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Abstract 

Objective:  To investigate the ability of a multimodality MRI-based radiomics model in predicting the aggressiveness 
of papillary thyroid carcinoma (PTC).

Methods:  This study included consecutive patients who underwent neck magnetic resonance (MR) scans and subse-
quent thyroidectomy during the study period. The pathological diagnosis of thyroidectomy specimens was the gold 
standard to determine the aggressiveness. Thyroid nodules were manually segmented on three modal MR images, 
and then radiomics features were extracted. A machine learning model was established to evaluate the prediction of 
PTC aggressiveness.

Results:  The study cohort included 107 patients with PTC confirmed by pathology (cross-validation cohort: n = 71; 
test cohort: n = 36). A total of 1584 features were extracted from contrast-enhanced T1-weighted (CE-T1 WI), 
T2-weighted (T2 WI) and diffusion weighted (DWI) images of each patient. Sparse representation method is used 
for radiation feature selection and classification model establishment. The accuracy of the independent test set that 
using only one modality, like CE-T1WI, T2WI or DWI was not particularly satisfactory. In contrast, the result of these 
three modalities combined achieved 0.917.

Conclusion:  Our study shows that multimodality MR image based on radiomics model can accurately distinguish 
aggressiveness in PTC from non-aggressiveness PTC before operation. This method may be helpful to inform the treat-
ment strategy and prognosis of patients with aggressiveness PTC.
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Introduction
Thyroid cancer is one of the most common malig-
nant tumor in the head and neck [1]. The histologi-
cal types of this disease include papillary carcinoma, 
myeloid carcinoma and follicular carcinoma. This dis-
ease is not easy to be found at the time of onset, and 
its slow course causes most patients to be accompanied 
by aggressiveness. There are 15 subtypes of papillary 

carcinoma [2], and the histological characteristics, 
imaging characteristics and prognosis of different sub-
types are different [3]. Accompanied by local invasion, 
extraglandular invasion, lymph node metastasis and 
distant organ metastasis, when any of the above condi-
tions occurs, it is determined as invasive thyroid can-
cer [4, 5]. The invasive subtypes considered in the 2015 
American Thyroid Association Management Guide-
lines for Adult Patients [6] include high cell subtype, 
columnar cell subtype and shoe nail subtype. Some 
studies [7] show that the diffuse sclerosis subtype also 
belongs to aggressiveness subtype. At present, surgical 
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resection is needed for most aggressive thyroid can-
cer, and the prognosis is relatively poor. Therefore, 
early diagnosis and identifying whether thyroid cancer 
is aggressive is of great significance. Nowadays, there 
are many research mechanisms for aggressive thyroid 
cancer, among which pathological tissue biopsy is the 
recognized gold standard for diagnosis [8]. However, 
whether the puncture results are satisfactory is affected 
by many factors, such as the size and location of thy-
roid nodules, the presence or absence of calcification 
and liquefaction in the nodes, also the experience of 
operators and cytologists. And in the implementation 
process, it will also cause a certain degree of trauma to 
patients and increase the risk of bleeding and infection. 
Therefore, it is of great significance to develop a non-
invasive method to automatically identify the aggres-
siveness of thyroid cancer.

At present, the conventional imaging examina-
tion methods of thyroid cancer include ultrasound, 
computed tomography (CT) and magnetic resonance 
imaging (MRI). Ultrasound is the preferred imaging 
examination method in the diagnosis of thyroid can-
cer, which has the characteristics of fast, real-time 
dynamic, no radiation and high resolution. However, 
due to the influence of neck bone and air, it is kind of 
difficult to distinguish the difference between blood 
flow and the echo of surrounding tissue. And the accu-
racy of ultrasound in evaluating deep neck structure 
still needs more researches [9, 10]. So when it comes 
to an effective remedy for weaknesses in ultrasound, 
people naturally think of CT and MRI. In terms of 
CT, it can show the relationship between the anatomi-
cal location, morphology, and surrounding tissues of 
thyroid cancer, however, it is not without faults, like 
radiation, which limits the application scope of clini-
cians. While MRI has excellent sensitivity in the diag-
nosis of thyroid cancer because of its high resolution 
to soft tissue. Through multi sequence scanning of the 
nidi, clear images of the nidi and adjacent tissues can 
be obtained, and the influence of subcutaneous fat on 
the image quality of patients can be avoided.

Radiomics comes from computer-aided detection or 
diagnosis (CAD), which combine image quantitative 
analysis with machine learning method [11]. At pre-
sent, the basic function of radiomics is to analyze the 
tumor region of interest (ROI) quantitatively through 
a large number of imaging features, so as to provide 
valuable diagnosis, prognosis or prediction infor-
mation. And the purpose of radiomics is to explore 
and use these information resources to develop suit-
able radiomics models for diagnosis, prediction, or 

prognosis, to support personalized clinical decision-
making and improve individualized treatment options. 
MRI excels in soft tissue imaging and can provide high 
contrast structural and functional information. Diffu-
sion weighted imaging (DWI) and dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) can 
reflect tissue cell structure and angiogenesis. Through 
the acquisition of these images, more effective imaging 
features can be extracted.

However, there are few reports on the application of 
radiomics to evaluate aggressiveness in papillary thy-
roid carcinoma (PTC) based on MRI, which indicates 
that there is a certain space for research in this field of 
knowledge. Therefore, MRI based radiomics technique 
may provide a noninvasive and accurate method for pre-
dicting thyroid aggressiveness in patients with PTC. This 
work aims to evaluate whether it is possible to detect thy-
roid aggressiveness in PTC by using multimodality MRI 
based radiomics method.

Method
Patients
The current retrospective trial evaluated patients with 
continuous thyroid nodules first detected by ultrasound 
from January 2018 to March 2019. According to the 
American Society of Radiology thyroid imaging, report-
ing and data system [12], the grade of tumor was TR3-
TR5. All patients underwent multi parameter MRI, 
followed by thyroid surgery, subtotal or total thyroidec-
tomy within 1  week after MRI. PTC was confirmed by 
pathology. The exclusion criteria were: (1) pathological 
diagnosis did not reflect PTC; (2) Tumor size < 5 mm; (3) 
There was no correlation between the pathological data 
of tumor specimens and the results of magnetic reso-
nance imaging; (4) Poor image quality. Finally, 107 cases 
were evaluated.

The study was approved by our local institutional ethics 
committee.

MRI acquisition
All patients were scanned on the excite HD 1.5  T 
scanner (GE Healthcare, USA), which included an 
8-channel special neck surface coil using the same 
scanning protocol. The applied parameters were as 
follows: axial T2-weighted (T2WI) fast recovery fast 
spin-echo with fat suppression with echo time (TE) 
of 85  ms, repetition time (TR) of 1280  ms, and slice 
thickness of 4–5  mm, matrix of 288 × 192, spacing of 
1 mm, field of view (FOV) of 18 cm, and a number of 
excitations (NEX) of 4; contrast-enhanced axial T1WI 
(CE-T1WI) with multiphase utilizing a fast-spoiled 
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gradient recalled echo sequence, which TE of 1.7  ms, 
TR of 5.7 ms, matrix of 192 × 256, FOV of 14 cm, and 
NEX of 1;DWI with a single-shot echo planar imaging 
(EPI) sequence, with minimal TE, and TR of 6550 ms, 
slice thickness of 4–5  mm, matrix of 128 × 128, spac-
ing of 0.5 mm, FOV of 14 cm, and NEX of 4 (b value, 
800 s/mm2). The magnevist contrast agent from Bayer 
healthcare was administered intravenously at 3 ml / S 
(0.2 ml/kg), and then rinsed with 20 ml normal saline. 
Scanning was performed at 30, 60, 120, 180, 240 and 
300  s after contrast agent administration to obtain 
images of six stages including breath-holds. The spa-
tial saturation band was used to remove signals gener-
ated by covering fat and surrounding tissues.

Histopathologic analysis
Surgical tumor cases were evaluated and analyzed 
by experienced pathologists who have been engaged 
in relevant research for more than 10  years. Tumor 
specimens were paraffin embedded and sectioned, and 
stained with hematoxylin eosin (H&E). And then the 
established criteria were used to assess thyroid aggres-
sive characteristics [13, 14]. Finally, all patients were 
divided into non-aggressiveness group and aggressive-
ness group.

MRI radiomics
Tumor segmentation
Tumor segmentation is the key step of subsequent high-
throughput feature extraction and quantitative analysis. 
In this paper, the segment editor part of 3D slicer soft-
ware is used to segment the focus area of thyroid cancer. 
It is a module for segmentation, which can subdivide 
and depict the region of interest. Two senior radiologists 
manually marked them separately and discussed repeat-
edly to obtain the final results in case of disagreement. 
The largest tumor of each patient was selected in order to 
reduce the potential differences of multiple tumors in the 
same individual, which greatly improve the applicability 
of the results. And to reduce the impact of segmentation 
accuracy on model performance, we give up including 
the cases with disagreement segmentation in the experi-
mental dataset. Figure 1 shows the results of three modal 
MRI, the first row is the images of three MRI modalities, 
and the second row corresponds to the segmentation 
results.

Radiomics feature extraction
Radiomics feature is the basic attribute description of 
class, and feature extraction is the basis of classification 
work. In this paper, we extract a total of 1584 features 

Fig. 1  Segmentation results of CE-T1WI, T2WI and DWI modalities, the red area in the second line represents the segmentation result
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from CE-T1WI, T2WI and DWI modalities, with 528 for 
each modality. The 528 features include: 18 intensity fea-
tures, 15 shape features, 39 texture features (8 GLCM, 13 
GLRLM, 13 GLSZM and 5 NGTDM) and 456 (8 wave-
let submaps * 57 intensity and texture features) wavelet 
features. More details about these features please refer 
to Appendix 1. And this part of work was completed by 
MATLAB.

Radiomic feature selection
The problem considered in feature selection is to make 
the features sparse, that is, some redundant features are 
removed through this step, so as to reduce the computa-
tional cost. The input factors of the model are reduced, 
and the input–output relationship established by the 
model will be clearer, so the interpretability of the model 
can be improved. In this work, sparse representation is 
used to select a few crucial features for the following clas-
sification. The sparse representation-based feature selec-
tion model can be written as:

where y ∈ Rm is the training sample label, m is the num-
ber of training samples, F = [f1, f2 · · · fm]

T ∈ Rm×2K is 
the training sample feature set, γ is the sparse control 
parameter. The absolute value of each element in the 
representation coefficient w indicates the importance of 
the corresponding feature. Once the w has been calcu-
lated, we sort the features in descending order of impor-
tance according to the corresponding absolute value of 
the elements in w . Finally, we select the optimal subset 
of features using a sequential advance method based on 
cross-validation (on the cross-validation set). Specifically, 
the first 5 features are selected as the initial feature sub-
set, and then the 6th to 100th features are put into the 
subset in turn. And the accuracy of cross-validation is 
calculated whenever the feature subset is updated. The 
subset with the highest accuracy is selected as the opti-
mal subset.

Model construction and validation
Model building is the herald of the data analysis stage. 
According to the results of feature selection in the pre-
vious step, we use a sparse representation method to 
establish a prediction model for the classification of 
aggressiveness and non-aggressiveness thyroid cancer. 
Specifically, suppose F = [F1 · · ·Fc· · ·FC] denotes the 
feature set of training samples from C classes, and Fc is 

(1)ŵ = argmin
w

y− Fw
∥

∥

∥

2
2 + γ

∥

∥

∥
w0

the sample feature set of class c. The first step of sparse 
representation can be formulated as:

where is � a scalar constant, Fc is the complementary 
matrix of Fc . Dictionary pair � and � are used to recon-
struct and code F , respectively. ϕq is an atom of diction-
ary � . When the dictionary pair � and � are learned, the 
classification model can be formulated as:

 where li is the class label of testing case i , and fi is the 
feature of i.

In our experiments, γ and � were set to 0.1 and 0.01, 
respectively. The 107 cases were randomly divided into 
cross-validation (71) and testing (36) sets in a ratio of 
about 2: 1. The cross-validation set was used for feature 
selection in advance. When the number of features is 
determined, we directly use the cross-validation set to 
establish a sparse representation classification model and 
test the testing set on it. We compare the classification 

(2)
{� ,�} =argmin

�,�
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2
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2
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(3)li = argmin
c

�fi −�c�cfi�2, c ∈ [1, · · · , C]

Table 1  Patient features in the aggressiveness and non-
aggressiveness groups

The p-values was calculated by independent sample t-test

Aggressiveness (n = 51) Non-
aggressiveness 
(n = 56)

P-value

Age(years) 42.37 ± 14.27 46.68 ± 13.86 0.979

Sex

Female 35 45 0.006

Male 16 11

Diameter(mm) 13.08 ± 6.44 9.36 ± 3.86 0.001

Location

1 28 32 0.443

2 1 2

3 22 22

LN metastasis

Yes 31 0 0

No 20 56

Multi-lesions

Yes 12 11 0.938

No 39 45
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performance of each modality as well as the combina-
tion of three modalities. Here we use the simplest modal-
ity combination method, that is, direct concatenating 
the features of three modalities. The classification mod-
els were evaluated by calculating the subject operating 
characteristic curve (ROC), accuracy (ACC), sensitivity 
(SEN), specificity (SPE), negative predictive value (NPV) 
and positive predictive value (PPV).

Results
Patient feature and selection of the study cohort
A total of 107 patients were evaluated. Accord-
ing to the pathological results, they were classified 
into aggressiveness group and non-aggressiveness 
group. Among them, 51 patients were aggressiveness 
group, with an average age of 42.37 ± 14.27 years (12–
73  years), and 56 patients were non- aggressiveness 
group, with an average age of 46.68 ± 13.86 years (22–
77 years). Table 1 summarizes the clinical characteris-
tics of PTC cases registered in this study. In addition 
to age, gender, the lesion diameter, location, metastasis 
and multifocal cancer were also included in our study. 
The gender, lesion diameter and LN metastasis were 
statistically significant, which was consistent with 
the results of previous studies. The cross-validation 
cohort including 71 cases, while the test cohort includ-
ing 36 cases.

Feature selection
A total of 528 high-throughput features were 
extracted from CE-T1WI, T2WI and DWI modali-
ties, respectively. In order to verify the effectiveness 
of these features, we first selected the features with 
P < 0.001 (with extremely significant statistical signifi-
cance) by comparing the P values of t-test, and then 
performed unsupervised clustering on these features. 
Figure  2 shows the confusion matrix of the cluster-
ing results. Through feature unsupervised clustering, 
78.83% (79/107) of the cases were correctly classified, 

Fig. 2  Confusion matrix of the clustering results. (Agg is the 
abbreviation of aggressiveness)

Table 2  The results of cross-validation set data

95% confidence intervals are included in brackets. AUC, ACC, SEN, SPE, PPV, NPV are abbreviations of area under curve, accuracy, sensitivity, specificity, accuracy, 
negative predictive value and positive predictive value, respectively

Models AUC​ ACC​ SEN SPE PPV NPV

CE-T1WI 0.856 [0.753,0.928] 0.803 [0.711,0.891] 0.794 [0.648,0.920] 0.811 [0.621,0.913] 0.794 [0.648,0.920] 0.811 [0.618,0.914]

T2WI 0.855 [0.752,0.928] 0.817 [0.727,0.909] 0.794 [0.621,0.913] 0.838 [0.680,0.938] 0.818 [0.642,0.932] 0.816 [0.657,0.923]

DWI 0.927 [0.840,0.975] 0.887 [0.813,0.961] 0.853 [0.689,0.950] 0.919 [0.781,0.983] 0.906 [0.746,0.981] 0.872 [0.726,0.957]

Combined 0.961 [0.886,0.993] 0.930 [0.871,0.989] 0.912 [0.763,0.981] 0.946 [0.818,0.993] 0.940 [0.795,0.993] 0.921 [0.786,0.983]

Table 3  The results of independent test set data

95% confidence intervals are included in brackets. AUC, ACC, SEN, SPE, PPV, NPV are abbreviations of area under curve, accuracy, sensitivity, specificity, accuracy, 
negative predictive value and positive predictive value, respectively

Models AUC​ ACC​ SEN SPE PPV NPV

CE-T1WI 0.789 [0.622, 0.907] 0.778 [0.642,0.914] 0.824 [0.566,0.962] 0.737 [0.488,0.909] 0.737 [0.480,0.912] 0.824 [0.566,0.962]

T2WI 0.830 [0.668,0.934] 0.778 [0.642,0.914] 0.647 [0.383,0.858] 0.895 [0.669,0.987] 0.846 [0.546,0.981] 0.739 [0.516,0.898]

DWI 0.944 [0.813,0.993] 0.861 [0.748,0.974] 0.824 [0.566,0.962] 0.895 [0.669,0.987] 0.875 [0.605,0.986] 0.850 [0.621,0.968]

Combined 0.960 [0.836,0.997] 0.917 [0.827,1.000] 0.882 [0.636,0.985] 0.947 [0.740,0.999] 0.937 [0.686,0.999] 0.900 [0.683,0.988]
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which demonstrates that these features are conducive 
to aggressiveness classification. After sparse represen-
tation-based feature selection, 75 features are used for 
final testing set classification.

predicted model
All the results of our model are shown in the Tables 2 and 
3 below. It can be seen that in the cross-validation set 
data, the ACC of CE-T1WI, T2WI and DWI modalities 
alone are 0.803, 0.817 and 0.887, respectively, while the 
cross-validation result of the combination of the three 
modalities is as high as 0.930, and the sensitivity and 
specificity are 0.912 and 0.946, respectively. Great results 
were also obtained in the final independent test set. The 
predicted ACC of CE-T1WI, T2WI and DWI alone were 
0.778, 0.778 and 0.861, respectively, while the ACC of 

combining the three modalities were 0.917, and the sen-
sitivity and specificity were 0.912 and 0.946, respectively. 
The above results show that our proposed model com-
bining three modalities to predict whether the thyroid is 
aggressive is effective.

The ROC curves based on CE-T1WI modal features, 
T2WI modal features, DWI modal features and the 
features combined three modalities at the same time 
are shown in Fig.  3. The blue curve represents the 
results of the cross validation set, and the yellow curve 
represents the results of the independent test set. It 
can also be seen from the figure that the area under 
the ROC curve of the combined modality is larger than 
that of the other three separate modalities. However, 
the comparisons of ROC curves based on Delong test 
show that the combined model is only better than T1 

Fig. 3  ROCs for the CE-T1WI, T2WI, DWI and combined model in predicting aggressive and non-aggressive tumors in the cross-validation and test 
cohort
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(P = 0.05) and T2 (P = 0.05) models alone. And the dif-
ference between the results of the combined model 
and the DWI model is not statistically significant 
(P = 0.70).

The combined model finally uses 75 features from 
three modalities to achieve an ACC of 0.917 and AUC 
of 0.960. Among the 75 features, there are 23 CE-T1WI 
modal features, 26 T2WI modal features and 26 DWI 
modal features, which indicates that the three modal 
images play an important role in the prediction of thy-
roid invasiveness. Among the 23 features of CE-T1WI 
modality, there are 2 shape features, 5 Gy features and 
16 texture features. Among the 26 features of T2WI 
modality, there are 3 shape features, 5 Gy features and 
18 texture features. Among the 26 features of DWI 
modality, there are 0 shape features, 10 Gy features and 
16 texture features. The texture features of images play 
an important role in classification. These texture fea-
tures describe distributions and relationships of image 
pixels, which can better reflect internal spatial hetero-
geneity of the lesions [15, 16].

In order to further analyze the proposed model, Fig. 4 
gives the change of the model classification accuracy 
with the increase of the number of features. It can be 
seen that in a certain range, the accuracy of the model 
increases with the increase of the number of features, 
which highlights the effectiveness of feature screening. 
With the further increase of the number of features, the 
accuracy of the model begins to decline, indicating that 
some redundant features begin to appear in the feature 
subset [17]. In Fig.  5 we visually compare the distri-
bution of 5 features with the smallest P values in CE-
T1WI, T2WI and DWI modalities through boxplots. 
The P values of t-test of these features are less than 

Fig. 4  Variation of model accuracy with the number of features

Fig. 5  The top 5 features of importance in the classification task, 
CE-T1WI, T2WI and DWI, respectively
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0.001, indicating that these features have extremely sig-
nificant statistical significance in classification tasks. 
It can also be clearly seen from the box diagram that 
these features of the positive and negative groups of 
cases are significantly different.

Discussion
Our research shows that the machine-learning-based 
radiomics prediction model based on the fusion of three 
modalities of MRI is expected to become a noninvasive, 
convenient, and rapid method to evaluate the aggressive-
ness and non-aggressiveness of thyroid cancer. The 2015 
ATA guidelines are stricter in the management of differ-
entiated thyroid cancer, and different clinical treatment 
methods are adopted according to the risk assessment. 
Therefore, it is particularly important to comprehensively 
and accurately evaluate thyroid cancer before treatment. 
At present, the gold standard is the histopathological 
results of thyroid fine needle puncture, and the patho-
logical diagnosis generally takes more than 24  h. How-
ever, using machine learning-based image analysis can 
predict whether it is aggressive for thyroid patients in a 
non-invasive and rapid way, which can not only reduce 
the pain of patients but also greatly shorten the diagno-
sis time. Therefore, the model is helpful for clinicians to 
design treatment methods.

MRI is widely used in tumor diagnosis because of its 
non-invasive and radiation-free characteristics. Based on 
medical image data mining technology, imaging omics 
quantifies tumors as high-throughput features, and then 
establishes the complex correlation between these fea-
tures and many indicators of disease occurrence, devel-
opment, and prognosis, so as to improve the accuracy 
of disease diagnosis and treatment efficiency. At pre-
sent, the imaging research reports on thyroid cancer are 
mainly established on ultrasound and CT, and there are 
few MRI related studies. MRI has a high resolution of soft 
tissue density, and can accurately display the size, range, 
location, lymph node metastasis and the relationship 
with surrounding tissues and organs [18, 19]. Ma et  al. 
[20] found that the radiological characteristics of T2WI 
data can predict the pathological extracapsular expansion 
of prostate cancer patients. DWI is the only noninva-
sive examination method to reflect the diffusion of living 
tissue at present [21]. A meta-analysis [22] shows that 
quantitative DWI is an accurate method to distinguish 
benign and malignant thyroid nodules, with noninvasive, 
radiation-free, sensitivity of 90% and specificity of 95%. 
In this paper, we investigate the performance of these 
three modalities and their combinations on the thyroid 
cancer aggressiveness prediction task.

In this study, conventional MRI sequences (CE-T1WI, 
T2WI) and functional imaging sequences (DWI images) 
were included in the study at the same time, and a multi-
modal imaging radiomics method was proposed to pre-
dict the aggressiveness of thyroid. Firstly, we extracted 528 
high-throughput features including shape, intensity, texture 
and wavelet from CE-T1WI, T2WI and DWI respectively. 
Then, the sparse representation method was used to filter 
the combined 1584 features. Due to the limited number of 
samples in this study, the sparse representation classifier 
based on nonparametric training is selected for classifica-
tion, so as to reduce the risk of the model overfitting [23].

Lu et  al. [24] showed tumor invasiveness was evalu-
ated by determining the ADC threshold obtained by 
preoperative DW-MRI (AUC, 0.85). Hu et  al. [25] also 
used the histological characteristics of extrathyroidal 
extension as a tool to predict aggressiveness, showed 
that the AUC of the mean ADC500 value was 0.905, the 
ADC300 value was 0.607 and ADC800 values were 0.770 
in differentiating ETE from without ETE (p < 0.001) 
respectively. Without the aid of ETE histological fea-
tures, we directly extracted radiomics features from 
multimodal MRI images for modeling, and the results 
were better than those in [24, 25], indicating that the 
radiomics model based on CE-T1WI, T2WI and DWI 
image features has outstanding ability to predict the 
invasiveness of thyroid cancer. It also proved that imag-
ing radiomics is a new non-invasive diagnostic method. 
Extracting high-throughput features from medical 
images and establishing appropriate models can be used 
as a tool to predict thyroid invasiveness.

There are some deficiencies in this study. Firstly, in terms 
of data preprocessing, ROI regions are divided manually, 
which is a time-consuming process. In the future, we can 
try to use the method of deep learning to realize auto-
matic segmentation. Secondly, for the radiomics model, we 
directly splice the features extracted from each modality 
for the radiomics model. Although multimodal informa-
tion has been applied in model prediction, it is difficult to 
effectively capture the deep correlation between modalities. 
In future work, we will establish a multimodal classifier to 
integrate multimodal related information in the classifi-
cation process. Third, in terms of experimental data, this 
study only carries out experimental verification on single 
center data. Although we strictly divide the training and 
test sets, the stability and robustness of the model still need 
to be verified on multi center, multi parameter and multi 
device data sets. Therefore, in future work, we will further 
study the stability of multicenter data model.

Appendix 1
See Table 4.
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Table 4  The summary of 528 features

Feature 
category

Feature name Feature 
number

Shape 15

Compactness Compact-
ness-square

Max-length

Spherical dis-
proportion

Sphericity Superficial-
area

Surface to 
volume ratio

Volume Region to 
bounding-
box ratio

Max major-
length

Min minor-
length

Eccentricity

Orientation Solidity Fourier-
descriptors

Intensity 18

Energy h-energy Kurtosis Max

Mean abso-
lute deviation

Mean Media Min

Range Root mean 
square

Skewness Standard-
deviation

h-uniformity variance h-mean h-variance

h-skewness h-kurtosis

Texture 39

GLCM Energy Contrast Correlation Homogeneity

Variance sun average Entropy Dissimilarity

Short run 
emphasis

Long run 
emphasis

GLRLM Gray-level 
nonuniform-
ity

Run-length 
nonuniform-
ity

Run percent-
age

Low gray-
level run 
emphasis

High gray-
level run 
emphasis

Short run low 
gray-level 
emphasis

Short 
run high 
gray-level 
emphasis

Long run low 
gray-level 
emphasis

Long 
run high 
gray-level 
emphasis

Gray-level 
variance

Run-length 
variance

Small zone 
emphasis

Large zone 
emphasis

GLSZM Gray-level 
nonuniform-
ity

Zone-size 
nonuniform-
ity

zone percent-
age

Low gray-
level zone 
emphasis

High gray-
level zone 
emphasis

Small zone 
low gray-level 
emphasis
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