Wiseman J, Rouleau J, Rigo P, Strauss HW, Pitt B. Gallium-67 myocardial imaging for the detection of bacterial endocarditis. Radiology. 1976;120(1):135–8. https://doi.org/10.1148/120.1.135.
Article
CAS
PubMed
Google Scholar
Thali MJ, Yen K, Plattner T, Schweitzer W, Vock P, Ozdoba C, Dirnhofer RJ. Charred body: virtual autopsy with multi-slice computed tomography and magnetic resonance imaging. J Forensic Sci. 2002;47(6):1326–31. https://doi.org/10.1520/JFS15569J.
Article
PubMed
Google Scholar
Sanders I, Woesner ME, Ferguson RA, Noguchi TT. A new application of forensic radiology: identification of deceased from a single clavicle. Am J Roentgenol Radium Ther Nucl Med. 1972;115(3):619–22. https://doi.org/10.2214/ajr.115.3.619.
Article
CAS
PubMed
Google Scholar
Takatsu A, Suzuki N, Hattori A, Shigeta A. The concept of the digital morgue as a 3D database. Leg Med (Tokyo). 1999;1(1):29–33. https://doi.org/10.1016/S1344-6223(99)80007-8.
Article
CAS
Google Scholar
MJ Thali, BP Kneubuehl, P Vock, Gv Allmen, R Dirnhofer. High-speed documented experimental gunshot to a skull-brain model and radiologic of virtual autopsy. Am J Forensic Med Pathol. 3(3) (2002) 223–8. doi:https://doi.org/10.1097/00000433-200209000-00003
Ezawa H, Yoneyama R, Kandatsu S, Yoshikawa K, Tsujii H, Harigaya K. Introduction of autopsy imaging redefines the concept of autopsy: 37 cases clinical experience. Pathol Int. 2003;53(12):865–73. https://doi.org/10.1046/j.1440-1827.2003.01573.x.
Article
PubMed
Google Scholar
Noriki S, Iino S, Kinoshita K, Fukazawa Y, Inai K, Sakai T, Kimura H. Pathological analysis of cadavers for educational dissection by using postmortem imaging. Pathol Int. 2019;69(10):580–600. https://doi.org/10.1111/pin.12857.
Article
PubMed
PubMed Central
Google Scholar
Noriki S, Kinoshita K, Inai K, Sakai T, Kimura H, Yamauchi T, Iwano M, Naiki H. Newly recognized cerebral infarctions on postmortem imaging: a report of three cases with systemic infectious disease. BMC Med Imaging. 2017;17(1):4. https://doi.org/10.1186/s12880-016-0174-4.
Article
PubMed
PubMed Central
Google Scholar
Inai K, Noriki S, Kinoshita K, Sakai T, Kimura H, Nishijima A, Iwasaki H, Naiki H. Postmortem CT is more accurate than clinical diagnosis for identifying the immediate cause of death in hospitalized patients: a prospective autopsy-based study. Virchows Arch. 2016;469(1):101–9. https://doi.org/10.1007/s00428-016-1937-6.
Article
PubMed
PubMed Central
Google Scholar
Inai K, Noriki S, Kinoshita K, Nishijima A, Sakai T, Kimura H, Naiki H. Feasibility of liver weight estimation by postmortem computed tomography images: an autopsy study. Pathol Int. 2014;64(7):315–24. https://doi.org/10.1111/pin.12174.
Article
PubMed
Google Scholar
T. Kodera, H. Arishima, R. Kitai, K. Kikuta, S. Iino, S. Noriki, H. Naiki. Utility of postmortem imaging system for anatomical education in skull base surgery. Neurosurg Rev. 38(1) (2015) 165–70 discussion 170. https://doi.org/10.1007/s10143-014-0574-2
Shiotani S, Yamazaki K, Kikuchi K, Nagata C, Morimoto T, Noguchi Y, Suzuki M, Atake S, Kohno M, Ohashi N. Postmortem magnetic resonance imaging (PMMRI) demonstration of reversible injury phase myocardium in a case of sudden death from acute coronary plaque change. Radiat Med. 2005;23(8):563–5.
PubMed
Google Scholar
Okuda T, Shiotani S, Hayakawa H, Kikuchi K, Kobayashi T, Ohno Y. A case of fatal cervical discoligamentous hyperextension injury without fracture: correlation of postmortem imaging and autopsy findings. Forensic Sci Int. 2013;225(1–3):71–4. https://doi.org/10.1016/j.forsciint.2012.04.035.
Article
PubMed
Google Scholar
Jackowski C, Christe A, Sonnenschein M, Aghayev E, Thali MJ. Postmortem unenhanced magnetic resonance imaging of myocardial infarction in correlation to histological infarction age characterization. Eur Heart J. 2006;27(20):2459–67. https://doi.org/10.1093/eurheartj/ehl255.
Article
PubMed
Google Scholar
Jackowski C, Warntjes MJB, Berge J, Bär W, Persson A. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI. Eur Radiol. 2011;21(1):70–8. https://doi.org/10.1007/s00330-010-1884-6.
Article
PubMed
Google Scholar
Jackowski C, Schwendener N, Grabherr S, Persson A. Post-mortem cardiac 3-T magnetic resonance imaging: visualization of sudden cardiac death? J Am Coll Cardiol. 2013;62(7):617–29. https://doi.org/10.1016/j.jacc.2013.01.089.
Article
PubMed
Google Scholar
JG Cha, DH Kim, DH Kim, SH Paik, JS Park, SJ Park, HK Lee, HS Hong, DL Choi, KM Yang, NE Chung, BW Lee, JS Seo. Utility of postmortem autopsy via whole-body imaging: initial observations comparing MDCT and 3.0T MRI findings with autopsy findings. Korean J Radiol. 11(4):395–406 (2010). doi:https://doi.org/10.3348/kjr.2010.11.4.395
Ross S, Ebner L, Flach P, Brodhage R, Bolliger SA, Christe A, Thali MJ. Postmortem whole-body MRI in traumatic causes of death. AJR Am J Roentgenol. 2012;199(6):1186–92. https://doi.org/10.2214/AJR.12.8767.
Article
PubMed
Google Scholar
Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: Minimally invasive, imaging-guided virtual autopsy. Radiographics. 2006;26(5):1305–33. https://doi.org/10.1148/rg.265065001.
Article
PubMed
Google Scholar
Cohen MC, Whitby E, Fink MA, Collett JM, Offiah AC. Running a postmortem service: a business case and clinical experience. Pediatr Radiol. 2015;45(4):501–8. https://doi.org/10.1007/s00247-014-3156-0.
Article
PubMed
Google Scholar
Ruder TD, Ebert LC, Khattab AA, Rieben R, Thali MJ, Kamat P. Edema is a sign of early acute myocardial infarction of post-mortem magnetic resonance imaging. Forensic Sci Med Pathol. 2013;9(4):501–5. https://doi.org/10.1007/s12024-013-9459-x.
Article
PubMed
Google Scholar
Birkl C, Soellradl M, Toeglhofer AM, Krassnig S, Leoni M, Pirpamer L, Vorauer T, Krenn H, Haybaeck J, Fazekas F, Ropele S, Langkammer C. Effects of concentration and vendor specific composition of formalin on postmortem MRI of human brain. Magn Reson Med. 2018;79(2):1111–5. https://doi.org/10.1002/mrm.26699.
Article
CAS
PubMed
Google Scholar
Baba Y, Lerch MM, Stark DD, Tanimoto A, Kreft BP, Zhao L, Saluja AK, Takahashi M. Time after excision and temperature alter ex vivo tissue relaxation time measurements. J Magn Reson Imaging. 1994;4(5):647–51. https://doi.org/10.1002/jmri.1880040504.
Article
CAS
PubMed
Google Scholar
Nagara H, Inoue T, Koga T, Kitaguchi T, Tateishi J, Goto I. Formalin fixed brains are useful for magnetic resonance imaging (MRI) study. J Neurol Sci. 1987;81(1):67–77. https://doi.org/10.1016/0022-510X(87)90184-5.
Article
CAS
PubMed
Google Scholar
Tovi M, Ericsson A. Measurements of T1 and T2 over time in formalin-fixed human whole-brain specimens. Acta Radiol. 1992;33(5):400–4. https://doi.org/10.1177/028418519203300503.
Article
CAS
PubMed
Google Scholar
Pfefferbaum A, Sullivan EV, Adalsteinsson E, Garrick T, Harper C. Postmortem MR imaging of formalin-fixed human brain. Neuroimage. 2004;21(4):1585–95. https://doi.org/10.1016/j.neuroimage.2003.11.024.
Article
PubMed
Google Scholar
Yong-Hing CJ, Obenaus A, Stryker R, Tong K, Sarty GE. Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain. Magn Reson Med. 2005;54(2):324–32. https://doi.org/10.1002/mrm.20578.
Article
PubMed
Google Scholar
Birkl C, Langkammer C, Golob-Schwarzl N, Leoni M, Haybaeck J, Goessler W, Fazekas F, Ropele S. Effects of formalin fixation and temperature on MR relaxation times in the human brain. NMR Biomed. 2016;29(4):458–65. https://doi.org/10.1002/nbm.3477.
Article
CAS
PubMed
Google Scholar
AS Shatil, MN Uddin, KM Matsuda1, CR Figley. Quantitative ex vivo MRI changes due to progressive formalin fixation in whole human brain specimens: longitudinal characterization of diffusion, relaxometry, and myelin water fraction measurements at 3T. Front Med 5 (2018) 31. https://doi.org/10.3389/fmed.2018.00031
C J Y-Hing, A Obenaus, R Stryker, K Tong, G E Sarty. Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain. Magn Reson Med 54(2) (2005) 324–32. doi: https://doi.org/10.1002/mrm.20578.
Kanawaku Y, Someya S, Kobayashi T, Hirakawa K, Shiotani S, Fukunaga T, Ohno Y, Kawakami S, Kanetake J. High-resolution 3D-MRI of postmortem brain specimens fixed by formalin and gadoteridol. Leg Med (Tokyo). 2014;16(4):218–21. https://doi.org/10.1016/j.legalmed.2014.03.003.
Article
CAS
Google Scholar
Seifert AC, Umphlett M, Hefti M, Fowkes M, Xu J. Formalin tissue fixation biases myelin-sensitive MRI. Magn Reson Med. 2019;82(4):1504–17. https://doi.org/10.1002/mrm.27821.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou Z, Bai R, Wang Z, Bryant H, Lang L, Merkle H, Munasinghe J, Tang L, Tang W, Tian R, Yu G, Ma Y, Niu G, Gao J, Chen X. An albumin-binding T1–T2 dual-modal MRI contrast agents for improved sensitivity and accuracy in tumor imaging. Bioconjug Chem. 2019;30(6):1821–9. https://doi.org/10.1021/acs.
Article
CAS
PubMed
Google Scholar
K. Uchida, H. Nakajima, N. Takeura, T. Yayama, A.R. Guerrero, A. Yoshida, T. Sakamoto, K. Honjoh, H. Baba. Prognostic value of changes in spinal cord signal intensity on magnetic resonance imaging in patients with cervical compressive myelopathy. Spine J;14(8) (2014) 1601–10. doi: https://doi.org/10.1016/j.spinee.2013.09.038.
G.R. Moore, E. Leung, A.L. MacKay, I.M. Vavasour, K.P. Whittall, K.S. Cover, D.K. Li, S.A. Hashimoto, J. Oger, T.J. Sprinkle, D.W. Paty. A pathology-MRI study of the short-T2 component in formalin-fixed multiple sclerosis brain. Neurology;55(10) (2000)1506–10. doi: https://doi.org/10.1212/wnl.55.10.1506.
Nixon JR, Miller GM, Okazaki H, Gomez MR. Cerebral tuberous sclerosis: postmortem magnetic resonance imaging and pathologic anatomy. Mayo Clin Proc. 1989;64(3):305–11. https://doi.org/10.1016/s0025-6196(12)65250-1.
Article
CAS
PubMed
Google Scholar
Filho GH, Du J, Pak BC, Statum S, Znamorowski R, Haghighi P, Bydder G, Chung CB. Quantitative characterization of the Achilles tendon in cadaveric specimens: T1 and T2* measurements using ultrashort-TE MRI at 3 T. AJR Am J Roentgenol. 2009;192(3):W117–24. https://doi.org/10.2214/AJR.07.3990.
Article
PubMed
Google Scholar
J.-P. Carpenter, T. He, P. Kirk, M. Roughton, L.J. Anderson, S.V. de Noronha, A.J. Baksi, M.N. Sheppard, J.B. Porter, J.M. Walker, J.C. Wood, G. Forni, G. Catani, G. Matta, S. Fucharoen, A. Fleming, M. House, G. Black, D.N. Firmin, T.G. St Pierre, D.J. Pennell. Calibration of myocardial T2 and T1 against iron concentration. J Cardiovasc Magn Reson.;16(1) (2014) 62. doi: https://doi.org/10.1186/s12968-014-0062-4.
Hsu JC, Johnson GA, Smith WM, Reimer KA, Ideker RE. Magnetic resonance imaging of chronic myocardial infarcts in formalin-fixed human au-topsy hearts. Circulation. 1994;89(5):2133–40. https://doi.org/10.1161/01.cir.89.5.2133.
Article
CAS
PubMed
Google Scholar
Scheffler K, Hennig J. T(1) quantification with inversion recovery TrueFISP. Magn Reson Med. 2001;45(4):720–3. https://doi.org/10.1002/mrm.1097.
Article
CAS
PubMed
Google Scholar
Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.
Article
CAS
Google Scholar
Thavarajah R, Mudimbaimannar VK, Elizabeth J, Rao UK, Ranganathan K. Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol. 2012;16(3):400–5. https://doi.org/10.4103/0973-029X.102496.
Article
PubMed
PubMed Central
Google Scholar
R D Start,C M Layton,S S Cross,J H Smith. Reassessment of the rate of fixative diffusion. Journal of Clin Pathol. 1992;45(12):1120–1. doi:https://doi.org/10.1136/jcp.45.12.1120
Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Ugurbil K, Springer CS Jr. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. 2007;57(2):308–18. https://doi.org/10.1002/mrm.21122.
Article
CAS
PubMed
Google Scholar
J.H. Chen, H.E. Avram, L.E. Crooks, M. Arakawa, L. Kaufman, A.C. Brito. In vivo relaxation times and hydrogen density at 0.003–4.85 T in rats with implanted mammary adenocarcinomas. Radiology 184(2): 427–34; (1992). doi:https://doi.org/10.1148/radiology.184.2.1620841.
Crooks LE, Arakawa M, Hoenninger J, McCarten B, Watts J, Kaufman L. Magnetic resonance imaging : effects of magnetic field strength. Radiology. 1984;151(1):127–33. https://doi.org/10.1148/radiology.151.1.6701302.
Article
CAS
PubMed
Google Scholar
C M J de Bazelaire, G D Duhamel, N M Rofsky, D C Alsop. MR Imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Rabdology 230(3):652–9; (2004). doi: https://doi.org/10.1148/radiol.2303021331.
Kobayashi T, Isobe T, Shiotani S, Saito H, Saotome K, Kaga K, Miyamoto K, Kikuchi K, Hayakawa H, Akutsu H, Homma K. Postmortem magnetic resonance imaging dealing with low temperature objects. Magn Reson Med Sci. 2010;9(3):101–8. https://doi.org/10.2463/mrms.9.101.
Article
CAS
PubMed
Google Scholar