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Abstract 

Background:  The outbreak of coronavirus disease 2019 (COVID-19) causes tens of million infection world-wide. Many 
machine learning methods have been proposed for the computer-aided diagnosis between COVID-19 and com-
munity-acquired pneumonia (CAP) from chest computed tomography (CT) images. Most of these methods utilized 
the location-specific handcrafted features based on the segmentation results to improve the diagnose performance. 
However, the prerequisite segmentation step is time-consuming and needs the intervention by lots of expert radiolo-
gists, which cannot be achieved in the areas with limited medical resources.

Methods:  We propose a generative adversarial feature completion and diagnosis network (GACDN) that simultane-
ously generates handcrafted features by radiomic counterparts and makes accurate diagnoses based on both original 
and generated features. Specifically, we first calculate the radiomic features from the CT images. Then, in order to fast 
obtain the location-specific handcrafted features, we use the proposed GACDN to generate them by its correspond-
ing radiomic features. Finally, we use both radiomic features and location-specific handcrafted features for COVID-19 
diagnosis.

Results:  For the performance of our generated location-specific handcrafted features, the results of four basic classi-
fiers show that it has an average of 3.21% increase in diagnoses accuracy. Besides, the experimental results on COVID-
19 dataset show that our proposed method achieved superior performance in COVID-19 vs. community acquired 
pneumonia (CAP) classification compared with the state-of-the-art methods.

Conclusions:  The proposed method significantly improves the diagnoses accuracy of COVID-19 vs. CAP in the 
condition of incomplete location-specific handcrafted features. Besides, it is also applicable in some regions lacking of 
expert radiologists and high-performance computing resources.
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Introduction
In December 2019, a novel coronavirus was recognized 
in Wuhan, China. It was later named as coronavirus 
disease 2019 (COVID-19). Until now, it has spread all 
over the world, infecting millions of people and causing 
more than 3,170,000 death [1–6].Community-acquired 

pneumonia (CAP) presents symptoms of respiratory 
infection (such as cough and fever) that are indistinguish-
able from COVID-19. Causes of CAP include a number 
of bacterial and viral infections. With the introduction of 
pneumococcal conjugate vaccines, viruses are an increas-
ingly common cause of CAP. As a type of pneumonia, 
in clinical diagnosis, the manifestations of COVID-19 
and CAP share high degree of similarity in chest com-
puted tomography (CT) images to some extent. There is 
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an urgent need for rapid and effective computer-assisted 
diagnosis methods to improve the diagnosis accuracy.

At present, main diagnostic methods for COVID-19 
are real-time reverse transcriptase polymerase chain 
reaction (RT-PCR) and CT [7–9]. RT-PCR test requires 
repeat checking to reduce misdiagnosis and missed diag-
nosis, especially in the early days of the outbreak. Chest 
CT image is easily accessible in most hospitals and more 
intuitive to observe the manifestations and severity of 
lesions, which is conducive to further diagnosis and treat-
ment. CT findings of COVID-19 include multiple patchy 
ground-glass opacity and consolidation on both lungs, 
mostly distributed along the bronchial vascular bundle 
and subpleural. Thickened blood vessel shadows could be 
seen between them, which appear as fine grid-like shad-
ows, showing the crazy-paving pattern [10, 11]. These 
imaging findings can be used to distinguish COVID-19 
from CAP by artificial intelligence algorithms, assisting 
clinicians and radiologists in the diagnosis.

Recently, many machine learning algorithms have 
achieved promising results in  diagnose task [12–15]. 
Except for the framework of single-view diagnosis 
shown in Fig. 1a, most of them use the multi-view diag-
nosis based method in Fig. 1b. These methods use both 
radiomic and handcrafted features in the diagnosis task 
and a number of studies have shown that these differ-
ent views do have a mutual promotion in classification 
performance [16]. In practice, the fully manual delinea-
tion of lung structure for each subject often takes 1–5 h. 
Later, the time will be shortened to 4 min by algorithm 

[17]. However, this approach still has several disad-
vantages: (1) As the number of suspected and infected 
patients rises, the overall time required to extract loca-
tion-specific features accumulates rapidly. (2) The extrac-
tion algorithm may be unable to perform without expert 
radiologists and high-performance computing resources 
in underdeveloped areas [18]. (3) It can only obtain the 
segmented results, which means other algorithms are 
still needed to intervene in the diagnosis [19]. Relatively, 
the radiomic features directly obtained from original 
CT images by calculating the parameter matrices of the 
image are easy to get, exploring its underlying informa-
tion comprehensively is more practical for future studies. 
If handcrafted features can be estimated according to CT 
images without segmentation or radiomic features, it will 
greatly assist clinical diagnosis, but there is a lack of such 
research.

To address this issue, as shown in Fig.  1c, we pro-
pose the framework of incomplete multi-view diagnosis 
based on the generated handcrafted features. Compared 
to Fig. 1a, our method handle the problem that the sin-
gle-view diagnosis framework ignored the underlying 
information in location-specific handcrafted features. 
Compared to Fig. 1b, by making full use of radiomic and 
existing acquired handcrafted features, the advantages 
of multi-view diagnosis in Fig. 1b are retained while the 
disadvantages of getting handcrafted features mentioned 
above are overcame in our proposed method.

As shown in Fig.  2, the proposed GACDN consists 
of three networks, including generator, discriminator 

Fig. 1  Illustration of three frameworks. a Single-view diagnosis. b Original multi-view diagnosis by segmenting CT images for location-specific 
features. c Our proposed GACDN for simultaneously generating handcrafted features and making accurate diagnoses
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and the disease-consistent network. Specifically, the 
generator synthesizes location-specific features, and 
the discriminator measures the quality of them. Mean-
while, to keep the diagnose results of generated features 
consistent with completely real samples, the disease-
consistent network is employed for COVID-19 diagno-
sis based on the real radiomic features and completed 
location-specific features. Disease information of each 
patient would participate in the training which guar-
antees that the generated location-specific features 
would not deviate in label space. Besides, high quality 
of generated features would also improve the diagnoses 
accuracy.

In brief, the major contributions of this paper are 
fourfold. 

(1)	 To address the problem of the high cost of acquir-
ing handcrafted features, we propose a generative 
adversarial feature completion and diagnosis net-
work.

(2)	 The proposed GACDN simultaneously gener-
ates handcrafted features by radiomic features and 
makes accurate diagnoses based on both original 
and generated features.

(3)	 We apply the disease-consistent network combin-
ing with GAN to ensure the mutual promotion of 

the diagnoses accuracy and the quality of generated 
features.

(4)	 Extensive experiments show that our proposed 
method can achieve better performance. More 
importantly, reducing technical and time cost, 
ensuring the accuracy, sensitivity and specificity 
compared with results of the state-of-the-art meth-
ods.

The remainder of this paper is organized as follows: we 
briefly review GAN and incomplete multi-view tasks 
in “Review of literature” section. In “Methods” sec-
tion, we present our GACDN modal. In “Results” sec-
tion, we describe the experiment settings and compare 
our method with state-of-the-art related approaches. In 
“Discussion” section, we make a discussion about the 
results. Finally, the conclusion is provided in “Conclu-
sion” section.

Review of literature
Generative adversarial networks (GAN)
In recent years, generative adversarial networks have 
shown promising performance in generating high quality 
images [20–22]. The original GAN architecture contains 
a generative model G that seizes the distribution of train-
ing data to imitate them and a discriminative model D 
reckons the probability that an input sample came from 

Fig. 2  Illustration of the framework of the proposed method—generative adversarial feature completion and diagnosis network (GACDN), 
including three networks. All networks are upgraded by back propagation
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G or training set. Both of them are defined by multilayer 
perceptrons and can be trained by back propagation until 
getting the solution that G recovering the original data 
distribution and D equal to 1/2 every time.

Due to the excellent performance, GAN is used in 
many fields.

Conditional generative adversarial network (CGAN) 
achieves good performance [23] in image synthesis task. 
Improved by CGAN, the label information is added to 
both G and D, which is proved to be useful and become 
a common practice to promote the performance of net-
works to translate input images into output images. 
The Pix2Pix model provides a universal solution to this 
task, in which an L1 norm is used to constrain the dif-
ference between real and generated images [24]besides 
the adversarial loss. In the framework of the Laplacian 
pyramid, the LAPGAN adopt a cascade of convolutional 
neural networks to synthesize images in a coarse-to-fine 
fashion [25].

In super-resolution field [26–28], the low-resolution 
image is translated to a high-resolution image with the 
trained model inferring real details of the low-quality 
areas during up-sampling.

In the field of medical imaging, there are commonly 
two aspects GAN are utilized. The first is extracting the 
underlying information of the training data for generat-
ing new images. This property makes GANs effective in 
dealing with data incompletion and patient privacy prob-
lems. The second is improving the discriminative ability 
of the classifier, where the discriminator can be used in 
classification tasks or diagnosis after training. In [29], 
Liu has proposed a disease-image specific deep learn-
ing framework. They synthesized the missing MRI/PET 
image of a patient by its existing PET/MRI image. In [30], 
Nie has proposed a framework which adopted a binary 
cross entropy loss and L2 loss for the generator to synthe-
sis CT images from MRI images. In addition, they embed 
an image gradient difference loss into the training proce-
dure to estimate the difference between real and fake CT 
images. The estimated error is used to maintain regions 
with strong gradients (such as edges) to effectively com-
pensate for the L2 loss.

Incomplete multi‑view tasks
In many applications, multi-view data will be gener-
ated and used. For pneumonia, CT or X-ray test would 
be performed to diagnose. For COVID-19, RT-PCR, CT 
and X-ray are three different ways to diagnose. These dif-
ferent test indicators can be seen as different views, they 
have different preferences and functions. Combination 
of these results can be more comprehensive to evaluate 
the course of a patient. However, not all patients have a 

complete examination report, they would give up a cer-
tain examination due to its expensive fee or the examina-
tion results were lost. These circumstances result in the 
prevalence of incomplete multi-view data.

Recently, various methods for incomplete multi-view 
have been proposed. In [31], an incomplete multi-view 
clustering algorithm based on non-negative matrix 
(NMF) decomposition is proposed, which utilizes NMF 
to map various view to the hidden space, and uses co-reg-
ularized term to make the representation of the hidden 
space of various modes more uniform. In [32], the algo-
rithm is optimized by adding L2,1 regular terms to align 
hidden space, which is a double alignment. These two 
methods process the missing values and do not discard 
incomplete samples either. A hidden space is created to 
explore the comprehensive information of available data. 
However, a large amount of useful information is often 
lost along with the missing of data. Then, more effective 
methods can be used to complete the incomplete data by 
filling in the missing values to elevate the performance 
of the following tasks. In [33], On the basis of the com-
mon representation obtained by consensus representa-
tion learning, reverse graph regularization is added, and 
manifold learning is used to predict the missing values, 
so as to form a complete framework. These two parts are 
iteratively optimized to further explore the missing data.

Methods
In this paper, we proposed a generative adversarial fea-
ture completion and diagnosis network to simultane-
ously generate handcrafted features by radiomic features 
and make accurate diagnoses based on both original and 
generated features for COVID-19. In this section, we 
introduce the generative adversarial module and disease-
consistent network in our proposed GACDN.

Briefly, in our proposed method, given the training set 
that 

{

Xn, yn
}N

n=1
 , where Xn = [xnR, x

n
M] is a complete sam-

ple and yn is the corresponding disease label (i.e., yn = 0 
is CAP and yn = 1 is COVID-19), N is the number of all 
samples. xnR ∈ R

m1∗1 is the radiomic feature of CT image 
of sample n, xnM ∈ R

m2∗1 is the handcrafted feature and 
m1 and m2 are the dimensions of radiomic and hand-
crafted features respectively. The function of generator 
G to be learned is: f (G) : xnR → x̂nM , x̂nM is the generated 
handcrafted feature and the function of discriminator D 
is to be learned is: f (D) : xnM/x̂nM → 1/0 . In the end, the 
classifier C is adopted to make the final diagnosis.

Generative adversarial module
As shown in Fig.  2, the proposed generative adversarial 
module consists of the generator to generate the loca-
tion-specific features, and the discriminator to estimate 
the generated sample.
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The generator G inputs xR , the original radiomic features 
and outputs x̂M as the generated location-specific hand-
crafted counterpart. The discriminator D predicts value of 
the real sample to be 1 and the value of the generated sam-
ple to be 0, maximizing the difference value between the 
output results of the real and fake samples. The function of 
D is as follows:

In original GAN, adversarial loss between generator 
and discriminator is used for training. We preserve this 
architecture as the foundation in order to improve the 
authenticity of generated samples synthesized by the gen-
erator and the capability of discriminator to distinguish 
real samples from fake ones. Binary cross entropy (BCE) 
loss is adopted to realize the adversarial training between 
generator and discriminator. The adversarial loss is as 
follows:

In GAN, the discriminator tries to distinguish between 
real and fake location-specific handcrafted features, but 
the generator seeks to produce them that the discrimi-
nator cannot identify. The probability distribution of 
the original space can be learned by the basic generative 
adversarial networks, so that the generated location-spe-
cific handcrafted features conform to the probability dis-
tribution of the original space. However, it only ensures 
that the generated handcrafted features have the same 
distribution as the existing ones to some extent. The 
weakness is lacking of stability in training procedure and 
the principle of one-to-one correspondence—the gener-
ated location-specific handcrafted features should cor-
respond with its radiomic counterparts. These features 
are interrelated and also independent of each other. The 
generation process of the generator cannot be well con-
strained by adversarial loss because of the vanishing gra-
dient or exploding gradient problem [34, 35].

To address this issue, we add the original handcrafted 
features corresponding to the input radiomic features as 
label into training process of the generator G and constrain 
it by mean square error (MSE). Such a constraint can well 
reduce the error between generated data and the real data. 
Besides, similarity between them would be maximized at a 
very low cost at the same time. The MSE loss is as follows:

(1)fD(xi) =







1, xi ∈ XM ,

0, xi ∈ X̂M .

(2)
Ladversarial = ExM∈XM log

(

D(xM)

)

+ ExR∈XR log
(

1− D
(

G(xR)
)

)

(3)Lmse =

∥

∥

∥
xM − G(xR)

∥

∥

∥

2

2

Disease‑consistent network
In our method, the input features are already extracted 
from the CT images so the extra extraction operation is 
unnecessary. In addition, the labels of all training data 
are complete. Based on this, we introduced a disease-
consistent network, C, to identify whether the patient 
belongs to COVID-19 or CAP based on the input data. 
In the process of training C, the generator is also updated 
through back propagation. By this means, the produce of 
generator can be further promoted and constrained from 
the most intuitive perspective to avoid the occurrence of 
overfitting. However, the distribution drift will inevitably 
occur between the generated data and the real data. The 
disease-consistent network trained by the real data usu-
ally performs poorly in the generated samples, which is 
due to the occurrence of the distribution drift. To solve 
this problem, we do not simply use completely original or 
generated features to train C which can lead to the result 
of the test samples totally invalid. We combined the real 
radiomic features and the generated location-specific 
handcrafted counterparts as an input to train the disease-
consistent network. After that, it can effectively avoid the 
distribution drift and improve the disease diagnosis accu-
racy. Also, the trained C can be directly used in the diag-
nosis of follow-up work.

Formally, the loss function of C is as follows:

At last, we adopt two adjustable weights to balance the 
effect of each part. The overall loss is as follows:

Description of datasets
The dataset used is from our previous studies [13], 
which contains features from a total of 2522 CT images. 
Among them, 1,495 cases are confirmed to be positive for 
COVID-19 by RT-PCR and are obtained from January 9, 
2020 to February 14, 2020. The remaining 1027 samples 
are patients with CAP, and these images are obtained 
between July 30, 2018 and February 22, 2020. The infor-
mation of these 2522 cases are summarized in Table 1.

All patients underwent thin-section CT scans of the 
chest. Specifically, CT scanners include uCT 780 from 
UIH, Optima CT520, Discovery CT750, LightSpeed 16 

(4)Lconsistent =
∥

∥

∥
y− C

(

xR,G(xR)
)

∥
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2

2

(5)

L(xR, xM , y;G,D,C) = ExM∈XM log
(

D(xM)

)

+ ExR∈XRlog
(
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(
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from GE, Aquilion ONE from Toshiba, SOMATOM 
Force from Siemens, and SCENARIA from Hitachi. CT 
protocol includes: 120 kV, reconstructed slice thickness 
ranging from 0.625 to 2  mm, with breath hold at full 
inspiration.

Data preprocessing
First, we calculated the radiomic features based on the 
original CT images: Gray features are composed of 
first-order statistics that describe the voxel intensity 
distribution in CT image, such as the maximum, mini-
mum; Texture features are composed of gray level co-
occurrence matrix (GLCM), gray level size zone matrix 
(GLSZM), gray level run length matrix (GLRLM), 
neighboring gray tone difference matrix (NGTDM) and 
gray level dependence matrix (GLDM). In the end, a 
total of 93 radimoic features were obtained.

Then, we adopt the method proposed in [17] to seg-
ment the image through VB-NET for the lesion area 
and the lung fields. The segment of lesion area is mainly 
based on some clinical manifestations of COVID-19 
and CAP. Such as ground glass opacity and thickened 
blood vessel shadows. For these lesions, we calculated 
their volume, number of lesions, histogram distribu-
tion, and surface area. At the same time, the image was 
also divided into left and right lungs, five lobules, and 
18 pulmonary segments according to the structure of 
human lungs. In the end, a total of 96 location-specific 
handcrafted features were obtained. Total of 189 fea-
tures are shown in Table 2.

Incomplete data
Previous studies have shown that both radiomic fea-
tures and handcrafted features can achieve good clas-
sification results. The accuracy of the former can reach 
87.6% and the latter has an accuracy of 89.41%. When 
we combine two of them, the precision of NN can be 
improved significantly. Therefore, we believe that the two 
perspectives of data contain the information of the origi-
nal image more comprehensively. However, in practice, 
it is very difficult to acquire handcrafted features: First, 
it takes a lot of time to segment CT images. In such an 
emergency of epidemic situation, rapid and accurate is 
the primary requirement, which cannot meet one of the 
requirements. Second, segmentation algorithms need the 
support of high-performance computers, which are not 
available in some areas. Third, this segmentation algo-
rithm is internal and not easy to obtain. Based on the 
existing data, we assume that the training set contains all 
the data of the two views and the test set contains only 
the easily acquired radiomic features.

Experiment settings
Based on the dataset and problems to be solved, we 
designed a three-part experiment to verify the effective-
ness of our method. First part is the improvement of 
the diagnoses accuracy. We adopt the basic classifiers to 
compare the performance of the radiomic data only and 
complete data among which the handcrafted features are 
generated by our framework, respectively.

Second part is to compare with other feature extraction 
method. Feature extraction and data generation meth-
ods would solve the practical problem from two differ-
ent perspectives. Both of them would improve accuracy. 
However, the research results of CT image segmenta-
tion to collect handcrafted features and the information 
contained in existing handcrafted features are discarded 
if we implement researches on radiomic data only. Our 
approach would reduce the requirements for medical 
sources while making the best of existing research to 
improve the diagnosis. The methods we choose are sum-
marized as follows:1)Low-rank representation (LRR) 
[36], 2)Latent low-rank representation (LatLRR) [37], 3)
Locality preserving projections (LPP) [38], 4)Stacked 
autoencoder (SAE) [39], 5)Adaptive feature selection 
deep forest(AFS-DF) [13].

Last part is a comparison with the state-of-art multi-
view incomplete recovery methods. The methods we 
choose are as follows: (1) partial multi-view clustering 
(PVC) [40], (2) unified embedding alignment frame-
work (UEAF) [33], (3) incomplete multi-view clustering 
via graph regularized matrix factorization (IMC-GRMF) 
[41], (4) adaptive graph completion based incomplete 

Table 1  Information of 2522 chest CT scans from COVID-19 
dataset

TYPE Male Female Total

COVID-19 770 725 1495

CAP 488 539 1027

Total 1258 1264 2522

Table 2  Summary of different types of features

Features Numbers Total

Radiomic Gray 19 93

Texture 74

Handcrafted Histogram 30 96

Number 24

Intensity 2

Surface 7

Volume 33
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multi-view clustering (AGC-IMC) [42], (5) generative 
adversarial incomplete network (GAIN) [43].

The data set is randomly divided into 90% training set 
and 10% test set, and tenfold cross-validation is used to 
adjust the parameters. Diagnostic performance is evalu-
ated in terms of accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE), recall (REC), precision (PRE) and F1-score 
(F1).

Results
In the first part, we perform the basic classifiers on radi-
omic only data and completed data in which the missing 
values filling by our proposed algorithm. The effect of our 
proposed method is shown in Table  3. Specifically, for 
support vector machine (SVM), we add Gaussian kernel 
and use grid search method for parameter optimization. 
For K-nearest neighbor (KNN), we choose Euclidean dis-
tance to measure the similarity. In neural network (NN), 
we adopt a fully connected network and back propaga-
tion to update parameters for training. As the Table  3 
shows, the accession of generated features significantly 
improves the diagnostic performance. For accuracy, four 
classifiers improve 3.09%, 2.53%, 3.84% and 3.04% respec-
tively, with an average increase of 3.21%. The neural net-
work has achieved best results both before and after. In 
terms of SPE, the performance of some of these classifiers 
is not all elevated or even slightly reduced, but all of them 
have different degrees of improvement in AUC. For SEN, 
our processed data improves about 2.79% over radiomic 
only with the same fold assignments. It is worth nothing 
that COVID-19 is a highly contagious disease, SEN rep-
resents the probability of a true positive diagnosis, which 
is of a great significant for the evaluation of a model. The 
improvement is due to the fact that the combination of 
two perspectives of data does contain more compre-
hensive information than the separate radiomic data. 
At this point, we have reasons to believe that generated 

handcrafted features are able to effectively improve the 
diagnoses accuracy.

In the second part, we compare ours with several fea-
ture extraction methods. According to the Table  4, tra-
ditional methods such as LRR and LPP have a slight 
improvement in diagnoses accuracy, but the results are 
slightly worse than those of the deep methods. Improved 
LatLRR obtains a low-rank representation in hidden 
space which would reduce the redundancy of features 
and makes the data easier to be distinguished. Both SAE 
and AFS-DF belong to the methods based on deep neural 
network, and both of them adopt nonlinear mapping to 
extract features. The advantage of our method is that it 
does not abandon the handcrafted features. The under-
lying information of existing data is fully explored which 
would provide more guidance in the diagnosis process 
and improve diagnoses results.

In the last part, considering incomplete multi-view 
task, we compare our method with a variety of state-of-
art methods of incomplete multi-view clustering (IMC). 
After the handcrafted features predicted by the algo-
rithm, to ensure fairness, the label information is added 
to the data and train the classifier. The results of different 
methods are shown in Table 5.

Specifically, with the exception of GAIN, all the other 
methods are unsupervised algorithms based on matrix 
decomposition. Admittedly, incomplete multi-view tasks 
are now mostly studied on unsupervised clustering tasks, 

Table 3  Effects of data generated by GACDN With baselines

ACC (%) SEN (%) SPE (%) AUC (%)

Radiomic

LR 87.74 ± 1.20 90.34 ± 1.86 83.90 ± 3.07 87.12 ± 1.36

SVM 86.59 ± 1.93 89.30 ± 2.64 82.72 ± 3.57 86.01 ± 1.97

KNN 85.76 ± 3.27 90.04 ± 2.19 79.72 ± 6.96 84.88 ± 3.68

NN 87.19 ± 1.25 84.23 ± 2.75 91.60 ± 2.95 87.91 ± 1.22

Radi-
omic + GACDN

LR 90.83 ± 1.25 92.41 ± 1.86 88.52 ± 2.63 90.46 ± 1.29

SVM 89.13 ± 2.06 90.24 ± 2.77 87.62 ± 3.12 88.93 ± 2.10

KNN 89.61 ± 1.78 91.97 ± 2.54 86.19 ± 2.09 89.08 ± 1.64

NN 90.23 ± 1.43 90.44 ± 1.79 90.98 ± 2.25 91.12 ± 1.36

Table 4  Performance comparison with feature selection 
methods for diagnosis

ACC (%) SEN (%) SPE (%) AUC (%)

LRR 88.02 ± 1.45 89.02 ± 1.515 86.79 ± 1.83 87.90 ± 1.23

LatLRR 90.43 ± 1.75 90.92 ± 3.175 88.30 ± 3.11 90.11 ± 1.64

LPP 89.12 ± 1.68 90.97 ± 2.862 86.83 ± 2.55 89.08 ± 1.29

SAE 90.20 ± 2.22 91.22 ± 2.662 88.79 ± 3.20 90.01 ± 2.48

AFS-DF 90.67 ± 2.23 90.49 ± 3.010 90.41 ± 3.34 90.91 ± 0.91

GACDN 91.31 ± 1.12 91.62 ± 1.923 91.01 ± 2.31 91.32 ± 1.13

Table 5  Performance comparison with incomplete multi-view 
methods for diagnosis

ACC (%) SEN (%) SPE (%) AUC (%)

PVC 73.16 ± 5.71 87.89 ± 3.80 51.443 ± 1.53 69.67 ± 3.12

UEAF 88.61 ± 2.00 88.71 ± 2.42 88.55 ± 4.24 88.63 ± 2.24

 IMC-GRMF 85.85 ± 2.77 88.59 ± 3.39 81.96 ± 2.91 85.27 ± 2.899

GAIN 88.36 ± 2.44 87.87 ± 2.18 83.838 ± 3.69 86.55 ± 2.68

 AGC-IMC 88.69 ± 1.67 89.62 ± 2.56 87.34 ± 1.35 88.48 ± 1.79

GACDN 91.31 ± 1.12 91.62 ± 1.92 91.01 ± 2.31 91.32 ± 1.13
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and have not been well explored in supervised tasks. Due 
to the lack of guidance of label information when filling 
the missing data, the predicted data does not improve 
the diagnoses accuracy well in this problem. Among 
them, with respect to ACC, PVC decreases 16% due to 
the fact that the difference in data distribution of the two 
views could not be well resolved by common representa-
tion; IMC-GRMF decreases 1.538% since the optimiza-
tion method can only obtain the local optimal solution. 
However, it shows that UEAF, AGC-IMC, can obtain the 
structure of samples with complete and incomplete data, 
so the diagnosis has a certain improvement, but the effect 
is not obvious. Our method adopts GAN to acquire the 
data distribution of the original space. In addition, label 
information is added to generate the missing data accord-
ing to diseases, which can significantly improve the diag-
noses accuracy.

Besides, the remaining three indicators are also shown 
in Figs. 3 and 4. It is obvious that our method can achieve 
the best results. As shown in Figs. 5 and 6, our proposed 
GACDN method achieves the best diagnostic perfor-
mance with the feature extraction and multi-view incom-
plete based method respectively. These results further 
validate that integrating auto-generated handcrafted 

Fig. 3  Experimental results with respect to a precision, b recall and c F-score of different feature-selection methods

Fig. 4  Experimental results with respect to a precision, b recall and c of different incomplete multi-view based methods

Fig. 5  ROC curves achieved by LRR, LatLRR, LPP, SAE, AFS-DF, GACDN 
in COVID-19 versus CAP classification
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features with radiomic features could be an effective way 
to handle the practice problem of the high cost of obtain-
ing them and could improve the diagnosis accuracy for 
COVID-19 vs. CAP.

Discussion
Clinical impact
In this subsection, we analyze the clinical impact of the 
proposed method in three perspectives.

First, we further analyze the relationship between the 
quality of generated handcrafted features and diagnoses 
accuracy. As shown in Fig. 7, we calculated the diagno-
ses accuracy on the test set for each epoch from 0 to 60, 
as well as the MSEloss of generated features and original 
features in all test samples. As the generated features are 
closer to the real ones, the diagnoses accuracy is gradu-
ally improved. Since the loss of diagnoses in the training 
procedure updates the generator with back propagation, 
it shows that there is a good mutual promotion between 
the quality of the generated features and the diagnostic 
accuracy. In the end, the feature importance of hand-
crafted features is shown in Fig. 8. Among all the hand-
crafted location-specific features, our method find that 
the surface area features of lesion area (i.e. surface area to 
volume ratio, surface area touching lung wall ratio) and 
gray level histogram of lesion area (i.e. hist bin 29, hist 
bin 10) are critical which means that these features play 
an important role in clinical diagnosis.

Second, the method focuses on incomplete multi-
modal data fusion for identifying COIVD-19, and 

achieves promising diagnosis accuracy. If handcrafted 
features can be estimated according to CT images with-
out segmentation, it will greatly assist clinical diagnosis. 
The proposed method can be easily implemented by non-
AI domain users. It is also applicable in some regions 
lacking of expert radiologists and high-performance 
computing resources.

Last, the fully manual segmentation of lung struc-
ture for each subject often takes 1–5  h, and it can be 
shortened to 4 min by algorithm. The radiomic features 
utilized in our proposed method can be obtained by 
calculation. Therefore, the proposed method not only 
reduces the time required for diagnosis, but it also inte-
grates handcrafted feature recovery and diagnosis into a 
complete framework.

Parameter sensitivity analysis
In this subsection, the parameter sensitivity of the pro-
posed method is analyzed. There are two parameters to 
be tuned in problem (5), i.e �1 and �2 . We can directly 
visualize the results due to the small numbers of param-
eters. Hence, given a range set from 0.00001 to 10,000, 
increasing tenfold each time. When a parameter is tuned, 
the other parameter will be fixed.

The result is shown in Fig.  9. As we can see, when 
both parameters are the minimum value, the worst 
result is obtained and the predicted special value does 
not play a good role in improving the classification 
accuracy. This is mainly because the minimal loss per-
centage makes the discrimination error unable to play 
an adequate role in the adversarial training of GAN, 

Fig. 6  ROC curves achieved by PVC, UEAF, IMC-GRMF, GAIN, 
AGC-IMC, GACDN in COVID-19 versus CAP classification

Fig. 7  MSEloss and ACC of the test samples as the epoch increases
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resulting in the poor quality of the generated data. 
Specifically, with the increase of lambda1 before 1, the 
result has been significantly improved. This is because 
the increase of the proportion of counter loss makes the 
training of GAN more stable. For lambda2, the sensitiv-
ity is a little smaller than lambda1, which means that 
the weight of tag information is relatively unimportant 
as long as it is added. Above all, our method shows 
robustness to the varying parameters in most cases.

Conclusion
This paper presents an innovative GAN based model for 
the problem of missing location-specific handcrafted 
features in the process of COVID-19 and CAP diagno-
sis. This method studies the mapping and probability 
distribution from the radiomic features to handcrafted 
features on the basis of existing data, and generates 
handcrafted features according to the prior knowl-
edge. Finally, the model can simultaneously generate 

Fig. 8  The top 30 important features of handcrafted location-specific features in GACDN
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location-specific handcrafted features and make accu-
rate diagnosis. Generative adversarial module and 
disease-consistent network are holistically integrated 
into one framework in our model. We demonstrate the 
method significantly improving the diagnoses accuracy 
without the intervention of experts through a large 
number of experiments in three aspects: the improve-
ment of baseline classifiers, the comparison with single-
view feature extraction methods and the comparison 
with incomplete multi-view based methods. In addi-
tion, our work can be extended from following aspects: 

(1)	 The current problem is only for the diagnosis of 
COVID-19 and CAP. Future work can be expanded 
to the differential diagnosis tasks of COVID-19, 
normal and CAP.

(2)	 Our method can only obtain the positive or nega-
tive result. Once clinical disease severity data were 
obtained, multi-task and multi-modal models can 
be used to predict the presence and severity of dis-
ease.
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