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Abstract 

Background:  Computer-aided methods for analyzing white blood cells (WBC) are popular due to the complexity of 
the manual alternatives. Recent works have shown highly accurate segmentation and detection of white blood cells 
from microscopic blood images. However, the classification of the observed cells is still a challenge, in part due to the 
distribution of the five types that affect the condition of the immune system.

Methods:  (i) This work proposes W-Net, a CNN-based method for WBC classification. We evaluate W-Net on a real-
world large-scale dataset that includes 6562 real images of the five WBC types. (ii) For further benefits, we generate 
synthetic WBC images using Generative Adversarial Network to be used for education and research purposes through 
sharing.

Results:  (i) W-Net achieves an average accuracy of 97%. In comparison to state-of-the-art methods in the field of 
WBC classification, we show that W-Net outperforms other CNN- and RNN-based model architectures. Moreover, we 
show the benefits of using pre-trained W-Net in a transfer learning context when fine-tuned to specific task or accom-
modating another dataset. (ii) The synthetic WBC images are confirmed by experiments and a domain expert to have 
a high degree of similarity to the original images. The pre-trained W-Net and the generated WBC dataset are available 
for the community to facilitate reproducibility and follow up research work.

Conclusion:  This work proposed W-Net, a CNN-based architecture with a small number of layers, to accurately clas-
sify the five WBC types. We evaluated W-Net on a real-world large-scale dataset and addressed several challenges 
such as the transfer learning property and the class imbalance. W-Net achieved an average classification accuracy of 
97%. We synthesized a dataset of new WBC image samples using DCGAN, which we released to the public for educa-
tion and research purposes.
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Background
White blood cells (WBCs) are one type of blood cells, 
besides red blood cell and platelet, and are responsi-
ble for the immune system, defending against foreign 

substances and bacteria. WBCs are typically categorized 
into five major types: neutrophils, eosinophils, basophils, 
lymphocytes and monocytes. Neutrophils consist of two 
functionally unequal subgroups: neutrophil-killers and 
neutrophil-cagers, and they defend against bacterial or 
fungal infections [2]. The number of eosinophils increase 
in response to allergies, parasitic infections, collagen 
diseases, and disease of the spleen and central nervous 
system [3]. Basophils are mainly responsible for allergic 
and antigen response by releasing chemical histamine 
causing the dilation of blood vessels [4]. Lymphocytes 
help immune cells to combine with other foreign invasive 
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organisms such as microorganisms and antigens, in order 
to remove them out of the body [5]. Monocytes phago-
cytose foreign substances in the tissues [6]. The usual 
distribution of these five classes is 62%, 2.3%, 0.4%, 30% 
and 5.3% among WBCs in the body [7]. This distribution 
of WBC describes the condition of the immune system. 
Considering the complexity of manually estimating the 
distribution of WBC, e.g., by consulting a human expert, 
many studies have introduced methods for automating 
the process through WBC segmentation, detection, and 
classification. Despite these numerous studies, which are 
greatly focused on the segmentation and detection tasks, 
less attention has been given to the WBC classification 
task and factors impacting the accuracy and performance 
of the task.

Accurate WBC classification is also beneficial for diag-
nosing leukemia, a type of blood cancer in which abnor-
mal WBCs in the blood rapidly proliferate, decreasing 
the number of normal blood cells making the immune 
system vulnerable to infections In the US, around 60,000 
people are diagnosed with leukemia every year, and 
around 20,000 people die of leukemia annually. From 
2011 to 2015, leukemia was the sixth most common 
cause of cancer-caused death in the US [8]. There are 
various types of leukemia, including ALL (Acute lympho-
cytic leukemia), AML (Acute myelogenous leukemia), 
CLL (Chronic lymphocytic leukemia), CML (Chronic 
myelogenous leukemia). Chronic leukemia progresses 
more slowly than acute leukemia which requires imme-
diate medical care. Acute leukemia is characterized by 
proliferation of blasts, CLL is characterized by increased 
lymphocytes while CML shows markedly increased neu-
trophils and some basophils in the blood [9]. Therefore, 
accurate classification of WBCs contributes to the diag-
nosis of leukemia.

Recent advancements in the field of computer vision 
and computer-aided diagnosis show a promising direc-
tion for the applicability of deep learning-based tech-
nologies to assist accurate classification and counting of 
WBC. Convolutional neural network (CNN) is one of 
the most common and successful deep learning architec-
tures that have been utilized for analyzing and classifying 
medical imagery data [10–13]. In this paper, we propose 
W-Net, a CNN-based network for WBC images classifi-
cation. W-Net consists of three convolutional layers and 
two fully-connected layers, and they are responsible for 
extracting and learning features from WBC images and 
classifying them into five classes using a softmax classi-
fier. In comparison to state-of-the-art methods, W-Net 
shows outstanding results in terms of accuracy. Further, 
we investigate the performance of several deep learning 
architectures in performing the WBC classification task. 
We applied and compared the performance of several 

architectures including W-Net, AlexNet [14], VGGNet 
[15], ResNet [16], and Recurrent Neural Network (RNN). 
Moreover, we compared the utilization of different clas-
sifiers such as softmax classifier and Support Vector 
Machine (SVM) on top of the adopted models. Moreo-
ver, we explore the effects of pre-training W-Net using 
public datasets, such as the LISC public [17], on its per-
formance. Understanding the importance of large-scale 
datasets on the models’ performance, we generate new 
WBC images using GAN [18] to augment current educa-
tional and research datasets.

Contributions
The contributions of this paper are as follows. 1 We 
propose ❶ W-Net, a CNN-based network, designed 
to accurately classify WBCs while maintaining a high 
efficiency through minimal depth of the CNN architec-
ture. ❷ We evaluate the performance of W-Net using a 
real-world large-scale dataset that consist of 6562 real 
images. ❸ We address and handle the problem of imbal-
anced classes of WBCs and achieve an average classifi-
cation accuracy of 97% for all classes. ❹ We show how 
W-Net which consists of three convolutional layers 
stands among most popular CNN-based architectures, 
in the field of image classification and computer vision, 
in performing the WBCs classification task. ❺ Serving 
the purpose of advancing the task, we studied the appli-
cability of transfer learning and generating larger data-
sets of WBC images using GAN for the public release. ❻ 
We generate and publicize synthetic WBC images using 
Generative Adversarial Network to be used for education 
and research purposes. The synthetic WBC images are 
verified by experiments and a domain expert to have a 
high degree of similarity to the original images. The pre-
trained W-Net and the generated WBC dataset are avail-
able for the public.

Organization
The rest of the paper is organized as follows: in “Related 
works” section, we review literature. We introduce our 
model W-Net in “Methods” section. We evaluate W-Net 
through various experiments on WBC images in “Experi-
ments” section. Our design choices and the experiment 
result are discussed in “Design considerations for W-Net” 
section. We release a new WBC dataset using GAN in 
“Dataset sharing” section. Finally, we conclude our study 
in “Conclusion” section.

Related works
Previous works
Analysis of white blood cells (WBC) has vital importance 
in diagnosing diseases. Distribution of the five WBC 
types, (basophils, eosinophils, lymphocytes, monocytes 
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and neutrophils) reflects highly on the condition of the 
immune system. Analyzing the components of WBCs 
requires performing segmentation and classification pro-
cesses. The traditional analysis of WBC includes observ-
ing a blood smear on a microscope and using the visible 
properties, such as shapes and colors, to classifing the 
blood cells. However, the accuracy of the WBCs analysis 
depends significantly on the knowledge and experience 
of the medical operator [19]. This makes the process of 
analyzing of WBCs using conventional methods time-
consuming and labor-intensive [19–21]. Therefore, many 
studies have proposed computer-aided technologies to 
facilitate the WBC analysis through accurate cell detec-
tion and segmentation to reduce the manual efforts 
needed by human experts. For instance, Shitong and Min 
[22] have proposed an algorithm based on fuzzy cellular 
neural networks to detect WBCs in microscopic blood 
images as the first key step for automatic WBC recog-
nition. Using mathematical morphology and fuzzy cel-
lular neural networks, the authors achieved a detection 
accuracy of 99%. The detection of WBCs is followed 
by a segmentation process, which segments the image 
into nucleus and cytoplasm regions. This task has been 
pursued by several studies providing accurate segmen-
tation using a variety of methods. The most common 
approach for nuclei segmentation is the clustering based 
on extracted features from pixels values [23, 24]. The lit-
erature shows a successful nuclei segmentation using dif-
ferent clustering techniques, such as K-means [25], fuzzy 
K-means [24], C-means [24], and GK-means [26]. Among 
other unsupervised techniques for nuclei segmentation 
beside clustering, many studies utilized thresholding [21, 
27–31], arithmetical operations [32], edge-based detec-
tion [24, 31], region-based detection [31], genetic algo-
rithm [33], watershed algorithm [31], and Gram-Schmidt 
orthogonalization [17].

The literature on WBC segmentation process is very 
rich and provides valuable insights for the WBC iden-
tification. Andrade et  al. [23] provides a survey and a 
comparative study on the performance of 15 segmenta-
tion methods using five public WBC databases. Some 
of these works are dedicated to the separation of adja-
cent cells, while many others addressed particularly the 
separation of overlapping cells. After the segmentation 
process, the WBC image classification or identification 
process is conducted. The distinction between the task of 
WBC identification and WBC image classification is the 
identification process aims to detect and identify leuco-
cytes in an image, while the classification process aims 
to distinguish the different types of WBC. Even though 
many studies are dedicated to segmentation and identifi-
cation task, fewer researches are addressed the classifica-
tion of the WBCs. The literature shows that classification 

methods used for this purpose include the K-Nearest 
Neighbor (KNN) classifier [20, 28], Bayesian classifier 
[21, 28, 34], SVM classifier [17, 19, 26, 28, 35], Linear Dis-
criminant Analysis (LDA) [36], decision trees and ran-
dom forest classifier [28, 37], and deep learning [17, 27, 
32, 35, 38, 39].

Recently, deep learning-based methods have been uti-
lized for WBC classification and segmentation tasks [40–
42]. Patil et  al. [40] incorporated canonical correlation 
analysis with CNN to extract and train on multiple nuclei 
patches with overlapping nuclei for WBC classification. 
Toğaçar et  al. [41] have utilized multiple CNN-based 
models, namely, AlexNet, GoogLeNet, and ResNet-50, 
for feature extraction and adopted quadratic discri-
minant analysis for classifying WBCs. Their method 
achieved an accuracy of 97.95% on a dataset of four cat-
egories: Neutrophil, Eosinophil, Monocyte, and Lym-
phocyte. Mohamed et  al. [43] have investigated the use 
of deep CNN models over different shallow classifiers for 
WBC classification. For example, using a logistic regres-
sion classifier, extracting features using MobileNet-22 
enabled a classification accuracy of 97.03%. Banik et  al. 
[44] explored the use of combining features from differ-
ent layers of CNN model to classify WBC in the BCCD 
dataset. Karthikeyan et al. [45] proposed the LSM-TIDC 
approach to classify WBCs in blood smear images where 
a multi-directional model is used to extract texture and 
geometrical features that are then fed to a CNN model. 
Kutlu et  al. [46] proposed using Regional-Based CNN 
model for WBC classification in blood smear images. 
Many other approaches have been proposed to tackle 
various challenges in the field of WBC using traditional 
machine learning and deep learning-based methods. 
Khan et al. [42] provided a comprehensive review of such 
practices and their impact on the field. Table 1 shows an 
overview of the performance and methods of the related 
works.

CNN with medical images
Due to the vast success in a variety of applications, CNN 
has been adopted in several medical applications where 
imagery inputs are analyzed for diagnosis or classifica-
tion. In the field of medical imaging, CNN has been suc-
cessfully utilized for histological microscopic image [47], 
pediatric pneumonia [48], diabetic macular edema [48], 
ventricular arrhythmias [49], thyroid anomalies, mitotic 
nuclei estimation [50, 51], neuroanatomy [52], and others 
[10–13, 53–59]. Kermany et al. [48] showed that CNN can 
detect diabetic macular edema and age-related macular 
degeneration with high accuracy and with a comparable 
performance of human experts. The authors also demon-
strated the applicability of CNN in diagnosing pediatric 
pneumonia from chest X-ray images. Alexander et al. [47] 
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have provided the state-of-the-art performance (by the 
publication date) using CNN for histopathological image 
classification on the dataset of the ICIAR 2018 Grand 
Challenge on Breast Cancer Histology Images. Acharya 
[49] have shown that CNN can be used to accurately detect 
shockable and non-shockable life-threatening ventricular 
arrhythmias. Wachinger et al. [52] proposed DeepNAT, a 
CNN-based approach for automatic segmentation of Neu-
roAnaTomy in magnetic resonance images. The authors 
showed that their approach provided comparable results to 
those of state-of-the-art methods.

Methods
This section provides a description of the dataset used in 
this study, the pre-processing steps for the WBC images, 
and the proposed CNN-based architecture for WBC 
classification. The dataset was provided by The Catho-
lic University of Korea (The CUK), and approved by the 
Institutional Review Board (IRB) of The CUK [60]. The 
experimental protocols and informed consent were 
approved by the Institutional Review Board (IRB) of The 
CUK [60].

Table 1  Related work highlighting the used datasets, their size, number of classes (C), employed methods, and accuracy

The parts in bold mean our model

Study Dataset Size C Methods Performance

Wang et al. [19] Private: hyperspectral blood cell images N/A 5 Morphology, spectral analysis and  SVM 90.00%

Dorini et al. [20] CellAtlas 100 5 Morphological transform. and KNN 78.51%

Nazlibilek et al. [27] Kanbilim dataset [73] 240 5 Thresholding, ANN and PCA 95.00%

Prinyakupt et al. [21] Private dataset: Rangsit University and PD: 555 5 Thresholding and NB PD: 93.70%

CellaVision dataset CV: 2477 CV: 92.90%

Abdeldaim et al. [28] ALL-IDB2 260 2 Thresholding, KNN, SVM, NB and DT KNN: 96.01%

SVM: 93.89%

NB: 89.97%

DT: 86.81%

Hegde et al. [32] Private: Kolkata Municipal Corporation 117 5 Arithmetical operations and ANN 96.50%

Ghosh et al. [74] ALL-IDB 260 2 CNN 97.22%

Rezatofighi et al. [17] Private: Imam Khomeini Hospital 400 5 Gram-Schmidt, SVM and ANN 98.64%

Habibzadeh et al. [38] Private [75] 352 4 CNN 93.17%

Liang et al. [76] BCCD [77] 364 4 RNN (LSTM) and CNN 90.79%

Rawat et al. [39] Private [78] 160 4 Ensemble ANN 95.00%

Ramesh et al. [36] Private: University of Utah 320 5 LDA 93.90%

Putzu et al. [79] ALL-IDB 260 2 SVM 92.00%

Mathur et al. [34] Private 237 5 NB 92.72%

Ghosh et al. [37] Private: Kolkata Municipal Corporation 150 5 Region-based segmentation N/A

Mathematical morphology N/A

Fuzzy logic and RF N/A

Su et al. [35] CellaVision [80] 450 5 Mathematical morphology HCNN: 88.89%

Hyperrectangular composite NN SVM: 97.55%

SVM and MLP MLP: 99.1%

Patil et al. [40] BCCD [77] 12,442 4 CNN and RNN 95.89%

Toğaçar et al. [41] BCCD [77] 12,435 4 AlexNet, GoogLeNet and ResNet 97.95%

Mohamed et al. [43] BCCD [77] 12,500 4 MobileNet-22 97.03%

Banik et al. [44] BCCD, ALL-IDB2, JTSC, and CV [80] 13,371 4 CNN 94.00%

Karthikeyan et al. [45] BCCD [77] 12,500 4 LSM-TIDC N/A

Kutlu et al. [46] BCCD [77] and LISC [17] 12,500 5 Regional-based CNN 97.52%

W-Net (this work) Private: The Catholic University of Korea 6562 5 CNN 97%
W-Net (this work) LISC public data [17] 254 5 CNN and further training 96%
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Dataset
We use a real-world dataset of 6562 images that belong 
to five WBC types, namely, neutrophil, eosinophil, baso-
phil, lymphocyte, and monocyte. The dataset was pro-
vided by The Catholic University of Korea (The CUK), 
and approved by the Institutional Review Board (IRB) 
of The CUK [60]. The images were captured by Sysmex 
DI-60 machine [61], and provided with 360 × 361 × 3 (3 
channels, RGB) image size. Table  2 shows the number 
of images per class: 2006 neutrophils (NE) images, 1310 
eosinophils (EO) images, 377 basophils (BA) images, 
1676 lymphocytes (LY) images and 1193 monocytes 
(MO) images. The class distribution in our dataset is 30%, 
20%, 6%, 26% and 18% for the five classes.

Pre‑processing of WBC images
Prior to the model creation and training, WBC images 
are pre-processed using three steps: ❶ image border 
cropping, ❷ image re-sizing, and ❸ image normali-
zation. To eliminate the external borders of the image 

and to focus on the WBC, we remove the top 80 pixels, 
the bottom 81 pixels, the left 80 pixels, and the right 80 
pixels of the image. The resulting cropped images, i.e., 
images with a size of 200 × 200 × 3, are then re-sized to 
128 × 128 × 3 for properly fitting them into a GPU mem-
ory and for efficient processing. Samples of the processed 
images are shown in Fig. 1. The image normalization pro-
cess was applied to reduce the heterogeneity of the RGB 
distribution in the images and to prevent over/underflow. 
This step is shown in Fig. 2.

W‑Net: architecture and design
We introduce our CNN-based model architecture for 
WBC image classification. As illustrated in Fig. 2, W-Net 
consists of three convolutional layers and two fully-con-
nected layers, and they are responsible for extracting 
and learning features from WBC images to accurately 
classifying them into five classes using a softmax clas-
sifier. Each convolutional layer has a kernel size of 3 × 3 
with stride of size 1 and uses ReLU activation function 
f(x) = max(0, x). The first convolutional layer has 16 fil-
ters, the second has 32 filters and third has 64 filters. 
After each convolutional layer, there is a max-pooling 
layer of size 2 × 2 with stride of size 2 and zero pad-
ding. We also use dropout regularization with p = 0.6 
[62] to prevent overfitting in each convolutional layer. 
The output of the third convolutional layer is flattened 

Table 2  The number of five type samples in the dataset

NE EO BA LY MO

The # of Imgs. 2006 1310 377 1676 1193

Distribution 30% 20% 6% 26% 18%

Neutrophil Eosinophil Basophil Lymphocyte Monocyte
Fig. 1  Neutrophil, eosinophil, basophil, lymphocyte and monocyte from the left. These were cropped and rescaled with 128 × 128 × 3 for efficient 
training

Fig. 2  An overview of the pre-processing and the proposed CNN-based architecture for WBC image classification. The pre-processing consists of 
cropping, re-sizing and normalizing. Three convolutional layers (including three pooling layers) are in charge of extracting and learning features, and 
two fully connected layers are in charge of classification
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and fed into the first fully connected layer which has 
1024 units. ReLU activation, and dropout with p = 0.6 
are followed. The second fully connected layer has five 
units (five classes of WBC) and is followed by softmax 
classifier to map the output (features) to one of the five 
classes. The network has a total size of 16,806,949 train-
able parameters. The model parameters were initialized 
using Xavier uniform initializer W ~ U[− x, x], where 
x = sqrt(6/(in + out)). The training of models is guided 
by minimizing the softmax-cross-entropy loss function 
−
∑

x p(x)logq(x) , where q(xi) = exp(xi)/
∑

j exp(xj))  
using Adam optimizer �θt = −n · m̂t/

√

v̂t + ǫ [63] with 
a learning rate of 0.0001. The training process is con-
ducted with different batch sizes and terminated by the 
conclusion of 500 training epochs. The evaluation of the 
models is conducted using a tenfold cross-validation 
approach [64]. The structure is illustrated in Table 3. The 
hyperparameters are described in Table 4. Design choices 
for W-Net are discussed in “Design considerations for 
W-Net” section.

Experiments
We show the performance of W-Net for WBC classifica-
tion and compare the softmax classifier of W-Net with 
SVM. We show that W-Net provides remarkable results 
in the WBC classification by comparing it to the prior 
work. We also show how the number of layers affects 

performance. The comparison includes AlexNet, VGG-
Net, ResNet and RNN models. For transfer learning, we 
provide insights on adopting pre-trained W-Net to gain 
higher WBC classification performance on public data-
sets. ROC curve and AUC are a useful method for eval-
uating a system in medical area and are usually used to 
classify a binary task such as a diagnosis. However, we 
remark that our results are only based on an accuracy, 
because the output of our model is multiple-class not the 
binary.

W‑Net performance
Table  10 in “Appendix 1” shows the accuracy achieved 
by W-Net using tenfold cross-validation approach. 
Conducting the experiments required 33.87  h of mod-
el’s training time. For the neutrophil, 1800 images were 
used for training and 206 images were used for testing 
in each fold, and the average accuracy was 98%. For the 
eosinophil, 1179 images were used for training and 131 
images were used for testing in each fold, and the aver-
age accuracy was 97%. For the basophil, 340 images were 
used for training and 37 images were used for testing 
in each fold, and the average accuracy was 95%. For the 
lymphocyte, 1509 images were used for training and 167 
images were used for testing in each fold, and the average 
accuracy was 97%. For the monocyte, 1074 images were 
used for training and 119 images were used for testing in 
each fold, and the average accuracy was 97%. The aver-
age overall accuracy of the five WBC classes was 97%. As 
shown in Fig.  3, it provides ROC curve and Precision-
Recall (PR) curve in (a) and (b) respectively, based on the 
idea of one vs rest for multi-class classification. Each line 
in (a) represents each class of the five WBC classes, and 
our W-Net model achieved an AUC of 0.97 on average on 
ROC curve. On the one hand, it achieved an AUC of 0.98 
on average on PR curve.

W‑Net versus W‑Net‑SVM performance
We compared softmax classifier of W-Net with SVM to 
demonstrate classifier’s abilities in performing the WBC 

Table 3  The structure of five layers (Conv. and FC.) for W-Net

Layers Output size Structure

1st Conv. 65,536 3 × 3 kernel, 1 stride, 16 filters

2 × 2 max-pool, 2 strides, 0 pad

2nd Conv. 32,768 3 × 3 kernel, 1 stride, 32 filters

2 × 2 max-pool, 2 strides, 0 pad

3rd Conv. 16,384 3 × 3 kernel, 1 stride, 64 filter

2 × 2 max-pool, 2 strides, 0 pad

1st FC. 1024 1024 units

2nd FC. 5 5 units

Table 4  Hyperparameters for all the models

Architecture Learning rate Decay Momentum Dropout Batch size Epochs Hidden unit

W-Net 0.0001 0.6 256 500

W-Net with SVM 0.0001 0.6 256 500

AlexNet 0.001 0.0005 0.9 0.5 128 90

VGGNet 0.000001 0.5 1 300

ResNet50 0.001 0.0001 0.9 32 50

ResNet18 0.001 0.0001 0.9 32 50

RNN 0.01 64 32
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classification task. We trained a W-Net model with SVM 
classifier (W-Net-SVM) using hinge loss function [65] 
l(y) = max(0, 1 − tㆍy) instead of softmax (W-Net). 
We followed the same experimental settings adopted in 
previous experiment including the training parameters, 
dataset, pre-processing steps, workstation environment, 
and tenfold cross-validation approach for the evaluation. 
The network has a total of 16,806,949 trainable param-
eters. Table 11 in “Appendix 1” shows the performance of 
W-Net-SVM using tenfold cross-validation in the WBC 
classification task. The training time of W-Net-SVM was 
33.79 h. The achieved results for the neutrophil, eosino-
phil, basophil, lymphocyte, and monocyte classes are 
98%, 97%, 87%, 98%, and 97%, respectively. The overall 
average accuracy of the five classes was 95%.

WBC classification with AlexNet
This experiment adopts AlexNet architecture in 
the WBC classification task. AlexNet network con-
sists of five convolutional layers and three fully-con-
nected layers which apply ReLU activation function 
(in all layers except the last (softmax) layer). The train-
ing of AlexNet model is conducted by minimizing 
the softmax-cross-entropy loss function using the 
momentum optimizer θt = −γ νt−1 − ηgt [66]. Using 
a cross-validation approach, the best training hyper-
parameters that achieved the best WBC classification 
accuracy are described in Table  4. We follow the same 
experimental settings adopted in previous experiments 
by using same dataset, pre-processing steps (except for 
the image size, we re-sized the images to 224 × 224 × 3 
for AlexNet), workstation environment, and the tenfold 
cross-validation evaluation approach. The AlexNet-based 
network has a total of 46,767,493 trainable parameters. 
Table  12 in “Appendix 1” shows the performance of 
AlexNet using a tenfold cross-validation approach in the 
WBC classification task. The overall average accuracy is 
84% (see Table 12 for details).

WBC classification with VGGNet
We compared W-Net with VGGNet to demonstrate the 
effectiveness of W-Net in the WBC image classifica-
tion. We trained a VGGNet-based model that consists 
of 16 convolutional layers and three full-connected lay-
ers, which followed with ReLU activation function. The 
model training is conducted using the minimization of 
the softmax-cross-entropy loss though Adam optimizer. 
Using a cross-validation method, the best training hyper-
parameters are described in Table  4. This experiment 
followed the same experimental settings adopted in pre-
vious experiments. The VGGNet-based model includes a 
total of 121,796,165 trainable parameters. The training of 
the VGGNet-based model required 510.59 h of training 
time. Table  13 in “Appendix 1” shows the results of the 
tenfold cross-validation of VGGNet-based model in the 
WBC classification. The overall average accuracy of the 
five classes is 44% (see Table 13 for details).

WBC classification with ResNet
We adopt ResNet50 and ResNet18 networks for WBC 
classification, which consists of 50 and 18 convolutional 
layers, respectively. Both models are trained by mini-
mizing the softmax-cross-entropy loss using momen-
tum optimizer. Using a cross-validation approach, the 
best training hyperparameters to achieve the highest 
accuracy in the WBC classification task are described in 
Table 4. The training and evaluation of the models are in 
compliance with experimental settings adopted in previ-
ous experiments. The ResNet50 and ResNet18 models 
include a total of 23,544,837 and 14,722,931 trainable 
parameters, respectively. It required a training time of 
8.38 h for ResNet50, and 3.51 h for ResNet18. Table 14 in 
“Appendix 1” shows the classification accuracy obtained 
by of ResNet50 model using the tenfold cross-validation 
approach, while Table 15 shows the results of ResNet18. 
The overall average accuracy of the five classes for 
ResNet50 is 51%. On the one hand, ResNet18 achieved 
the overall average accuracy of the five classes is 79% (see 
Tables 14 and 15 for details, respectively).

WBC classification with RNN
We explore the capabilities of RNN in the WBC classifi-
cation task. Using RNN for WBC image classification, we 
adopted the common approach by considering the image 
rows as sequences and the columns as timesteps. Since 
we the WBC images are 128 × 128 × 3 images, we feed 
the model with batches of 128 sequences of size 128 × 3. 
The RNN model adopted in this experiment consists 
of only one single hidden layer. The experimental set-
tings for the training process are set with the following 
search space: learning rate = 0.0001, 0.001, 0.003, 0.01, 
0.1, 0.3, batch size = 16, 32, 64, 128 and hidden units = 16, 

(a) ROC Curve (b) Precision-Recall Curve
Fig. 3  a Provides ROC curve of our W-Net model based on the idea 
of one versus rest for multi-class classification, and b shows Precision–
Recall curve. In a, each class achieves an AUC of 0.97 on average and 
achieves an AUC of 0.98 on average in b 
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32, 128, 256, 512, 1024. For hyper-parameter selection, 
we split 6562 images into train/test/validation sets by 
5504/512/546 ratio. The best test accuracy was achieved 
when using a learning rate of 0.01, batch size of 64, and 
32 hidden LSTM units, as described in Table  4. Once 
hyperparameters are selected, we conducted a new train-
ing process using a tenfold evaluation approach, where 
10 different models are trained and evaluated using ten 
fold splits (each time a model is trained on nine folds and 
tested on one fold). The achieved accuracy for the indi-
vidual classes are as follows: neutrophil 89%, eosinophil 
88%, basophil 57%, lymphocyte 93%, and monocyte 90%. 
The results are shown in Table 16, “Appendix 1”. The aver-
age accuracy of the five classes is 83%.

Models comparison for WBC classification
Table 5 shows a summary of the results achieved by the 
different models, namely, W-Net, W-Net with SVM, 
AlexNet, VGGNet, ResNet, and RNN, using our data-
set. The reported results are the average score of differ-
ent accuracy metrics, accuracy, precision, recall, and 
F1-score. For W-Net, the accuracy, precision, recall, and 
F1-score are all 97%. For W-Net-SVM, they are 95%, 97%, 
95% and 96% respectively. For Alexnet, they are 84%, 
94%, 84% and 85% respectively. For VGGNet, they are 
44%, 67%, 44% and 42% respectively. For ResNet, they are 
51%, 60%, 51% and 43% respectively. For the RNN model, 
they are 83%, 86%, 85% and 85% respectively. The results 
show that W-Net outperforms other RNN- and CNN-
based model’s architectures and an architecture with a 
small number of layers is also better than an architecture 
with many layers. The detailed results of tenfold cross 
validation for all experiments are in “Appendix 1”.

Further training with public data
The LISC public dataset [17] includes WBC images of 
size 720 × 576 × 3 that were collected from peripheral 
blood of eight normal people. The images are classified 
by a hematologist into five types of WBC: neutrophils, 

eosinophils, basophils, lymphocytes and monocytes. For 
pre-processing the public dataset, we cropped the WBC 
images (nucleus and cytoplasm regions) in the original 
images, and then re-sized the images to 128 × 128 × 3 for 
training. We used a total of 254 WBC images as our data-
set: 56, 39, 55, 56 and 48 images for neutrophil, eosino-
phil, basophil, lymphocyte and monocyte, respectively. 
Using the LISC public data, this experiment shows the 
performance of W-Net when adopted for different data-
sets. Moreover, we show the performance of W-Net using 
transfer learning when a pre-trained W-Net is fine-tuned 
to classify WBCs from different dataset or used for dif-
ferent WBC-related tasks. To this end, we conducted two 
experiments as follows: ❶ W-Net architecture is used 
for building a WBC classifier trained using only the LISC 
public data, ❷ a pre-trained W-Net with softmax classi-
fier from “W-Net performance” section is fine-tuned to 
classify WBCs from LISC public data. Except the train-
ing epochs, the training hyperparameters are set to be 
identical in both experiments. In the first experiment, 
W-Net-based model was trained from scratch using 4000 
training epochs (254 × 4000/5 iterations) on the LISC 
public data. The training process was concluded after 
10.33  h. In the second experiment, we establish a pre-
trained W-Net-based model (trained on our dataset for 
500 training epochs.) to be used on the LISC public data. 
The pre-trained W-Net-based model was fine-tuned for 
4000 epochs (254 × 4000/5 iterations) on the public data. 
The training process was concluded after 10.83 h. Table  
16 in “Appendix 1” shows the result of the first experi-
ment where W-Net is used to classify WBCs from the 
LISC public data. The achieved results is an average accu-
racy of 91%. Table 17 in “Appendix 1” shows the result of 
the experiment. The average accuracy achieved using a 
pre-trained W-Net model is 96%.

In the results, the second experiment shows a better 
performance. This result shows that training a model in 
large-scale dataset (such as the one used for this study) 
can benefit other transfer learning tasks, where the 
model is fine-tuned to other dataset or performing other 
WBC-related tasks. We share our pre-trained model on 
GitHub [67] and believe that using the transfer learning 
property (transfer learning in the same domain) of deep 
learning models can help other researchers in the field.

Design considerations for W‑Net
Design choices for our deep learning architecture are 
described in this section. There are two challenging 
issues to consider in choosing a specific architecture in 
the large design space for WBC classification problem: 
One is how to figure out the data imbalance problem, 
and the other is to classify similar-looking images into 

Table 5  The result of accuracy, precision, recall, F1-score on 
average and the number of layers for all experiments

The parts in bold mean our model

Network Acc. (%) Prec. (%) Rec. (%) F1. (%) # of layers

W-Net 97 97 97 97 3
W-Net-SVM 95 97 95 96 3

AlexNet 84 94 84 85 8

VGGNet 44 67 44 42 16

ResNet50 51 60 51 43 50

ResNet18 79 81 78 77 18

RNN 83 86 85 85 –



Page 9 of 16Jung et al. BMC Medical Imaging           (2022) 22:94 	

the relatively small number of classes. In many datasets 
in real world, data imbalance is quite common and WBC 
images resembles way more each other compared to 
objects in traditional image classification problems. Also, 
the number of classes is quite limited compared with the 
traditional object identification problems such as Ima-
geNet challenge. Therefore, it is necessary to take a differ-
ent approach to the classification problem.

Handling data imbalance: large batch and sampling
The results show that W-Net performs well despite the 
dataset’s imbalance, which is observed by the number 
of samples for each class. Even though the least-repre-
sented class in the dataset (basophil with 6% of the data-
set) show the least accuracy of 95% in comparison to 
other classes, this accuracy is still higher than the results 
achieved by other methods, e.g., CNN-based and RNN-
based models, for the same class. This performance 
can be due to several reasons. For instance, the evalua-
tion of all experiments follows a stratified k-folds cross-
validation approach, which preserves the percentage of 
samples across all folds. Using this approach allows the 
sampling from all classes in different ratios in each fold, 
which dictates the inclusion of all classes in both the 
training and testing phases. When using a small batch 
size, e.g., five samples as adopted during the training of 
W-Net, the error resulting from misclassifying one class, 
especially from underrepresented classes, highly impacts 
the average cost of the learning epoch and contributes 
in an effective learning process for these classes. In con-
trast, using a large batch size and considering a random 
sampling scheme for batching could result in minimizing 
the effect of misclassification of underrepresented classes 
since performing well on other classes could out-weigh 
the misclassification of small, if any at all, samples from 
classes with small ratios in the dataset.

Having different distributions of image samples per 
class is a hard part to classify WBC images. W-Net 
achieves an accuracy of 95% for identifying the basophil 
class which are represented with the least number of 
samples (377 samples and a ratio of 6% of the dataset). 
This result is remarkable knowing that all other CNN-
based and RNN-based models achieved an accuracy 
below 56% and 57%, respectively, for the same class. 
The overall average accuracy of W-Net is 97%, which is 
the highest among other methods for WBC classifica-
tion. Considering the results for this large-scale dataset, 
W-Net presents a state-of-the-art performance.

Furthermore, the result of W-Net with softmax classi-
fier is 97%, the result of W-Net with SVM classifier is 95% 
and they seem similar. However, for the basophil class 
that has 6% distribution of our dataset, the accuracy of 
W-Net with SVM is only 87% and it is lower than 95% the 

result of softmax. The W-Net-SVM uses the hinge loss 
function, while W-Net uses the softmax cross-entropy 
loss function. The nature of optimization under these 
functions differs since the optimization using the hinge 
loss concludes when finding parameters that satisfy the 
classification with the predefined margin. However, using 
softmax cross-entropy loss keeps the optimization going 
beyond a specific margin pushing the decision bounda-
ries further. This allows the model to maintain robust 
generalization capabilities, hence the better performance 
of W-Net over W-Net-SVM. AlexNet has many lay-
ers than our W-Net, however, the average accuracy is 
84%, and especially the average accuracy of the basophil 
class that has 6% distribution of our dataset is 33%. This 
means the SVM classifier and the network of AlexNet are 
not appropriate to address the unbalanced dataset. As a 
result, we can claim that W-Net with softmax classifier is 
more effective than AlexNet and W-Net with SVM clas-
sifier in WBC image classification area.

WBC dedicated architecture with shallow depth
In the tenfold cross-validation evaluation of W-Net, the 
minimum average accuracy is 91% (basophil, Fold-9) and 
maximum average accuracy is 100%. However, in the 
case of VGGNet and ResNet50 architectures which have 
more depth (considering the number of layers), the vari-
ance between the folds is from 0 to 100% resulting in 44% 
tenfold average accuracy, and from 0 to 100% resulting in 
51% tenfold average accuracy, respectively. In a compari-
son between ResNet50 and ResNet18, since ResNet18 
consists of a shallower layer than ResNet50, the overfit-
ting problem seems to occur less. It leads that ResNet18 
shows better performance with 79% on average than 
ResNet50. This means that very deep networks may not 
be the optimal choice for WBC image classification. Most 
of the state-of-the-art CNN-based models (e.g., AlexNet, 
VGGNet, and ResNet) use larger receptive fields, (e.g., 
7 × 7 in case ResNet and 11 × 11 in the case of AlexNet), 
which seem to work better on larger images with larger 
objects (classes). However, handling the WBC classifica-
tion task requires adopting smaller filters to bring atten-
tion to finer receptive fields that hold relevant features.

The results of this research show that architectures 
such as W-Net’s, which has five layers (three convolu-
tional and two fully-connected.), can be sufficient and 
more effective in the WBC classification task in com-
parison to other deeper networks such as VGGNet, 
ResNet50 and ResNet18. In general, deep networks are 
known to perform well for the image classification, the 
VGGNet and ResNet with deep networks show good 
performance in ILSVRC. However, they did not show 
good performance in WBC image dataset. We claim that 
our dataset to be classified is different from the dataset 
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aimed by those deep networks in two aspects: (1) the 
ILSVRC dataset has 1000 classes, but our WBC dataset 
has only five classes, and (2) The images of the ILSVRC 
dataset are very different from each other (For example, 
they are dog, bird, flower and food etc.), while our dataset 
has very high visual similarity.

To support this claim we conducted two simple experi-
ments, ❶ the first experiment was to run W-Net on 200 
classes (bird, ball and car etc.) of images from Tiny Ima-
geNet dataset [68] and ❷ the second experiment was 
to run W-Net on five classes without visual similarity 
(fish, clothes, chair, car and teddy bear) from Tiny Ima-
geNet dataset with the same (imbalance) distribution 
of our WBC dataset. In these two experiments, we only 
used different dataset with our WBC dataset, and used 
same network, parameters (learning rate and training 
epoch etc.) and tenfold cross-validation approach with 
our W-Net. In the first experiment, we used the dataset 
with 200 classes, and each class had 500 images. We used 
total 100,000 images. The result from the first experi-
ment showed 100% accuracy for the 200th class, but 0% 
accuracy for the other 199 classes. The average accuracy 
was 0.5%, it showed that the model was not trained at 
all. In the second experiment, we used the dataset with 5 
classes, and each class had 500, 333, 100, 433, 300 (mak-
ing them have the same distribution with our dataset) 
images. We used total 1666 images. The result from the 
second experiment showed 34% accuracy for the third 
class (100 chair images), and 84%, 78%, 90% and 65% for 
other classes, respectively. The average accuracy was 79%, 
which was not as good as the results of W-Net using our 
dataset. Therefore, we claim that a simple network may 
be better to classify our WBC dataset with data distri-
bution imbalance, small number of classes, and visual 
similarity.

Why not RNN?
RNN-based models perform well in sequential data and 
show remarkable results in capturing temporal depend-
encies within the input data. There are different varia-
tions of RNN, and for our experiments we used LSTM 
models for their abilities to handle long-term dependen-
cies (e.g., 128 sequences in our application) and the van-
ishing gradient problem. The average achieved results 
when using one-layer LSTM model with 32 hidden units 
is 83%. This result is far from the results achieved by 
W-Net (97%).

However, it outperforms other CNN-based models 
such as VGGNet (44%) and ResNet50 (51%). Karol et al. 
[69] have also shown that RNN can encode independent 
scenes within an image instead of processing the entire 

image as a single input. Adopting sequential processing 
of white blood images via LSTM, enables the model to 
extract/adapt to patterns/changes in the scene to build a 
more robust model than following single-shot processing.

Dataset sharing
Recent advances in big data have also led to advances in 
deep learning, accordingly having a good dataset has 
become important. In this section, we generate new 
WBC image samples using Generative Adversarial Net-
works (GAN) [18] then release them in public for edu-
cation and research to help other researchers. GAN is a 
deep learning architecture for generating new artificial 
samples, it composes of two deep networks: ❶ the gen-
erator G, and ❷ the discriminator D. The G generates 
new samples from the domain, and the D classifies 
whether the samples are real or fake. The output of the 
D is used to update both the model weights of the D 
itself and the G. Accordingly, the performance of the G 
depends on how well the D performs. GAN can be 
expressed by: min

G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1− D(G(z)))] , where x ~ pdata(x) and 
z ~ pz(z) indicate the distribution of a real data and a 
fake data respectively, the D aims to maximize logD(x) 
and G aims to minimize log(1 − D(G(z))), to maximize 
the chance to recognize real images as real and gener-
ated images as fake. This expression defines GAN as a 
minimax game.

Experimental settings
We use the same dataset (6562 WBC images of size of 
128 × 128 × 3), similar experimental settings of previous 
experiments, and Deep Convolutional Generative Adver-
sarial Network (DCGAN) [70] to train (G and D) models 
for generating images. For the network of D, six convolu-
tional layers, one fully connected layer, LeakyReLU [71] 
activation, sigmoid activation and dropout are used. For 
the network of G, six convolutional layers, one fully con-
nected layer, ReLU activation, sigmoid activation, drop-
out, and batch normalization [72] are used. The training 
hyperparameters are set as follows: alpha 0.2, momentum 
0.9, batch size 1, learning rate 0.00001, dropout 0.6, and 
training epochs 10,000. The network of G and D have 
a total of 2,780,099 and 69,878,401 trainable parame-
ters. It took 191.66, 120.13, 34.44, 158.33 and 91.66 h to 
train G and D models for five WBC classes, and it took 
an average of 18  min to generate 1000 images per each 
class. We generated 1000 plausible WBC images of size 
of 128 × 128 × 3 for each class (a total of 5000 images). 
Figure  4 shows the samples of both the original images 
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(left side) for training DCGAN model and the gener-
ated images (right side) by trained DCGAN model. The 
first row of the Fig.  4 is the neutrophil class, followed 
by the eosinophil, the basophil, the lymphocyte, and the 
monocyte.

Generated image quality
To see how similar images were generated from the origi-
nal images, we verified the generated WBC images using 
❶ baseline-W-Net, ❷ generative-W-Net (i.e., W-Net 
trained on generated synthetic dataset), ❸ cosine simi-
larity, and ❹ domain-expert experiment with a medical 
laboratory specialist. First, we experimented to classify 
the generated images using W-Net. Table  6 shows the 
confusion matrix for the results achieved for the clas-
sification of the generated WBC im-ages. The second 
column indicates true classes, the second row indicates 
predicted classes, and the images are well-classified with 

100% accuracy by W-Net. Second, we trained W-Net 
model using the 5000 generated synthetic images. For 
the training, we follow the same experimental set-
tings of creating the baseline-W-Net. Then, we evalu-
ated the generative-W-Net for classifying the 6562 real 
WBC images. Table  7 shows the confusion matrix for 
the results achieved for the classification of real WBC 
images using generative-W-Net. The images are classi-
fied with an accuracy of 95%, precision of 93%, recall of 
95%, and F1-score of 94%. Third, we measure the similar-
ity between the original images and the generated images 
using cosine similarity. We first measure the cosine 
similarity between the original images and the original 
images for each class (e.g., 377 vs. 377 for the basophil 
class), then we measure the cosine similarity between the 
original images and the 1000 generated WBC images for 
each class (e.g., 377 vs. 1000 for the basophil class) and 
then we compare them. Table 8 shows the difference in 

Neutrophil

Eosinophil

Basophil

Lymphocyte

Monocyte

Original Images Synthesized Images

Fig. 4  Left side: the original images of size of 128 × 128 × 3 for training DCGAN model. Right side: the synthesized images of size of 128 × 128 × 3 
by trained DCGAN model. The first row is the neutrophil class, followed by the eosinophil, the basophil, the lymphocyte, and the monocyte classes

Table 6  The confusion matrix for classification experiment result 
with generated WBC images using W-Net model

The images were well-classified with 100% accuracy

Predicted classes

NE. EO. BA. LY. MO.

True classes

 NE. 1000 0 0 0 0

 EO. 0 1000 0 0 0

 BA. 0 0 1000 0 0

 LY. 0 0 0 1000 0

 MO. 0 0 0 0 1000

Table 7  The confusion matrix for classification experiment result 
with real WBC images using the fake W-Net model

The images were classified with 95% accuracy

Predicted classes

NE. EO. BA. LY. MO.

True classes

 NE. 1979 1 19 5 2

 EO. 11 1273 19 7 0

 BA. 7 3 355 10 2

 LY. 8 2 59 1572 35

 MO. 8 0 9 77 1099
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the cosine similarity between the original images and 
generated images. It was 4% for the neutrophil, 3% for the 
eosinophil, 7% for the basophil, 6% for the lymphocyte, 
and 6% for the monocyte with average 5% for five classes. 
Fourth, we conducted a domain-expert experiment on 
how well a medical laboratory specialist could classify 
the generated WBC images. The dataset used in this 
experiment consists of 10 random original images and 
10 random generated images for each class, i.e., a total of 
100 images. Without informing the medical laboratory 
specialist of the source of the WBC images in the data-
set, we asked for the classification of provided images. 
Table 9 shows the confusion matrix for this experiment. 
The results show that the specialist well-classified the 
given WBC samples with an accuracy of 95%. Among the 
five misclassified images, there are three original images 
and only two generated images. The results of all verifi-
cation methods for the generated images show that the 
generated images are similar to the original images. We 
released the generated (labeled) WBC images on GitHub 
[67] for the education and research purposes.

Conclusion
Analysis of WBC images is essential for diagnosing leu-
kemia. Although there are several methods for detecting 
and counting WBCs from microscopic images of a blood 
smear, the classification of the five types of WBCs is still 
a challenge in real-life applications, which we addressed 
in this work. The rapid growth in the area of computer 
vision and machine/deep learning have provided feasible 
solutions to classification tasks in many domains. This 

work proposed W-Net, a CNN-based architecture with 
a small number of layers, to accurately classify the five 
WBC types. We evaluated W-Net on a real-world large-
scale dataset and addressed several challenges such as 
the transfer learning property and the class imbalance. 
W-Net achieved an average classification accuracy of 
97%. Moreover, we compared the result of W-Net with 
W-Net with SVM, AlexNet, VGGNet, ResNet and RNN 
architectures to show the superiority of W-Net which 
consists of three layers over other architecture. We syn-
thesized a dataset of new WBC image samples using 
DCGAN, which we released to the public for education 
and research purposes.

Even though our W-Net model provides good perfor-
mance with an average classification accuracy of 97%, it 
still remains an error of 3%. In the future work, we will 
conduct the dataset augmentation using our generative 
model based on DCGAN, to address the dataset imbal-
ance. Then, we will carry out additional experiments to 
further increase the accuracy performance of the classifi-
cation model with the balanced dataset.

Appendix 1: The detailed results for all 
experiments
In this section, we show the detailed results of tenfold 
cross validation for W-Net (Table  10), W-Net-SVM 
(Table  11), AlexNet (Table  12), VGGNet (Table  13), 
ResNet (Tables  14,  15), RNN (Table  16) and further 
training (Tables 17, 18).

Table 8  The difference in the cosine similarity between the original images and generated images

NE. EO. BA. LY. MO. Aver.

Cos. Sim. 4% 3% 7% 6% 6% 5%

Table 9  The confusion matrix for the user experiment result 
with the medical laboratory technologist

The technologist classified the generated WBC images with 95% accuracy

Predicted classes

NE. EO. BA. LY. MO.

True classes

 NE. 19 0 0 1 0

 EO. 0 19 0 0 1

 BA. 0 0 20 0 0

 LY. 1 0 0 19 0

 MO. 2 0 0 0 18

Table 10  The result of tenfold cross-validation of W-Net for 
classification accuracy

The average accuracy for five classes is 97%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 100 95 92 99 96

Fold-1 98 99 94 100 100

Fold-2 96 93 100 95 98

Fold-3 97 99 100 95 96

Fold-4 100 100 97 98 97

Fold-5 100 98 94 97 98

Fold-6 100 98 94 97 91

Fold-7 95 98 94 98 96

Fold-8 100 93 94 97 99

Fold-9 98 100 91 95 97

Avr. Acc. 98 97 95 97 97
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Table 11  The result of tenfold cross-validation of W-Net-SVM for 
classification accuracy

The Aver. Acc. for five classes is 95%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 100 96 78 100 99

Fold-1 100 94 89 100 96

Fold-2 85 97 97 97 97

Fold-3 97 94 89 97 91

Fold-4 98 99 86 99 98

Fold-5 100 99 78 96 100

Fold-6 100 98 89 98 94

Fold-7 96 97 89 100 92

Fold-8 100 95 86 98 96

Fold-9 99 98 91 97 97

Avr. Acc. 98 97 87 98 96

Table 12  The result of tenfold cross-validation of AlexNet for 
classification accuracy

The Aver. Acc. for five classes is 84%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 98 96 13 98 100

Fold-1 97 98 45 98 98

Fold-2 88 98 58 95 99

Fold-3 96 100 18 90 97

Fold-4 98 100 18 94 99

Fold-5 100 99 29 90 100

Fold-6 99 98 47 92 97

Fold-7 92 98 27 99 98

Fold-8 99 98 35 92 100

Fold-9 100 99 41 86 99

Avr. Acc. 97 99 33 93 99

Table 13  The result of tenfold cross-validation of VGGNet for 
classification accuracy

The Aver. Acc. for five classes is 44%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 100 2 21 0 32

Fold-1 100 0 0 0 75

Fold-2 100 3 31 0 57

Fold-3 100 87 47 16 12

Fold-4 100 84 81 4 74

Fold-5 100 33 0 20 89

Fold-6 100 0 7 40 68

Fold-7 100 44 2 1 12

Fold-8 100 62 16 0 51

Fold-9 100 64 21 8 57

Avr. Acc. 100 38 23 9 53

Table 14  The result of ResNet50 for classification using tenfold 
cross-validation

The average accuracy for five classes is 51%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 100 0 0 49 1

Fold-1 0 16 26 94 50

Fold-2 100 90 94 5 100

Fold-3 99 95 100 81 100

Fold-4 0 1 78 67 1

Fold-5 0 23 5 100 24

Fold-6 0 98 86 0 100

Fold-7 100 1 10 54 1

Fold-8 100 95 100 33 23

Fold-9 0 87 56 0 100

Avr. Acc. 50 51 56 48 50

Table 15  The result of ResNet18 for classification using tenfold 
cross-validation

The average accuracy for five classes is 79%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 96 99 53 61 76

Fold-1 83 94 97 97 89

Fold-2 54 21 86 73 91

Fold-3 89 92 70 68 84

Fold-4 74 92 100 85 82

Fold-5 86 82 56 74 69

Fold-6 84 93 100 88 62

Fold-7 70 91 90 99 93

Fold-8 61 81 61 73 42

Fold-9 97 86 100 83 71

Avr. Acc. 79 83 81 80 75

Table 16  Tenfold evaluation of LSTM (RNN) model

The average accuracy for five classes is 83%

NE. (%) EO. (%) BA. (%) LY. (%) MO. (%)

Fold-0 92 88 55 94 90

Fold-1 86 81 55 88 92

Fold-2 86 85 55 90 87

Fold-3 90 93 71 94 92

Fold-4 94 93 73 96 91

Fold-5 92 88 50 94 91

Fold-6 89 93 65 93 86

Fold-7 88 92 56 94 89

Fold-8 81 84 40 94 92

Fold-9 89 84 51 95 90

Avr. Acc. 89 88 57 93 90
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