DA. A three-dimensional gap filling method for large geophysical datasets: application to global satellite soil moisture observations. Environ Model Softw. 2012;30:139–42.
Article
Google Scholar
Ledesma-Carbayo MJ, Bajo A, Marta CS, Perez-David E, Caso I, Garcia-Fernandez MA, et al. Cardiac motion analysis from cine MR sequences using non-rigid registration techniques. In: 2006 Computers in cardiology. 2006. p. 65–8.
O’Donnell M, Skovoroda AR, Shapo BM, Emelianov SY. Internal displacement and strain imaging using ultrasonic speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control. 1994;41:314–25.
Article
Google Scholar
Leys C, Ley C, Klein O, Bernard P, Licata L. Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol. 2013;49:764–6.
Article
Google Scholar
Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993;88:1273–83.
Article
Google Scholar
Azhari H, Beyar R, Sideman S. On the human left ventricular shape. Comput Biomed Res Int J. 1999;32:264–82.
Article
CAS
Google Scholar
Nesser H-J, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, et al. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J. 2009;30:1565–73.
Article
PubMed
Google Scholar
Seemann F, Pahlm U, Steding-Ehrenborg K, Ostenfeld E, Erlinge D, Dubois-Rande J-L, et al. Time-resolved tracking of the atrioventricular plane displacement in Cardiovascular Magnetic Resonance (CMR) images. BMC Med Imaging. 2017;17:19.
Article
PubMed
PubMed Central
Google Scholar
Carlsson M. Aspects on cardiac pumping. Lund University, Faculty of Medicine; 2007.
Collier P, Phelan D, Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. J Am Coll Cardiol. 2017;69:1043–56.
Article
PubMed
Google Scholar
Duchateau N, Craene MD, Allain P, Saloux E, Sermesant M. Infarct localization from myocardial deformation: prediction and uncertainty quantification by regression from a low-dimensional space. IEEE Trans Med Imaging. 2016;35:2340–52.
Article
PubMed
Google Scholar