Brady A, Laoide RÓ, McCarthy P, McDermott R. Discrepancy and error in radiology: concepts, causes and consequences. Ulster Med J. 2012;81(1):3.
PubMed
PubMed Central
Google Scholar
Kumar P, Grewal M, Srivastava MM. Boosted cascaded convnets for multilabel classification of thoracic diseases in chest radiographs. In: International conference image analysis and recognition. Springer; 2018, p. 546–552.
Guan Q, Huang Y. Multi-label chest x-ray image classification via category-wise residual attention learning. Pattern Recognit Lett. 2020;130:259–66.
Article
Google Scholar
Mao Y, Xue F-F, Wang R, Zhang J, Zheng W-S, Liu H. Abnormality detection in chest x-ray images using uncertainty prediction autoencoders. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020, p. 529–538.
Bozorgtabar B, Mahapatra D, Vray G, Thiran J-P. Salad: Self-supervised aggregation learning for anomaly detection on x-rays. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020, p. 468–478.
Xue C, Deng Q, Li X, Dou Q, Heng P-A. Cascaded robust learning at imperfect labels for chest x-ray segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020, p. 579–588.
Abdulah H, Huber B, Lal S, Abdallah H, Soltanian-Zadeh H, Gatti DL. Lung segmentation in chest x-rays with res-cr-net (2020). arXiv preprint arXiv:2011.08655.
Khan AI, Shah JL, Bhat MM. Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Prog Biomed. 2020;105581.
Tam LK, Wang X, Turkbey E, Lu K, Wen Y, Xu D. Weakly supervised one-stage vision and language disease detection using large scale pneumonia and pneumothorax studies. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020, p. 45–55.
Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K. Learning to diagnose from scratch by exploiting dependencies among labels (2017). arXiv preprint arXiv:1710.10501.
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning (2017). arXiv preprint arXiv:1711.05225.
Yan C, Yao J, Li R, Xu Z, Huang J. Weakly supervised deep learning for thoracic disease classification and localization on chest x-rays. In: Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics; 2018, p. 103–110.
Johnson AE, Pollard TJ, Greenbaum NR, Lungren MP, Deng C-y, Peng Y, Lu Z, Mark RG, Berkowitz SJ, Horng S. Mimic-cxr-jpg, a large publicly available database of labeled chest radiographs (2019). arXiv preprint arXiv:1901.07042.
Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K. Chexpert: a large chest radiograph dataset with uncertainty labels and expert comparison. Proc AAAI Conf Artif Intell. 2019;33:590–7.
Google Scholar
Bustos A, Pertusa A, Salinas J-M, de la Iglesia-Vayá M. Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med Image Anal. 2020;66:101797.
Article
Google Scholar
Guan Q, Huang Y, Zhong Z, Zheng Z, Zheng L, Yang Y. Thorax disease classification with attention guided convolutional neural network. Pattern Recognit Lett. 2020;131:38–45.
Article
Google Scholar
Hermoza R, Maicas G, Nascimento JC, Carneiro G. Region proposals for saliency map refinement for weakly-supervised disease localisation and classification (2020). arXiv preprint arXiv:2005.10550.
Yao L, Prosky J, Poblenz E, Covington B, Lyman K. Weakly supervised medical diagnosis and localization from multiple resolutions (2018). arXiv preprint arXiv:1803.07703.
Tang Y, Wang X, Harrison AP, Lu L, Xiao J, Summers RM. Attention-guided curriculum learning for weakly supervised classification and localization of thoracic diseases on chest radiographs. In: International workshop on machine learning in medical imaging. Springer; 2018, p. 249–258.
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017, p. 2097–2106.
Liu H, Wang L, Nan Y, Jin F, Wang Q, Pu J. Sdfn: segmentation-based deep fusion network for thoracic disease classification in chest x-ray images. Comput Med Imaging Graph. 2019;75:66–73.
Article
Google Scholar
Shiraishi J, Katsuragawa S, Ikezoe J, Matsumoto T, Kobayashi T, Komatsu K-I, Matsui M, Fujita H, Kodera Y, Doi K. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am J Roentgenol. 2000;174(1):71–4.
Article
CAS
Google Scholar
Van Ginneken B, Stegmann MB, Loog M. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med Image Anal. 2006;10(1):19–40.
Article
Google Scholar
Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B et al. Attention u-net: learning where to look for the pancreas (2018). arXiv preprint arXiv:1804.03999.
Nie D, Gao Y, Wang L, Shen D. Asdnet: Attention based semi-supervised deep networks for medical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2018, p. 370–378.
Li L, Xu M, Wang X, Jiang L, Liu H. Attention based glaucoma detection: a large-scale database and cnn model. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2019, p. 10571–10580.
Schlemper J, Oktay O, Schaap M, Heinrich M, Kainz B, Glocker B, Rueckert D. Attention gated networks: learning to leverage salient regions in medical images. Med Image Anal. 2019;53:197–207.
Article
Google Scholar
Wang H, Jia H, Lu L, Xia Y. Thorax-net: an attention regularized deep neural network for classification of thoracic diseases on chest radiography. IEEE J Biomed Health Inform. 2019;24(2):475–85.
Article
Google Scholar
Ma C, Wang H, Hoi SC. Multi-label thoracic disease image classification with cross-attention networks. In: International conference on medical image computing and computer-assisted intervention. Springer; 2019, p. 730–738.
Liu J, Zhao G, Fei Y, Zhang M, Wang Y, Yu Y. Align, attend and locate: Chest x-ray diagnosis via contrast induced attention network with limited supervision. In: Proceedings of the IEEE international conference on computer vision; 2019, p. 10632–10641.
Woo S, Park J, Lee J-Y, So Kweon I. Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV); 2018, p. 3–19.
Viniavskyi O, Dobko M, Dobosevych O. Weakly-supervised segmentation for disease localization in chest x-ray images. In: International conference on artificial intelligence in medicine. Springer; 2020, p. 249–259.
Wolleb J, Sandkühler R, Cattin PC Descargan: Disease-specific anomaly detection with weak supervision. In: International conference on medical image computing and computer-assisted intervention. Springer; 2020, p. 14–24.
Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2018, p. 7132–7141.
Jang E, Gu S, Poole B. Categorical reparameterization with gumbel-softmax (2016). arXiv preprint arXiv:1611.01144.
Ding M, Antani S, Jaeger S, Xue Z, Candemir S, Kohli M, Thoma G. Local-global classifier fusion for screening chest radiographs. In: Medical imaging 2017: imaging informatics for healthcare, research, and applications, 10138. International Society for Optics and Photonics; 2017, p. 101380.
Cao B, Araujo A, Sim J. Unifying deep local and global features for image search. In: European conference on computer vision. Springer; 2020, p. 726–743.
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2017, p. 4700–4708.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer; 2015, p. 234–241.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016, p. 770–778.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition; 2016, p. 2921–2929.