
Wang et al. BMC Medical Imaging          (2022) 22:130  
https://doi.org/10.1186/s12880-022-00852-z

RESEARCH

3cDe‑Net: a cervical cancer cell detection 
network based on an improved backbone 
network and multiscale feature fusion
Wei Wang1, Yun Tian2*, Yang Xu2, Xiao‑Xuan Zhang2, Yan‑Song Li2, Shi‑Feng Zhao2 and Yan‑Hua Bai3 

Abstract 

Background:  Cervical cancer cell detection is an essential means of cervical cancer screening. However, for thin-prep 
cytology test (TCT)-based images, the detection accuracies of traditional computer-aided detection algorithms are 
typically low due to the overlapping of cells with blurred cytoplasmic boundaries. Some typical deep learning-based 
detection methods, e.g., ResNets and Inception-V3, are not always efficient for cervical images due to the differences 
between cervical cancer cell images and natural images. As a result, these traditional networks are difficult to directly 
apply to the clinical practice of cervical cancer screening.

Method:  We propose a cervical cancer cell detection network (3cDe-Net) based on an improved backbone network 
and multiscale feature fusion; the proposed network consists of the backbone network and a detection head. In the 
backbone network, a dilated convolution and a group convolution are introduced to improve the resolution and 
expression ability of the model. In the detection head, multiscale features are obtained based on a feature pyramid 
fusion network to ensure the accurate capture of small cells; then, based on the Faster region-based convolutional 
neural network (R-CNN), adaptive cervical cancer cell anchors are generated via unsupervised clustering. Furthermore, 
a new balanced L1-based loss function is defined, which reduces the unbalanced sample contribution loss.

Result:  Baselines including ResNet-50, ResNet-101, Inception-v3, ResNet-152 and the feature concatenation net‑
work are used on two different datasets (the Data-T and Herlev datasets), and the final quantitative results show the 
effectiveness of the proposed dilated convolution ResNet (DC-ResNet) backbone network. Furthermore, experiments 
conducted on both datasets show that the proposed 3cDe-Net, based on the optimal anchors, the defined new loss 
function, and DC-ResNet, outperforms existing methods and achieves a mean average precision (mAP) of 50.4%. By 
performing a horizontal comparison of the cells on an image, the category and location information of cancer cells 
can be obtained concurrently.

Conclusion:  The proposed 3cDe-Net can detect cancer cells and their locations on multicell pictures. The model 
directly processes and analyses samples at the picture level rather than at the cellular level, which is more efficient. In 
clinical settings, the mechanical workloads of doctors can be reduced, and their focus can be placed on higher-level 
review work.
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Introduction
Cervical cancer is the fourth most common gynaecologi-
cal malignancy globally. In 2018, approximately 570,000 
new cases and 310,000 deaths occurred worldwide 
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[1]. Traditional cervical cancer cell screening typically 
requires a pathologist to observe thousands of cells under 
a microscope and provide a report based on diagnostic 
criteria [2]. This approach is time-consuming, labour-
intensive, heavily reliant on the doctor’s experience and 
strongly subjective [3].

Computer-aided cervical cancer cell detection is likely 
to become a common clinical diagnosis approach for 
solving the above problems [4, 5]. According to whether 
the segmentation step is included in the analysis pipeline, 
the identification approaches for cervical cancer cells 
can be divided into segmentation-based recognition and 
object detection-based recognition methods. Segmenta-
tion-based recognition methods typically segment cells 
or cell components and then extract cell characteristics 
for cell classification [6–10]. The detection accuracy of 
such an approach typically depends on the results of cell 
segmentation, which makes it difficult to accurately iden-
tify overlapping cells with blurred cytoplasmic bounda-
ries. Clinical applications face more difficulties. Object 
detection-based cervical cancer cell recognition has been 
a trend in recent years [11–13], and this technique uses 
an object detection framework based on a convolutional 
neural network (CNN) to obtain the classifications and 
locations of cancer cells. According to whether regional 
candidate boxes are generated, object detection methods 
can be divided into two categories: one-stage methods 
and two-stage methods [14].

Xiang et al. [12] proposed an automatic assisted cervi-
cal cell screening system based on You Only Look Once 
(YOLO)-v3-net and designed a classifier to further dis-
tinguish the categories of hard samples. Zhuang et  al. 
[13] designed a special backbone network for cervical 
cancer cells and applied it to the single-shot multibox 
detector (SSD) framework. These deep learning-based 
cervical cancer cell detection algorithms are one-stage 
approaches [12, 13], and their detection accuracies are 
not high. Xu et  al. [11] proposed a two-stage detection 
method and transplanted the Faster region-based CNN 
(R-CNN) [15] framework for natural images into cervi-
cal cancer cells. However, the difference between cervi-
cal cancer cells and natural images is not considered; as a 
result, the detection performance of this method is weak.

In this study, a two-stage cervical cancer detection 
algorithm based on an improved backbone network and 
multiscale feature fusion is proposed. In the first stage, 
cervical cell features with different sizes are extracted via 
an improved backbone network, and the feature extrac-
tion results can be verified through classification experi-
ments. In the second stage, the location information of 
cervical cancer cells is obtained via a detection network. 
The features with different scales are fused through a 
feature pyramid, and then, adaptive anchors are located 

by K-means clustering. Additionally, a loss function that 
alleviates sample contribution imbalance is defined, 
which yields improved detection accuracy. The proposed 
approach directly processes and analyses samples at the 
picture level rather than at the cellular level, which is 
more efficient and meets clinical needs more effectively. 
Via a horizontal comparison of the cells on an image, the 
category information and location information of cancer 
cells can be obtained concurrently.

The primary contributions of this study are as follows:

•	 A two-stage cervical cancer detection network, 
namely, 3cDe-Net, is proposed, and it can detect 
small cancer cells with different sizes and ratios.

•	 A cervical cell feature extraction network is designed, 
and dilated convolution and group convolution are 
introduced in the backbone and incorporated into a 
deep residual network. The proposed network avoids 
upsampling operations and reduces the loss of small-
cell information on the feature map.

•	 The anchor frame size and ratio are adaptively deter-
mined by K-means clustering, which is more suitable 
for cervical cancer cells and can provide better prior 
knowledge. A loss function is redefined to address 
the imbalance between negative and positive samples 
for cervical cancer cell detection.

Related works
Backbone network
Currently, deep learning-based detection algorithms 
must typically identify the features of an input picture 
through a feature extraction network. The feature extrac-
tion network used for the classification task is also known 
as the backbone network. The Visual Geometry Group 
Network (VGGNet) [16] is the backbone network of 
Faster R-CNN [15], and its structure is simple. ResNet 
uses a deeper network structure to extract more complex 
features [17]. Both networks are still relatively common 
backbone networks. In addition, DenseNet densely con-
nects each network layer with other layers [18] and Det-
Net is specifically designed for object detection [19].

Existing backbone networks are primarily used to rec-
ognize natural images. However, in cervical cell images, 
the canceration of cells is a gradual change process, mak-
ing it difficult to distinguish normal cells from cancerous 
cells using traditional backbone networks. Additionally, 
the scales of cervical cells vary, and small cells are dif-
ficult to identify on deeper feature maps, which makes 
it more difficult to detect these small cells. Thus, group 
convolution is used to enhance the expression ability of 
the extracted features. Concurrently, to better distinguish 
normal cells from abnormal cells, a dilated convolution 
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is used to improve the resolution of the generated map 
and the classification accuracy achieved for small cells. 
Furthermore, this convolution operation also reduces the 
number of calculations caused by upsampling during fea-
ture map fusion.

Object detection based on deep learning
Compared with classification, detection involves an 
additional location task. Therefore, based on the back-
bone network, a network called a detection head should 
be added to locate the object region proposal. Thus, the 
backbone network and the detection head together con-
struct the detection network. According to whether 
the detection head contains a region proposal network 
(RPN), the available detection networks can be divided 
into one- and two-stage methods. One-stage detection 
methods do not generate region proposals, and the loca-
tion and category prediction processes are completed 
in one stage. However, the accuracies of these methods 
could be improved. Two-stage methods first perform 
predetection by generating regional proposals and then 
fine-tuning the location and classification processes, 
yielding high accuracies. Faster R-CNN [15] is a classic 
two-stage detection network and is effective for many 
natural image datasets [20], but the network is not suit-
able for cervical cells due to the fact that anchors are 
generated based on natural images. In addition, the small 
cells retain less information on the feature map, which 

affects the detection accuracy achieved for these cells. 
Finally, the loss function of the network does not consider 
sample size imbalance. To solve these problems, feature 
pyramids are used to integrate deep and shallow feature 
maps, as they integrate deep semantic features and shal-
low location information more effectively than other 
approaches [21]. Therefore, small cells can be detected, 
and adaptive anchor boxes can be generated. Further-
more, a new loss function can be defined, improving the 
detection accuracy of cervical cancer cells.

Proposed methodology
The overall framework of the proposed network is shown 
in Fig. 1. The backbone network uses a dilated convolu-
tion ResNet (DC-ResNet). The algorithm first performs 
cancer cell predetection through an RPN and then 
obtains the results through a classification and regression 
network.

Multiple feature maps with different scales are gener-
ated from the backbone network. Feature fusion is per-
formed via a feature pyramid network (FPN) to obtain 
the final predicted feature map, and then, this feature 
map is fed to the RPN. The FPN achieves feature fusion 
by upsampling to form deep and shallow feature maps 
with the same dimensions, and it can transfer deep 
semantic features to shallow layers to supplement the 
available semantic information. As a result, high-reso-
lution and strong semantic features, which are capable 

Fig. 1  Overall flow of the proposed 3cDe-Net
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of detecting small objects, are obtained. The RPN first 
adaptively generates anchor boxes on the generated pre-
diction feature maps and then selects and adjusts these 
anchor boxes to obtain better region proposals. Next, the 
proposals and feature maps are fed into the classification 
and regression network. Finally, cervical cancer cells are 
predicted and located.

Improved backbone network: DC‑ResNet
DC-ResNet, derived from ResNet, is an improved back-
bone network. In DC-ResNet, a dilated convolution and 
a group convolution are introduced, and the details of the 
network structure are shown in Fig. 2. The input images 
are successively fed to the network through its convolu-
tional layer (Conv), batch normalization layer (BN), rec-
tified linear unit (ReLU) activation function and pooling 
layer (MaxPooling), and then, feature maps are obtained 
via multiple convolution groups [22]. The first three 
groups (blue) use residual grouping convolution, and the 
last two groups (yellow) use residual dilated convolution.

To improve the feature expression ability of the net-
work, each feature map is fed into the fully connected 
layer to obtain the score of the predicted category. Each 
fully connected layer is followed by a dropout layer to 
prevent overfitting.

Group convolution was originally a training method 
[23] that was designed to solve hardware resource limita-
tions. To obtain more distinguishable cervical cancer cell 
features, the convolutional divisions on the channels are 
grouped, and then, the results of each group are concat-
enated. The hyperparameter problem is solved by group-
ing convolution. Thus, the model accuracy is improved 
without increasing the number of parameters. The con-
volution operation is performed by multiple GPUs, and 
the calculation results are connected. The calculation 
process is shown in Fig.  3, where c is the dimensional-
ity before convolution, and d is the dimensionality after 
convolution.

In this study, residual group convolution, which is 
based on residual networks, is introduced, and the details 
are shown in Fig. 4. The left panel is the overall structure 
diagram, and the right panel is the detailed diagram of 
the group convolution operation.

Residual hole convolution performs hole convolution 
on the residual network. The calculation formula for 
obtaining the output feature size of the hole convolution 
is as follows:

where y is the size of the output feature map, x is the size 
of the input image, k is the size of the convolution kernel, 
d represents dilation, p is the padding, and s is the stride. 
The feature maps before and after convolution have the 
same parameters.

The residual dilated convolution structure is shown 
in Fig.  5. The overall structure is similar to that of 
residual group convolution, but dilated convolu-
tion is used instead of group convolution. The size of 
the feature map obtained after the dilated convolu-
tion is unchanged. The residual dilated convolution 

(1)y =
x−k−(k−1)×(d−1)+2p

s + 1

Fig. 2  Network structure of the proposed DC-ResNet

Fig. 3  Group convolution
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operation has two structures A and B. The difference 
is whether the residual branch contains an added 1 × 1 
convolution.

Downsampling/upsampling operations are not 
required for feature fusion. Thus, the size of the 
image feature map is larger than that of the original 
image. Therefore, the small cells at each feature point 
are more informative, and more edge information is 
retained.

Generation of anchor boxes
When the RPN generates region proposals, anchor boxes 
with different sizes at different feature layers of the FPN 
can be generated. The sizes and ratios of the anchor 
boxes are typically set based on prior domain knowledge 
or datasets. However, in this study, the changes in the 

sizes and ratios of cancer cells are large, which creates a 
challenge for anchor box generation. Inspired by YOLO 
v2 [24], the best k boxes can be obtained by K-means 
clustering. The locations of all cells are not certain. The 
sizes and ratios of anchors are measured by looking at all 
the target boxes as if they are located at the origin. When 
clustering is performed, the distances between the pre-
diction boxes and centres are calculated by Eq. (2):

(2)b(box, center) = 1− IoU(box, center)

where the intersection over union (IoU) represents the 
fitting degree of the two boxes and is the ratio of the area 
of the intersection and the union between the predicted 
box and the real box, as shown in Fig. 6.

The deep feature maps are small, and the receptive field 
is large, which is good for large cells. The shallow feature 
maps are the opposite, making them more suitable for 
detecting small cells. Therefore, anchors with different 
sizes and proportions can be generated on each feature 
map.

Definition of the loss function
The detection network is a multitask learning model that 
must predict the classifications and locations of cervical 
cancer cells. Therefore, the loss function should include 
classification and regression losses, and its definition is as 
follows:

where 
i

Lcls pi, p
∗
i  is the classification loss, pi is the real 

category, and p∗i  is the predicted category. The classifica-
tion function is calculated using cross-entropy loss, and � 
is the weight that balances the two task losses. 
∑

i

P∗
i Lreg

(

bboxi, bbox
∗
i

)

 represents the regression loss 

and only calculates positive samples; it does not include 
negative samples. The smoothL1 function is used to calcu-
late the regression loss. The definitions of these losses are 
as follows:

(3)L
(

{Pi},
{

bboxi
})

= 1
Ncls

∑

i

Lcls
(

pi, p
∗
i

)

+ �
1

Nreg

∑

i

P∗
i Lreg

(

bboxi, bbox
∗
i

)

Fig. 4  Residual group convolution block



Page 6 of 13Wang et al. BMC Medical Imaging          (2022) 22:130 

Setting the weights � to balance the classification effect 
and the positioning loss remains challenging. The param-
eter � is usually set manually. However, when perform-
ing the position regression task, the model considers 
the samples with regression losses greater than 1 more 
when λ increases because the loss of the regression task is 
unconstrained. Therefore, when designing the loss func-
tion, more consideration should be given to those sam-
ples with losses that are less than 1. Inspired by Pang et al. 
[25], the original smoothL1 is replaced with balancedL1 , 
which is defined as follows:

(4)

Lreg
(

bboxi, bbox
∗
i

)

=
∑

i∈x,y,w,h

smoothL1
(

bboxi − bbox∗i
)

(5)smoothL1(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise

where α is used to control the gradient changes exhib-
ited by samples with losses of less than 1 and γ is used to 
adjust the upper limit of the error. By adjusting the above 
two parameters, it is possible to balance the gradient con-
tribution of each sample.

Experiments and results
Datasets and evaluation metrics
The experimental data used for evaluation in this study 
are derived from the Tian-chi competition dataset (Data-
T)1 and the Herlev dataset.2 Figure  7 shows several 
images from these datasets. In Data-T, each cervical cell 
smear image contains multiple cervical cells, which can 
be used for classification and detection. In the Herlev 
image dataset, each image contains only one cervical cell, 
which can be used only for classification.

Data‑T
This dataset was obtained from the preliminary data of 
the Cervical Cancer Risk Diagnosis Intelligent Chal-
lenge and contained 800 thin-prep cytologic test (TCT) 
images labelled by a professional pathologist, including 
500 positive images and 300 negative images. Positive 
pictures were used to label the locations of abnormal 

(6)

balancedL1(x) =

{

α
b (b|x| + 1) ln (b|x| + 1) if |x| < 1

γ |x| + C otherwise

Fig. 5  Residual dilated convolution block

Fig. 6  IoU calculation diagram

1  1 https://​tianc​hi.​aliyun.​com/​compe​tition/​entra​nce/​231757/​intro​ducti​on
2  2 http://​mde-​lab.​aegean.​gr/​index.​php/​downl​oads

https://tianchi.aliyun.com/competition/entrance/231757/introduction
http://mde-lab.aegean.gr/index.php/downloads


Page 7 of 13Wang et al. BMC Medical Imaging          (2022) 22:130 	

squamous epithelial cells. Due to the large sizes of the 
original pathological images (each image was approxi-
mately 40,835 × 42,371 pixels), each original pathologi-
cal image was divided into several images with 800 × 800 
pixels to facilitate processing. Thus, 6627 abnormal squa-
mous epithelial cells were obtained. A negative sample 
refers to an image that does not contain cervical cancer 
cells.

The dataset samples only contained the labelled loca-
tions of abnormal squamous epithelial cells. In this study, 
6627 normal squamous epithelial cells were screened 
from 300 negative pictures using semisupervised learn-
ing methods, and together with 6627 positive samples, 
a total of 13,254 sample images were described by a cer-
vical cancer cell classification dataset. The images were 
divided into training, validation and test sets according to 
a ratio of 8:1:1, and the ratio of positive to negative sam-
ples was 1:1. To train a model with good generalizability, 
the sample images were augmented by operations includ-
ing rotation and flip transformation.

Herlev
This dataset contains images of cervical cancer cells that 
were collected by Herlev University Hospital in Den-
mark. It includes 917 single-cell images with 200 × 100 
pixels, including 242 normal cells and 675 abnormal cells. 
This dataset has become the primary study dataset for 
the classification of cervical cancer cells.

Due to the small amount of available data and the 
imbalance between the positive and negative samples, 
the sample images were first augmented by centre rota-
tion and translation operations. The normal cell images 
were rotated 20 times, and the abnormal cell images were 

rotated 10 times. As a result, the numbers of positive and 
negative samples were approximately equal. Finally, the 
training set, verification set, and test set were divided at 
a ratio of 8:1:1.

In the classification experiments, metrics including 
sensitivity, specificity, h-mean, F1 measure and accuracy 
were used to evaluate the performance of the proposed 
feature extraction network. Sensitivity represents the 
proportion of correct images among all predicted cancer 
cell images, and specificity represents the proportion of 
correct images among all predicted normal cell images. 
The results of the detection experiment were evaluated 
by the mean average precision (mAP) metric.

Network parameters and implementation details
The sizes of the input images of the backbone network 
were 224 × 224 × 3, and the details of the network struc-
ture and parameters of DC-ResNet are listed in Table 1.

Experiments were performed on a workstation with 
the Ubuntu 16.04 operating system and a 12-GB NVIDIA 
GeForce 2080Ti GPU. While training the backbone net-
work, the stochastic gradient descent (SGD) optimization 
algorithm was used to optimize the model parameters. 
The batch size was set to 32. The learning rate of each 
layer was initially set to 0.01. After 50 epochs of training, 
the learning rate was reduced to 1/10 every 10 epochs. 
The momentum was set to 0.9, and training ended after 
1000 epochs. While training the detection network, the 
SGD optimization algorithm was again used to optimize 
the model parameters. The batch size was set to 6, the 
learning rate of each layer was initially set to 0.00125, and 
the learning rate was reduced to 1/10 after 16 epochs and 

Fig. 7  Example images from the two datasets



Page 8 of 13Wang et al. BMC Medical Imaging          (2022) 22:130 

22 epochs. The momentum was set to 0.9, and the weight 
was decayed by 0.001.

Results and analysis
On the Data-H dataset, ResNet-50 and ResNet-101 were 
used as baselines for comparison with the proposed DC-
ResNet. Table 2 lists the quantitative comparison results 
and shows that the proposed backbone network (DC-
ResNet) performed better than the baselines in terms of 
all metrics except for sensitivity. However, specificity is 
more important than sensitivity for the detection of cer-
vical cancer cells due to the fact that the majority of cer-
vical cell samples are normal.

The proposed DC-ResNet has 59 convolutional layers, 
and ResNet-50 has 50 convolutional layers. To verify the 
validity of the structure of the proposed DC-ResNet, we 
compared DC-ResNet with ResNet-101 (with 101 con-
volutional layers). Table  2 shows that DC-ResNet out-
performed the other models. Additionally, all evaluation 
metrics achieved by the ResNet-101 network, except for 
sensitivity, were lower than those of ResNet-50, which 

may have been caused by the use of a limited number of 
datasets. Although no fittings of these complex models 
occurred, they did not necessarily produce better results.

Figure 8 shows the accuracy and loss curves produced 
by the DC-ResNet backbone network on the training 
and validation sets. A total of 1000 epochs were used for 
training, and after each epoch, the training effect was 
verified on the validation set. The model was basically 
fitted for approximately 500 epochs. The final validation 
set loss fluctuated around 0.1, and the accuracy fluctu-
ated around 98%. Figure  9 shows the confusion matrix 
yielded by DC-ResNet on the test set. From the confu-
sion matrix, we can see that our model can achieve high 
performance on classification tasks, especially for nega-
tive samples.

On the Herlev dataset, we used Inception-v3 [26], 
ResNet-152 [17] and a feature concatenation network 
[27] as baselines for comparison with the proposed DC-
ResNet. The details of the quantitative comparison are 
listed in Table  3, which shows that the proposed DC-
ResNet achieved the highest classification accuracy by 

Table 1  Structure and parameters of DC-ResNet

Improved backbone: DC-ResNet

7× 7 , 64, stride 2

3× 3 , max pooling, stride 2

Residual group convolution




1× 1 128

3× 3 128

1× 1 256



× 3

Group 32





1× 1 256

3× 3 256

1× 1 512



× 4

Group 32





1× 1 512

3× 3 512

1× 1 1024



× 6

Group 32

Residual dilated convolution
B :





1× 1 1024

3× 3 256

1× 1 1024



× 1 A :





1× 1 1024

3× 3 256

1× 1 1024



× 2

Dilation 2
Stride 2

B :





1× 1 1024

3× 3 256

1× 1 1024



× 1 A :





1× 1 1024

3× 3 256

1× 1 1024



× 2

Dilation 2
Stride 2

fc-1024

fc-256

fc-2

Table 2  Quantitative comparison obtained on the Data-H dataset

Method H-means (%) Sensitivity (%) Specificity (%) F1 (%) Accuracy (%)

ResNet-50 96.82 96.68 96.98 96.82 96.83

ResNet-101 96.75 97.12 96.37 96.76 96.75

DC-ResNet 97.11 95.92 98.34 97.09 97.13
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nearly 4%. Due to the small amount of data in the Herlev 
dataset, the fivefold cross-validation method was used to 
verify the proposed network. The results indicated that 
the proposed DC-ResNet was superior to the baselines 
in terms of accuracy and exhibited better stability. The 
partial recognition results obtained by DC-ResNet on the 
two datasets are shown in Fig. 10.

Table  4 lists the mAPs of the detection networks 
with different improvement measures, and the perfor-
mance of the proposed 3cDe-Net was best, with a maxi-
mum mAP of 50.4%. The reasons for the performance 
improvement achieved by the proposed model are the 
anchor obtained by K-means clustering, the improved 
loss function, and the replacement of the backbone net-
work with DC-ResNet. The mAP metric increased by 3% 
due to improvements in the detection network and the 

backbone network. The average IoU increased by 5% due 
to the anchor size generated by K-means clustering, and 
the mAP increased by 0.8% based on the incorporation 
of the generated anchor ratio into the detection network.

When utilizing the improved balancedL1 , the mAP 
increased by 1.2% with α = 0.5 and γ = 1.5 . By replacing 
the backbone network (the original ResNet-50) with DC-
ResNet, the mAP increased by 1.1%. Several detection 
results obtained by our 3cDe-Net are shown in Fig. 11.

Discussion
In this work, we proposed 3cDe-Net based on a feature 
extraction network (DC-ResNet) for detecting cervical 
cells. Since the currently employed feature extraction 
network was designed for natural image datasets (such 
as ImageNet), it cannot be effectively adapted to cervical 
cell images. In cervical cell images, the cells are closely 
distributed, varying in size and ratio according to two 
morphologies (single cells and cell clusters). In view of 
the above characteristics, on the basis of a deep residual 
network, residual hole convolution was used to obtain 
features with larger receptive fields of view and higher 
resolutions, and group convolution was used to obtain a 
model with better expression ability.

To verify the effectiveness of DC-ResNet with respect 
to the detection of cervical cancer cells, we performed a 
comparative experiment with ResNet-50 and ResNet-101 
in terms of the mAP indicator, and the results are listed in 

Fig. 8  Accuracy and loss curves of DC-ResNet

Fig. 9  Confusion matrix of DC-ResNet

Table 3  Quantitative comparison on the Data-H dataset

Method Accuracy

Inception-v3 [25] 89.66 ± 1.89%

ResNet-152 [25] 90.87 ± 1.48%

Feature concatenation [22] 92.63 ± 1.68%

DC-ResNet 96.7% ± 1.1%
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Table 5. The mAP of ResNet-101 was not higher than that 
of ResNet-50, which shows that simply increasing the 
complexity of the model may lead to model overfitting on 
small datasets. Concurrently, the mAPs of DC-ResNet-50 
were at least 1% higher than those of ResNet-50, show-
ing that the improved performance of the proposed 
model was not achieved due to the increase in the num-
ber of network layers but rather the effects of the network 
structure changes.

We also analysed the influence of the number of feature 
maps of DC-ResNet. F[1,2,3,4], F[1,2,3,5], F[1,2,4,5] and 
F[1,2,3,4,5] represent the feature fusion layers of the FPN 
in the corresponding feature layers in Fig. 1. The detec-
tion effects achieved by feature fusion with different com-
binations are shown in Table 6. The worst detection effect 
was 46% when the input feature map was numbered [1–
4]. Although the number of feature maps was reduced, 
the mAP was still 5% higher than that of ResNet. This 
result indicates that the superior performance of the pro-
posed model is due to the increase in the number of fea-
ture layers and the structure of the proposed DC-ResNet 
itself.

Furthermore, in the proposed detection network, the 
detection head based on Faster R-CNN was improved, 
and different anchor boxes could be automatically set for 
different target sizes. Additionally, targets with different 
sizes and ratios were able to be predicted on feature lay-
ers at different depths.

In brief, 3cDe-Net is a two-stage detection method that 
avoids upsampling operations and reduces the loss small 
cell information on the feature map. The YOLO-v3-based 
method proposed by Xiang et al. [12] and the SSD-based 
method proposed by Zhuang et  al. [13] are one-stage 
detection methods that have higher detection efficiency. 

However, these one-stage methods do not generate 
regional candidate boxes, and the prediction of locations 
and classes is completed in one stage, so the accuracy 
degrades.

Cervical cancer cell images are different from natural 
images. Clinical pathological images contain thousands 
of cells with highly complex cell conditions. A detec-
tion method for cervical cancer cells must consider 
various conditions, such as whether single cells are pre-
sent, whether the cells overlap, etc., and the accuracy 
is greatly affected. The Faster R-CNN-based method 
proposed by Xu et al. [11] does not fully take these fac-
tors into account, so its detection effect is not good. In 
this work, some improvements were made to the model 
based on the characteristics of cervical cancer cell 
images. The semantic information of the observed deep 
features was added to the shallow features through a 
feature pyramid to achieve multiscale feature fusion; 
the K-means clustering method was used to obtain 
anchor frame sizes and ratios that were more suitable 
for cervical cancer cells and to provide better prior 
knowledge. To minimize the regression loss, a new bal-
anced L1-based loss function was developed to reduce 
unbalanced sample contribution losses. The accuracy 

Fig. 10  Examples of correct recognition results obtained by DC-ResNet

Table 4  Detection results of 3cDe-Net

Improved 
anchor

Improved loss DC-ResNet mAP@0.5 (%)

47.3

√ 48.1

√ √ 49.3

√ √ √ 50.4
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and efficiency of the proposed detection method were 
verified by cervical cancer cell detection experiments. 
The experimental results demonstrated that the perfor-
mance of the proposed 3cDe-Net was best. However, 
our method can be further improved regarding the 
detection of negative samples, and the false detection 
rate for negative samples needs to be reduced in the 
future.

Conclusion
In this paper, a cervical cancer cell detection network, 
namely, 3cDe-Net, was presented. The network is based 
on an improved backbone network and multiscale 
feature fusion, and it consists of the backbone net-
work and a detection head. On the one hand, a feature 

Fig. 11  Detection examples of 3cDe-Net

Table 5  mAP results of different backbone networks

Backbone mAP@0.5 (%) mAP@0.75 (%)

ResNet-50 45.4 26.2

ResNet-101 45.5 25.9

DC-ResNet 46.7 26.5

Table 6  Results of FPN fusion with feature maps from different 
layers

The number of fusion feature map mAP@0.5 (%)

1, 2, 3, 4 46.0

1, 2, 3, 5 46.5

1, 2, 4, 5 46.1

1, 2, 3, 4, 5 46.7
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extraction network DC-ResNet was designed for cer-
vical cells. On the basis of the deep residual network, 
residual hole convolution was used to obtain features 
with larger receptive fields of view and higher resolu-
tions, and group convolution was used to attain better 
feature expressiveness. Then, multiscale feature fusion 
was realized through an FPN. On the other hand, the 
detection head based on Faster R-CNN was improved, 
and the sizes and ratios of the cervical cell anchor 
frames were adaptively determined by K-means clus-
tering. Furthermore, a loss function was redefined to 
address the imbalance between negative and positive 
samples for cervical cancer cell detection. Experiments 
on the Data-T and Herlev datasets illustrated that the 
proposed model outperformed existing methods and 
achieved a mAP of 50.4%. The next step in this field of 
research is to identify the types and stages of cancer 
cells based on the identification of cervical cancer cells.
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