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Abstract 

Background:  To estimate median liver iron concentration (LIC) calculated from magnetic resonance imaging, 
excluded vessels of the liver parenchyma region were defined manually. Previous works proposed the automated 
method for excluding vessels from the liver region. However, only user-defined liver region remained a manual 
process. Therefore, this work aimed to develop an automated liver region segmentation technique to automate the 
whole process of median LIC calculation.

Methods:  553 MR examinations from 471 thalassemia major patients were used in this study. LIC maps (in mg/g dry 
weight) were calculated and used as the input of segmentation procedures. Anatomical landmark data were detected 
and used to restrict ROI. After that, the liver region was segmented using fuzzy c-means clustering and reduced 
segmentation errors by morphological processes. According to the clinical application, erosion with a suitable size of 
the structuring element was applied to reduce the segmented liver region to avoid uncertainty around the edge of 
the liver. The segmentation results were evaluated by comparing with manual segmentation performed by a board-
certified radiologist.

Results:  The proposed method was able to produce a good grade output in approximately 81% of all data. 
Approximately 11% of all data required an easy modification step. The rest of the output, approximately 8%, was an 
unsuccessful grade and required manual intervention by a user. For the evaluation matrices, percent dice similarity 
coefficient (%DSC) was in the range 86–92, percent Jaccard index (%JC) was 78–86, and Hausdorff distance (H) was 
14–28 mm, respectively. In this study, percent false positive (%FP) and percent false negative (%FN) were applied to 
evaluate under- and over-segmentation that other evaluation matrices could not handle. The average of operation 
times could be reduced from 10 s per case using traditional method, to 1.5 s per case using our proposed method.

Conclusion:  The experimental results showed that the proposed method provided an effective automated liver 
segmentation technique, which can be applied clinically for automated median LIC calculation in thalassemia major 
patients.

Keywords:  Magnetic resonance image (MRI), Liver segmentation, Liver iron concentration (LIC), Fuzzy c-means (FCM) 
clustering, Anatomical landmark data
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Background
Magnetic resonance imaging (MRI) T2-star (T2*) is a 
noninvasive method that has been adopted in clinics to 
quantify tissue iron accumulation. The amount of iron 
stored in organ tissue is directly proportional to the rate 
of relaxation time in MRI (1/T2*), called R2-star (R2*) 
[1–3]. The relationship between R2* evaluated from MRI 
and liver iron concentration (LIC) assessed by biopsy has 
been proposed [4–7]. The R2* values can be converted 
easily to the LIC map. Then, they are used to determine 
a suitable dose of chelator [8, 9]. Therefore, reliable and 
precise measurement methods for evaluating R2* are 
very important in monitoring iron chelation therapy. 
The R2* can be calculated by fitting data between signal 
intensities and echo times (TE). Difference curve fitting 
models yield different results. There are three models for 
fitting the R2*: mono-exponential, bi-exponential, and 
mono-exponential with constant-offset (offset) model. 
Some previous works [6, 8, 10–18] demonstrated that the 
lowest levels of intra- and inter-reader variability can be 
obtained when the pixel-wise method was fitted for R2* 
calculation in an ROI encompassing the whole liver by 
the offset model. Furthermore, previous works [5, 7] pro-
posed that the vessel pixels in liver parenchyma should 
be removed to reduce the LIC variation. Therefore, the 
processes for estimating liver LIC from R2* are as fol-
lows: 1. manually defined an ROI to exclude non-body 
part; 2. calculated R2* by pixel-wise method with offset 
model and conversion to LIC map; 3. manually defined 
whole liver ROI; 4. manually excluded vessel from liver 
parenchyma; and 5. LIC report generator. Some previ-
ous works [18–20] proposed the methods for automati-
cally excluding main vessels in user-defined liver region 
or automated on step number 4. Thus, there are two 
steps (step 1 and 3) that need to be automated before 
the whole process of LIC calculation can be performed 
automatically.

Many automatic segmentation methods of medical 
images have been proposed. The methods include thresh-
olding [21, 22], watershed [23, 24], random walk [25], 
active contour models [25–27], statistical shape model 
[22], level-set [28, 29], graph cuts [22, 30–34], deform-
able models [35], region growing [29, 36, 37], and deep 
learning (DL) [33, 34, 38–41]. Regarding semi-automatic 
segmentation, human intervention is needed, such as 
manual arbitrary selection of the ROI, initialization of a 
seed point for region growing or level sets, contour for 
an active contour model or Laplacian mesh optimization, 
and seed nodes for random walk [28, 30, 36]. Fully auto-
matic segmentation does not need human intervention. 
Some human interventions have improved the semi-
automatic method by developing algorithms for the auto-
mated initialization process [37, 42].

DL is a hot issue for many tasks, including automated 
liver segmentation techniques. Most of them focus on 
CT images. Hoang et  al. [38], investigated three well-
known convolutional neural networks (CNNs), includ-
ing FCN-CRF, DRIU, and V-net, for liver segmentation 
in CT abdominal images. For 3D liver segmentation, Lu 
et al. [34], applied 3D deep CNN to detect and segment 
the liver simultaneously in contrast-enhanced CT vol-
umes. Hu et al. [39], trained a deep 3D CNN to learn a 
subject-specific probability map of the liver which iden-
tified the initial surface and acted as a shape before the 
globally optimized surface evolution model. For MR 
images, Wang et  al. [40] trained a 2D U-Net CNN for 
liver segmentation using abdominal CT and MRI exams. 
Liu et  al. [41] applied a batch normalized U-Net with 
variable input width to incorporate multiple echoes for 
liver and vessel segmentation in liver iron quantification. 
DL is a high-performance technique for object segmenta-
tion tasks, but it is a supervised learning technique that 
requires a large quantity of data and time to train the 
model for optimum performance.

Another popular segmentation technique is fuzzy 
c-means (FCM) clustering [43, 44], as well as its modified 
techniques for improving performance. Some previous 
works have tried to apply FCM clustering for segment-
ing various organs in medical images. Wang et  al. [45] 
proposed an adaptive spatial information theoretic FCM 
clustering to improve the robustness of the conventional 
FCM for MRI brain segmentation. Mekhmoukh et  al. 
[46] applied particle swarm optimization and level set 
methods for optimizing the initialization of cluster cent-
ers and rejecting outliers for FCM clustering to segment 
MR brain images. Rundo et al. [47] presented a two-stage 
computational framework based on FCM clustering for 
automated sub-segmentation of three tissue types in CT 
images: cystic/necrotic, calcified, and soft tissue. Some 
works have tried to apply FCM clustering for liver seg-
mentation, but most of them focused on CT images 
[48–51]. For MR images, Feng et  al. [19], applied FCM 
clustering to automatically segment the parenchyma 
and non-parenchyma based on R2* values in manually 
drawn liver regions. Saiviroonporn et al. [18, 20] applied 
2D-FCM clustering that used TE images and LIC maps as 
the input to segment the vessels from parenchyma inside 
user-defined ROIs. To automate the whole process of 
LIC calculation as previous mentioned, the user-defined 
body-selection and liver ROI steps (step 1 and 3) should 
be replaced by an automated method.

In this study, we investigated the automated liver 
segmentation method in the LIC map to develop the 
automated processes of LIC calculation (for example, 
automation of step 1 and 3). Based on the above lit-
erature reviews, FCM is an efficient algorithm for the 
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segmentation of the internal organs in medical images. 
Therefore, FCM clustering combined with the anatomi-
cal landmark data technique was proposed. We hypoth-
esized that anatomical landmark data should be able to 
improve the segmentation results from FCM clustering 
by rejecting unwanted regions that had the same LIC val-
ues as the liver region.

Materials and methods
Subjects
This study was approved by the review board of Faculty 
of Medicine, Siriraj hospital, (Si 465/2018), and informed 
consent was obtained from all of the participants before 
the research started. A total of 553 MR examinations 
from 471 thalassemia major patients (139 males and 
332 females; aged 21.7 ± 11.6  years) were performed 
from 2009 to 2015 and were included in this work. The 
data were separated randomly into 2 groups: the train-
ing and testing cohorts, which comprised 80% and 20% 
of the data (441 and 112 exams), respectively. The train-
ing cohort was used to find the suitable segmentation 
parameters. The testing cohort was used to validate this 
experiment.

Liver scan protocols and LIC map calculation
The liver MR images were acquired on a Philips Achieva-
XR 1.5  T scanner at a trans-axial mid-hepatic slice. A 
breath-hold, multi-echo gradient echo sequence was 
used with the following acquisition protocol: 20° flip 
angle, repetition time of 80 ms, 20 TEs (1.07–16.27 ms in 
0.80 ms increments) or 20 TE images, slice thickness of 
10 mm, matrix of 256 × 256 pixels, field of view of 40 cm, 
and yielding in-plane resolution of 1.6 × 3.1 mm2.

The R2* measurement results were transformed to 
LIC values based on reports from previous works [5–7]. 
The R2* estimation was performed using the pixel-wise 
method fitted by the offset model. The LIC map was cal-
culated from R2* using Eq. (1) [5, 9]:

The LIC map was used as an input for segmentation 
processes in this study.

Manual segmentation
To measure the segmentation performance, the ground 
truth in our experiments were manually segmented case 
by case in LIC maps by a board-certified radiologist. The 
expert manually segmented the liver regions into 2 types 
in each exam. The first one was the entire liver region. It 
was used to optimize the membership threshold (MT). 
The second one was the liver region used in clinical appli-
cation. It was often segmented smaller than its actual size 
to avoid uncertainty occurring at the edge of the liver 

(1)LIC = 0.202+ 0.0254 × R2∗

region. The second type was used to optimize the ero-
sion size (ES) for eroding the liver region to be suitable 
for clinical application.

Proposed segmentation method
MATLAB Toolboxes (MathWorks, Inc., Natick, MA, 
USA) were used for all analytical operations. An over-
view of the proposed method for liver segmentation is 
shown in Fig.  1. The method consists of 4 main proce-
dures: main ROI selection, anatomical landmark-based 
ROI restriction, liver region segmentation by FCM 
clustering, and post-processing by using mathematical 
morphologies.

Main ROI (body part) selection process
In this process, global thresholding by Otsu’s method 
[52] was applied with the first TE image for separating 
the background and rejecting excess objects away from 
the body part. It also reduced calculation time in the liver 
segmentation process. The biggest object which passed 
hole-filling algorithm [53] was selected as the main ROI 
which was used in the next process. Figure 2a shows the 
result of this procedure.

Anatomical landmark‑based ROI restriction
This procedure was developed because, in some cases, 
the LIC values in the liver region were in a similar signal 
as those in adjacent organs, as shown in Fig. 1. Because 
the segmentation results might include an unwanted 
region, the ROI for the segmentation process should be 
restricted by using anatomical landmark data. The proce-
dures for ROI restriction (Fig. 2) are:

(1)	 The main ROI (body part) in all TE images was 
used to calculate R2* and transform it to the LIC 
map by Eq. (1), as shown in Fig. 2b.

(2)	 The centroid of the object of interest in the main 
ROI selection process was calculated. A sub-image 
was created in the first TE image by expanding the 
width of the main ROI in 4 directions, with a dis-
tance of 20% (by experiment) from the centroid 
calculated from main ROI to include inferior vena 
cava (IVC) and abdominal aorta in the sub-image, 
as shown in Fig. 2c.

(3)	 The IVC and abdominal aorta were segmented in 
the sub-window by using FCM clustering [43, 44]. 
The input of FCM consisted of signal intensity val-
ues from each pixel. The number of clusters was 
defined by varying it from 2 to 8 and recording the 
achievements to detect the IVC and abdominal 
aorta in the training cohort data; a fuzzy factor of 
2 was used [57]. Figure  2d shows the segmented 
image in multiple regions. The IVC and abdominal 
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Restricted ROI by using anatomical landmarks data 

Main ROI (body part) selection 
TE images (n = 20) 

1st TE image 

LIC image Restricted ROI in LIC image 

Restricted ROI by 
using anatomical 
landmarks data 

(Described in Fig. 2) 

Liver region segmentation Segmented liver by FCM 

FCM clustering  
(c = 2, m = 2) 

Membership Threshold 
(MT) = 0.5 

Whole segmented liver region Post-processing 
Tune-up segmented 

liver region 
(Holes filling, opening  

and closing, with 
structuring element 5 

pixels) 

Modify liver region 
by using erosion with 

ES = 8 pixels 

Liver region in  
clinical application 

Output I: a good grade 
Output II: an acceptable grade 
Output III: an unsuccessful grade 

Yes No; Cannot be modified Acceptable 
results? 

No; Easy to modify 

Output II Output I Output III 

Fig. 1  Diagram for applying the proposed method to practical implementation
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aorta in the images typically had the highest inten-
sity values. Therefore, the data in the cluster that 
had the highest value of centroid were selected as 
the IVC and abdominal aorta. The IVC and abdom-
inal aorta were placed back in the normal size image 
as shown in Fig. 2e.

(4)	 The centroids of the IVC and abdominal aorta 
were calculated and used as the center for creat-
ing the rejected region. By anatomical theories, the 
left midclavicular line is longitudinal and passes 
through the middle of the clavicle. It usually passes 
near the nipple, as shown in Fig.  2f and is located 
to the right of 2 in 3 parts from a midsternal line 
or to the left of 1 in 3 parts from an anterior axil-
lary line. The liver typically extends from the fifth 
intercostal space to the right costal margin in the 
midclavicular line [54–56]. This was used to find 
the landmarks for rejecting an unwanted region. 

In MRI, the assumed left midclavicular line was 
drawn between the middle line of the body region 
(assumed to be a midsternal line) and the edge of 
the body region (assumed to be an anterior axillary 
line). The diagonal dashed line was drawn from the 
abdominal aorta through the intersection between 
the left midclavicular line and the edge of the body. 
The longitudinal dashed line covers the right lobe of 
the liver, as shown in Fig. 2g. Figure 2h shows the 
restricted ROI in the LIC image, which is used in 
the segmentation procedure.

Liver region segmentation
FCM clustering was used again in this procedure to sepa-
rate the liver area (object) from others (background). In 
this procedure, LIC values in the restricted ROI were the 
input of FCM. To establish the FCM parameters, a fuzzy 
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d 

Fig. 2  The ROI restricted processes, a the main ROI in the TE image, b LIC map, c the created sub-image including the IVC and abdominal aorta, 
d the segmented image in multi regions, e the segmented IVC and abdominal aorta in a normal image size, f simple structure of the human, 
including longitudinal, lines used in this work, g the rejected region, and h the LIC map in the restricted ROI
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factor was defined as 2, as before, and the number of 
clusters was set as 2. A cluster that had a higher centroid 
value was defined as the liver region and the other one as 
other organs or background. To optimize the segmenta-
tion performance, the membership threshold (MT) value 
was adjusted from 0.1 to 0.9 (at increments of 0.1).

Post‑processing
After the segmentation process, some segmented images 
contained various imperfections. The liver regions were 
disturbed in a binary image by noises and errors. Math-
ematical morphologies [53, 58], opening and closing with 
the optimized size of disk shape structure, and hole-fill-
ing, were used to proceed to the goal of removing imper-
fections by accounting for the form and structure of the 
image. This optimized size of disk shape structure was 5 
pixels. It was obtained from the experiments, varying the 
values from 3 to 7 pixels (data not shown). After that, the 
biggest object was selected as the liver region.

Segmentation for clinical application
According to the clinical application, the liver region was 
often manually segmented smaller than its actual size 
to avoid uncertainty occurring at the edge of the liver 
region. For this reason, an erosion algorithm using disk 
shape structure called erosion size (ES), was varied from 
2 to 12 pixels (at increments of 1 pixels) to evaluate the 
best segmentation performance.

The output results from the proposed method were 
divided into three categories: a good grade, an accept-
able grade, and an unsuccessful grade. A good grade was 
defined as a completely segmented liver region as shown 
in Output I in Fig.  1. An acceptable grade was the rea-

sonably well-segmented liver region. The segmentation 
results could be easily modified by using a simple step as 
shown in Output II in Fig. 1. The last one was an unsuc-
cessful grade; the segmentation results could not be 
accepted and was defined as Output III in Fig.  1. They 
required a full manual segmentation to complete a task.

Evaluation metrics
To measure the performance of the proposed algorithm, 
the segmentation results were compared with manual 
segmentation performed by a board-certified radiologist. 
Dice similarity coefficient (DSC) [59], Jaccard index (JC) 
[60], and Hausdorff distance (H) [61] were used to evalu-
ate the segmentation performance. In this work, DCS 
and JC were reported in percent (defined as %DSC and 
%JC) to consider the differences of the experiment results 
in more detail. These metrics are calculated as follows:

Let A and B represent 2 binary regions (the manual 
and the automatic segmentation); the %DSC and %JC 
between them are defined as

and

The Hausdorff distance (H) is calculated by

where d is the Euclidean distance and (a,b) is two points 
of both contours of A and B. Perfect segmentation 
occurs when the DSC is one (%DSC = 100), JC is one 
(%JC = 100), and H is zero.

In clinical application, the liver region usually is 
selected as smaller than the real liver region. ES in post-
processing should be optimized as mentioned above. 
Therefore, the percent false positive (%FP) and percent 
false negative (%FN) calculated by (5) and (6) were con-
sidered in this situation.

Generally, a good segmentation occurs when %FP and 
%FN are close to zeros. If %FP is too high, under-seg-
mentation occurs. On the other hand, if %FN is too high, 
over-segmentation occurs. In this study, %FN was used 
as the primary metric for determining outcomes. It was 
calculated as two types, %FN-type-I and %FN-type-II. 
The %FN-type-I was calculated from the segmented liver 

(2)%DSC =
2× Area(A ∩ B)

Area(A)+ Area(B)
× 100,

(3)%JC =
Area(A ∩ B)

Area(A ∪ B)
× 100.

(4)H = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)},

(5)
% FP =

No. of pixels auto segmented by an algorithm that
shrink more than manually segmented by an expert

Total amount of pixels manually segmented by an expert
× 100,

(6)
% FN =

No. of pixels auto segmented by an algorithm that
protrude more than manually segmented by an expert

Total amount of pixels manually segmented by an expert
× 100.



Page 7 of 18Wantanajittikul et al. BMC Med Imaging          (2021) 21:138 	

region used in clinical application from both automated 
and manual methods. For %FN-type-II, the automated 
method used the segmented liver region for the clini-
cal application while the manual method used the seg-
mented real liver region. It was used to examine whether 
the segmentation results were acceptable in practical 
implementation. They were accepted if the %FN-type-II 
value was zero even if %FP was nonzero. It meant that 
the segmented liver region from the proposed method 
was not larger than the actual liver region.

Statistical analysis
The paired Student t test was used to examine the 
difference, such as the difference in segmentation 
results between conventional FCM clustering method 
and FCM combined with anatomical landmark data 

method, which were considered statistically significant 
when p < 0.05.

The scatter and Bland–Altman plots with 95% con-
fidence interval between the median LIC value of the 
manual and automated methods were analyzed. First, 
they were used to verify that anatomical landmark data 
could improve the correlation and agreement between 
manual and automated methods. Next, they were used 
to verify that the proposed method could be used in the 
routine clinical application. The calculated median LIC 
from the proposed method should be similar to the tra-
ditional method (manual method).

Results
Segmentation performance
Liver region segmentation
The automated segmentation time in each case was 0.31 s 
on average via PC (Intel Corei7 4.30 GHz, 16 GB RAM) 
by using the proposed method. The real liver region 
segmentation was approximately 20  s and 10  s for the 
clinical application by using the manual tracing method. 
Therefore, the automated segmentation improved the 
processing time.

The Main ROI (body part) was segmented success-
fully in every case. In step (4) in the anatomical landmark 
data detection process, the number of clusters of FCM 
was optimized by the experiment as shown in Fig.  3. 
The maximum number of achievements for detecting 
the positions of the IVC and abdominal aorta was found 
when the number of clusters of FCM was 6 clusters.

Table  1 shows the segmentation results from the 
training cohort by varying MT. The best result by 
FCM clustering for segmenting the liver region was 
achieved when MT was 0.8 (%DSC = 89.66 ± 13.08, 
%JC = 82.99 ± 14.97, and H = 40.16 ± 28.00  mm). After 
the anatomical landmark data was combined with FCM, 

Fig. 3  The plot for finding achievement of the IVC and abdominal 
aorta positions detection

Table 1  The whole liver region segmentation results in training cohort using only FCM and FCM combined with anatomical landmark 
data

MT FCM FCM combined with anatomical landmark data

%DSC %JC H (mm) %DSC %JC H (mm)

0.1 85.62 ± 12.87 76.56 ± 15.70 51.66 ± 31.55 92.60 ± 4.35 86.49 ± 6.70 28.83 ± 19.02

0.2 87.15 ± 12.84 78.92 ± 15.45 47.53 ± 31.15 92.97 ± 4.44 87.15 ± 6.79 29.32 ± 19.82

0.3 87.93 ± 13.19 80.23 ± 15.51 44.63 ± 30.76 93.14 ± 4.75 87.48 ± 7.13 29.16 ± 20.09

0.4 88.62 ± 13.05 81.30 ± 15.23 42.55 ± 30.32 93.25 ± 4.89 87.69 ± 7.29 29.40 ± 20.33

0.5 89.08 ± 12.99 82.01 ± 15.07 41.35 ± 29.28 93.33 ± 4.97 87.83 ± 7.36 29.67 ± 20.28
0.6 89.32 ± 13.04 82.43 ± 15.11 40.76 ± 29.14 93.28 ± 5.28 87.79 ± 7.72 30.24 ± 20.73

0.7 89.60 ± 12.95 82.85 ± 14.91 40.07 ± 28.25 93.22 ± 5.41 87.70 ± 7.87 30.93 ± 20.76

0.8 89.66 ± 13.08 82.99 ± 14.97 40.16 ± 27.99 93.02 ± 5.99 87.43 ± 8.48 31.92 ± 21.48

0.9 89.55 ± 13.55 82.92 ± 15.43 39.56 ± 27.26 92.62 ± 6.71 86.83 ± 9.26 33.19 ± 22.08
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the best segmentation result was improved significantly 
(p < 0.001). The %DSC, %JC, and H were 93.33 ± 4.97, 
87.83 ± 7.36, and 29.67 ± 20.28  mm, respectively. They 
were achieved when MT was 0.5. Therefore, MT = 0.5 
was an optimal parameter in this study.

Table  2 shows that anatomical landmark data could 
improve the segmentation performance. The number of 
cases in which the anatomical landmark method could 
significantly (p < 0.001) improve segmentation results was 
138 cases (31.29% of all data in training cohort), while the 
rest were not significantly different (p = 0.9707). The aver-
ages of %DSC, %JC, and H from the improved cases were 
93, 88, and 25 mm compared to 82, 72, and 63 mm from 
the FCM method alone and obtained the same results of 
93, 88, and 31 mm, respectively, in the unimproved cases. 

The anatomical landmark method identified both ves-
sels correctly in most of the cases (545 of 553 or 98%). 
Figure  4 shows two examples of the misclassification of 
the aorta and the IVC in the first and second row, respec-
tively. Although the inaccurate detection occurred as 
mentioned before, the segmentation processes still car-
ried on. The average of %DSC, %JC and H of these cases 
were 89.45 ± 2.53, 80.99 ± 4.07, and 41.93 ± 19.77  mm, 
respectively. They showed that this error had little effect 
on the segmentation process.

The FCM combined with anatomical landmark 
data using MT = 0.5 was applied to the testing 
cohort. The experimental results were consistent. The 
%DSC, %JC, and H were 90.10 ± 15.41, 84.51 ± 18.38, 
and 33.33 ± 34.76  mm, respectively. The segmen-
tation results improved significantly (p < 0.001) 
compared with the results from conventional FCM clus-
tering (%DSC = 84.02 ± 25.89, %JC = 78.25 ± 26.68, and 
H = 33.33 ± 34.76 mm).

Segmentation for clinical application
An optimal parameter from the previous experiment 
(MT = 0.5) was, then, used in this experiment. The ES 
was varied to make the liver region smaller in a rou-
tine clinical task. The experimental results are shown 
Table 3. The best %DSC, %JC, and H were 89.87 ± 6.11, 
82.06 ± 8.33, and 19.05 ± 13.35  mm, and %FP, %FN-
type-I and %FN-type-II were 10.23 ± 10.11, 9.45 ± 7.26, 
and 0.16 ± 0.61, respectively. These results were obtained 
when using ES equal to 8 pixels. Therefore, the optimal 
ES = 8 was used for the testing cohort.

Table 2  The whole liver region segmentation results in training 
cohort by separating the cases on which anatomical landmark 
data either had effect and no effect on the segmentation 
accuracy

The number of 
cases

Evaluation 
matrices

FCM FCM combined 
with anatomical 
landmark data

Effect: 138 cases %DSC 81.89 ± 18.75 93.55 ± 2.54

%JC 72.16 ± 18.30 87.99 ± 4.37

H (mm) 62.86 ± 27.34 24.79 ± 15.34

Non-effect: 303 cases %DSC 93.20 ± 7.04 93.22 ± 5.75

%JC 87.92 ± 9.84 87.75 ± 8.38

H (mm) 29.83 ± 21.45 31.89 ± 21.84

0 5 10 15 20
mg/g dw 

Anatomical landmark detection Restricted ROI Segmentation result 
Fig. 4  The examples of the failure to detect anatomical landmark data
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The optimal parameters (MT = 0.5 and ES = 8) from 
the experiment in the training cohort were applied to the 
testing cohort. The %DSC, %JC, and H were 89.18 ± 7.70, 
81.18 ± 10.43, and 20.45 ± 18.76  mm, and %FP, %FN-
type-I and %FN-type-II were 10.23 ± 12.58, 10.54 ± 7.57, 
and 0.33 ± 1.00, respectively. They represented that the 

proposed method provided consistent segmentation 
results in clinical application.

Output categories
Table  4 shows the number of cases of segmentation 
results for clinical application in each category. The 

Table 3  The segmentation results for the clinical application in training cohort

ES (pixels) %DSC %JC H (mm) %FP %FN
-Type-I

%FN
-Type-II

2 81.02 ± 5.76 68.49 ± 8.10 23.64 ± 11.33 2.39 ± 6.42 44.06 ± 16.54 3.58 ± 3.29

3 82.36 ± 5.79 70.42 ± 8.26 23.00 ± 11.66 2.68 ± 6.70 39.63 ± 15.76 2.55 ± 2.77

4 83.84 ± 5.82 72.59 ± 8.40 22.30 ± 11.82 3.00 ± 7.04 34.90 ± 14.83 1.72 ± 2.22

5 86.46 ± 5.79 76.57 ± 8.44 21.20 ± 12.29 3.97 ± 7.75 26.36 ± 12.95 0.89 ± 1.58

6 88.58 ± 5.71 79.91 ± 8.21 20.30 ± 12.75 5.64 ± 8.57 18.65 ± 10.82 0.46 ± 1.11

7 89.70 ± 5.82 81.75 ± 8.07 19.65 ± 13.11 8.41 ± 9.52 12.25 ± 8.51 0.24 ± 0.77

8 89.87 ± 6.11 82.06 ± 8.33 19.06 ± 13.35 10.23 ± 10.11 9.45 ± 7.26 0.16 ± 0.61
9 88.98 ± 7.03 80.73 ± 9.37 19.00 ± 13.81 14.84 ± 11.14 5.38 ± 5.11 0.09 ± 0.43

10 86.58 ± 8.21 77.10 ± 10.67 20.33 ± 14.41 20.64 ± 11.93 2.79 ± 3.39 0.05 ± 0.28

11 84.90 ± 8.84 74.61 ± 11.26 21.10 ± 14.40 23.84 ± 12.23 1.94 ± 2.71 0.04 ± 0.23

12 80.71 ± 9.86 68.62 ± 11.94 23.34 ± 14.59 30.66 ± 12.47 0.94 ± 1.76 0.02 ± 0.16

Table 4  The number of cases and evaluation matrices of segmentation results for clinical application in each category

Output categories FCM combined with anatomical landmark data FCM

Training cohort Testing cohort All data All data

Output I

 No. cases 359 (81.41%) 87 (77.68%) 446 (80.65%) 349 (63.11%)

 %DSC 91.30 ± 3.05 91.70 ± 2.55

 %JC 84.13 ± 5.04 84.78 ± 4.30

 H (mm) 15.75 ± 9.66 15.38 ± 9.25

 %FP 8.83 ± 6.96 6.82 ± 5.33

 %FN-Type I 8.47 ± 7.20 10.02 ± 6.98

 %FN-Type II 0.00 0.00

Output II

 No. cases 51 (11.56%) 12 (10.71%) 63 (11.39%) 150 (27.12%)

 %DSC 86.43 ± 6.49 85.44 ± 7.14

 %JC 76.63 ± 9.45 75.18 ± 10.50

 H (mm) 32.50 ± 14.77 28.76 ± 14.68

 %FP 14.13 ± 12.94 18.00 ± 12.35

 %FN-Type I 11.84 ± 7.49 9.01 ± 5.55

 %FN-Type II 0.59 ± 0.81 1.09 ± 1.79

Output III

 No. cases 31 (7.03%) 13 (11.61%) 44 (7.96%) 54 (9.76%)

 %DSC 54.26 ± 30.74 47.31 ± 23.93

 %JC 42.87 ± 27.91 33.85 ± 20.02

 H (mm) 72.39 ± 45.58 96.26 ± 46.01

 %FP 53.12 ± 32.01 63.14 ± 25.31

 %FN-Type I 6.42 ± 6.81 5.28 ± 12.39

 %FN-Type II 0.65 ± 1.80 0.37 ± 1.32

Total 441 112 553 553
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number of Output I, II, and III were about 81%, 11%, and 
8% of all data, respectively. A good segmentation result, 
Output I, is shown in Fig.  5a. The %DSC, %JC, and H 
of this category in the training and testing cohorts were 
approximately 91%, 84%, and 15  mm, respectively. The 
number of an acceptable segmentation results, Out-
put II, which required an easy correction from the user, 
was approximately 11% of all data, as shown as the red 

polygons in Fig. 5b. The %DSC and %JC of this category 
were more than 85% and 75%, respectively, while H was 
in the range of 28–32  mm. Finally, the remainder, less 
than 8% of all data (Output III) is shown in Fig. 5c. The 
segmentation results of Output III failed and could not 
be easily modified. Their evaluation matrices resulted in 
unacceptable segmentation performance (%DSC < 55, 

Output I 

 LIC image   Whole liver region    Clinical application 
  segmentation 

Output II 

Output III 

0 5 10 15 20
mg/g dw Manual : Whole liver region 

Manual : Clinical application 

Automated 

Modified by user 

a 

b 

c 

Fig. 5  The example of segmentation results in each category from five patients, a Output I, b Output II, and c Output III
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%JC < 43, and H > 70  mm). Therefore, this category 
required full manual segmentation by a user.

For %FP and %FN, Output I showed that %FN-type-II 
was zero, and %FP and %FN-type-I were approximately 
8%. Output II included cases in which the %FN-type-II 
was approximately 0.7%, while the %FP and %FN-type-I 
were greater than Output I, approximately 15% and 11%, 
respectively. In Output III, %FN-type-II and %FN-type-I 
were 0.6% and 6% while %FP was extreme high, approxi-
mately 55%. They clearly showed the under-segmentation.

The quality of segmentation output was improved 
when using FCM combined with anatomical land-
mark data as shown in Table 4 (the evaluation matrices 
of conventional FCM were not shown). The number of 
Output I was increased from approximately 63–81% 
of all data. The number of Output II was reduced from 
approximately 27–11% of all data. Finally, Output III 

was improved as well. Their number was decreased from 
approximately 10–8% of all data.

Comparison between median LIC from automated 
and manual method
The scatter and Bland–Altman plots between the median 
LIC values of the manual and automated segmentation 
with and without the ROI restriction step for training 
cohort are shown in Fig. 6. It shows that the ROI restric-
tion step could improve the segmentation performance 
by considering the better correlation and agreement 
between manual and automated methods. Figure  6a, c 
show that R-square (R2) was improved from 0.91 to 0.97 
and Fig. 6b, d show that the percent coefficient of varia-
tion (%CV) was reduced from 17 to 10%.

Figure  7 shows the scatter and Bland–Altman plots 
between the median LIC values of the manual and the 

y = 0.96x + 0.93 
R2 = 0.91 

LIC : Manual 

LIC
  : 

Au
to 

(FC
M 

on
ly)

 

4.6 (+1.96SD) 

- 3.7 (-1.96SD) 

0.45 

%CV = 17.0 

Mean LIC : Manual and Auto (FCM only) 

Dif
fer

en
ce

 LI
C 

be
tw

ee
n M

an
ua

l a
nd

 A
uto

 (F
CM

 on
ly)

 a b 

____Mean          +/-1.96SD   

c d y = 1.00x - 0.30 
R2 = 0.97 

LIC
  : 

Au
to 

(R
OI

 re
str

ict
ion

 + 
FC

M)
 

%CV = 10.0 

Dif
fer

en
ce

 LI
C:

 M
an

ua
l a

nd
 A

uto
 (R

OI
 re

str
ict

ion
 + 

FC
M)

 

2.7 (+1.96SD) 
0.27 

- 2.1 (-1.96SD) 

LIC : Manual Mean LIC : Manual and Auto (ROI restriction + FCM) 

____Mean          +/-1.96SD   

Fig. 6  The scatter plot and Bland–Altman plot of median LIC in a comparison between manual and automated methods with 95% confidence 
intervals, a without ROI restriction process and, b with ROI restriction process
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proposed method. The output II and III were already 
modified by the user. For the training cohort, in Fig. 7a, 
b and R2 and %CV were 1.00 and 2.1% with an interval 
of − 0.43%, 0.58%, respectively. For the testing cohort in 
Fig. 7c, d R2 and %CV were 1.00 and 1.7%, respectively, 
with an interval of − 0.32%, 0.44%. This indicated that the 
proposed method had excellent correlation and agree-
ment with the manual method.

Discussion
In this procedure, evaluation of the median LIC in 
thalassemia major patients during routine clinical tasks 
required a total of 5 steps, as mentioned in the introduc-
tion. Only the user-defined body-selection and liver ROI 
steps (step 1 and 3) still required user action. To automate 

the whole process of LIC calculation, steps 1 and 3 need 
to be automated. In this study, we developed the auto-
mated body part selection and liver ROI segmentation to 
fill this gap. The results showed that our method success-
fully segmented the liver region with high values of eval-
uation matrices. We found that our proposed method 
automatically segmented a good grade output (Output 
I) in approximately 81% of all data. Approximately 11% 
of all data were an acceptable grade output (Output II). 
Only 8% of all data were an unsuccessful grade (Output 
III). The correlation between median LIC values from our 
proposed method and the manual method was also high. 
The average processing time was reduced. It represented 
that our method could be applied to automate the whole 
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process of LIC calculation in routine clinical application 
and could reduce the workload of the user.

For main ROI (body part) selection process, the body 
part was successfully segmented for all of data. We used 
the classic global thresholding using Otsu’s method, 
although some of the advanced histogram-based meth-
ods for MR images were proposed, such as MedGA 
[62] and PSOTHE [63]. They applied the enhancement 
algorithms that helped to improve the quality of images 
that undergo automated segmentation by using thresh-
olding methods. Because the body’s pixel intensity was 
clearly different from the background, the basic algo-
rithms, global thresholding method followed by holes 
filling, could be easily performed. There were only 
eight cases in which anatomical landmark data failed to 
be detected. The intensity of the abdominal aorta was 
lower compared to the surrounding objects, as shown 
in the examples in Fig.  4. Based on our assumption, 
the pixel intensities in the abdominal aorta should be 
higher than others. Therefore, another brighter object 
(surrounding vessel) was detected, instead, after the 
clustering process. However, the average evaluation 
matrices of these cases were also acceptable, and, there-
fore, had little impact on the segmentation process.

We proposed the anatomical landmark data detection 
to restrict body ROI in order to reject the unwanted 
regions (other organs) that connected to the liver and 
had the same LIC values as the liver; conventional FCM 
segmented them as the liver region. In the experiment 
for entire liver region segmentation, the segmentation 
performance could be significantly improved for more 
than 30% of all data in the training cohort. This pro-
posed process did not affect the remainder of the exam-
inations. Their segmentation results were still good and 
not significantly different. As well as the experiment 
for clinical application, the number of Output I was 
increased, and the numbers of Output II and Output III 
were decreased. It showed that this approach improved 
the segmentation performance based on our assump-
tion. Moreover, Fig.  6 confirmed that the proposed 
ROI restriction process was a necessary step. Although 
there was a correlation of median LIC between the 
manual and both automated methods, only FCM and 
FCM combined with the anatomical landmark data, 
were high (R2 > 0.9). The agreement was improved obvi-
ously (%CV was reduced from 17 to 10%) after applying 
the ROI restriction process.

In this study, we focused on the median LIC which 
was calculated from all the pixels in an ROI. Therefore, 
the segmentation results should be considered from the 
perspective of the region. The %DSC and %JC were cal-
culated from all pixels in an ROI while H was calculated 
from only the contour of an ROI. Therefore, H might not 

be suitable for this study. The example that supported 
this situation is shown in Fig. 8. Examples A and B were 
a good grade output (Output I). Example A had a high 
%DSC and %JC. The median LIC in the liver region from 
both methods were approximately the same, less than 
1% difference, and H was 9.84 mm. All of them showed 
a good segmentation and a good correlation in median 
LIC. For Example B, %DSC and %JC were still high. Like-
wise, the median LIC in the liver region from both meth-
ods were less than 1% different; they presented a good 
segmentation and a good correlation in median LIC, as 
well. H was more than two times higher than Example A 
because the distal region of the right lobe of the liver was 
segmented by the automated method, while it was not 
done by the manual method. For this reason, %DSC and 
%JC were more suitable than H for evaluating the seg-
mentation performance in this study.

The reason that %FP, %FN-type-I and %FN-type-II 
were considered in the experiment for clinical applica-
tion was they could indicate the under- and over-seg-
mentation, while other evaluation matrices were unable 
to show these details. Typically, the small values of %FP 
and %FN-type-I represented a good overview of segmen-
tation performance, but, in our study, the critical part for 
the user was to accept the segmented liver ROI when it 
was only inside the entire liver region (%FN-type-II = 0 
as in Output I). As shown in Fig. 8, the %FP of Example 
A and %FN-type-I of Example B were slightly high, but 
their %FN-type-II was zero. Therefore, they were classi-
fied as a good grade output. In the experiment for clini-
cal application, the best segmentation result was selected 
based on %DSC and %JC. The %DSC and %JC were max-
imal at ES equal to 8 pixels, while %FN-type-II was non-
zero. When %FN-type-II was non-zero, some of the liver 
regions segmented by the automated method were larger 
than the real liver regions; this required user adjustment 
or Output II. Actually, %FN-type-II could be reduced to 
zero using a larger ES. As shown in Table 3, %FN-type-II 
tended to decrease steadily to zero if the ES was increased 
continuously. But it was not accepted because it would 
result in a larger %FP, indicating over under-segmenta-
tion occurred, which increased cases of Output III. %FP 
of Output I (including Output II after correction) was 
approximately 8%. Although it represented the under-
segmentation, it was not critical. By considering median 
LIC comparison between 2 methods, %CV was approxi-
mately 2% as shown in Fig. 7. It was acceptable, which is 
similar to a previous report by Saiviroonporn et  al. [6]. 
They reported that the intersite observer variability was 
approximately 2.5%. These variabilities occurred from 
slight differences in liver region segmentation. They were 
little and insignificant errors.
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%DSC = 90.62 
%JC  = 82.84 

H (mm) = 9.84 
PF%  = 17.09 

 %FN-type-I = 0.09 
 LIC Manual (mg/g dw) = 11.15 
 LIC Automated (mg/g dw) = 11.26 

Example A Example B 
Manual: Clinical application Manual: Whole liver region Automated 

 %DSC = 93.82 
 %JC  = 88.36 
 H (mm) = 24.55 
 %FP = 2.38 
 %FN-type-I = 13.09 
 LIC Manual (mg/g dw) = 5.39 
 LIC Automated (mg/g dw) = 5.35 

%FN-type-II = 0.00 %FN-type-II = 0.00 

Fig. 8  The examples that showed the reason why H was not suitable for this study and %FP, %FN-type-I and %FN-type-II should be considered in 
the experiment for the clinical application
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Although the morphological processes were applied 
to eliminate some errors in the clustering process, the 
results were still not perfect. There were 2 main reasons 
for making segmentation errors as in Output II. The first 
reason involved vessels in the parenchyma that were large 
in some cases, as shown in the top row of Fig. 5b. Because 
the pixel values in vessel regions in the LIC map were 
low, these regions were rejected in the clustering process. 
Only the small vessels were modified by morphological 
processes while the large vessels could not be similarly 
modified. The other reason was shown in the bottom row 
of Fig. 5b. There was a portion that had the same LIC as 
the liver that extended from the liver region, so it was 
over-segmented and required manual elimination. For 
output III, the first cause of the error was the quality of 
the LIC map. There were artifacts in liver parenchyma 
(back and green colors or low LIC values) in an LIC map 
from patients with a severe iron overload (LIC > 30 mg/g 
dw), as shown in the top row of Fig. 5c. Consequently, the 
artifact pixels in the liver parenchyma were considered 
as the background cluster in the FCM clustering process. 
The liver region was segmented into small regions which 
were then eliminated by a post-processing step. The sec-
ond cause was shown at the bottom row of Fig. 5c, which 
was the same as the second reason of Output II, but there 
was more than one protrusion from the liver region that 
could not be eliminated.

The comparison between the proposed method and the 
methods of the state-of-the-art on liver MRI segmentations 

are shown in Table  5. DSC, Number of exams, and Run-
time obtained by these methods are displayed. Since 
they had different data sets, experimental settings, and 
resources, their results presented in Table 5. could not be 
directly compared. The most comparable is the segmenta-
tion performance for the segmented real liver region in 
each slice (2D segmentation). Although some works pro-
posed 3D segmentation, their segmentation process was 
performed slice by slice before being put together later. 
Therefore, the comparison was considered in terms of the 
average per slice. Because DSC was reported in all methods, 
the %DSC from the segmented liver region in our experi-
ment was selected and converted to DSC by dividing by 
100. Bereciartua et al. [26] used the active contours method 
that required the initialization by the user. Huynh et  al. 
[42] used the active contours method as well, but the auto-
mated initialization step was proposed by using the water-
shed segmentation to determine the liver candidate region. 
DSC from our method was better than these two meth-
ods. Other methods were equivalent to or better than our 
method by considering DSC, but there were some different 
issues compared to ours. The segmentation procedure in 
Shen et al. [64] had an image registration process between 
two images, similar to the method from López-Mir et  al. 
[24], which required information from the previous slice as 
input for the current slice. Therefore, they required correla-
tion between two or more images and more computational 
time. Göçeri [65] only used ten slices in his experiments 
which were likely to affect the robustness of the algorithm 

Table 5  The comparison of liver segmentation methods

Authors DSC Number of data Run time

López-Mir et al.[22] 0.95 16 exams
59–120 slices/exam

7 s/image
(Intel Corei5 2.80 GHz CPU, 2 GB RAM)

Bereciartua et al. [24] 0.90 18 exams
21 slices/exam

0.53 s/image
(Intel core2quad 3.00 GHz CPU, N/A RAM)

Göçeri [63] 0.95 10 slices 16.80 s/image
(Intel
Pentium 2.40 GHz CPU, 2 GB RAM)

Shen et al. [62] 0.94 40 exams
44 slices/exam

20 min/case
(Intel Corei5 1.3 GHz CPU, 8 GB RAM)

Huynh et al. [61] 0.91 27 exams
44–120 slices/exam

8.4 min/case
(Intel Xeon 2.66 GHz CPU, N/A RAM)

Wang et al. [38] 0.93 (T2*w)
0.95 (T1w)

168 exams (T2*w)
6 slices (TEs)/exam
100 exams (T1w)

N/A

Jansen et al. [64] 0.95 55 exams
100 slices/exam
33 exams for training
3 exams for validation
19 exams for testing

N/A

Proposed method 0.93 537 exams
20 slices (TEs)/exam
441 exams for training
112 exams for testing

0.31 s/image
(Intel Corei7 4.30 GHz, 16 GB RAM)
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when used in the larger data set. Wang et al. [40] and Jansen 
et al. [66] applied CNNs which required learning time and 
computational power. Although, our method could not be 
judged to be better than others, it was a reasonable method 
both in terms of efficiency and resource utilization. Moreo-
ver, the aim of this work focused on median LIC calcula-
tion. The experimental results showed that the median LIC 
from our automated method provided an excellent corre-
lation and agreement with the manual method, as shown 
in the plots in Fig. 7. It proved that our proposed method 
could be applied to replace the current ones.

The average time for traditional (manual) method 
was only 10  s for each case and was not difficult to 
complete. When considering the overall workflow for 
reporting the median LIC of our method, 81% of data 
did not require any actions from the user (process-
ing time was approximately 0.3 s); 11% of data needed 
approximately 2–5 s to modify the results, and only 8% 
required the manual method. The average of operation 
time for all categories was 1.5 s. In summary, our pro-
posed method could reduce the average of operation 
time less than one-fifth compared to the traditional 
method. Therefore, it streamlined the work and greatly 
reduced the workload of the users.

There are some limitations in this study. The input of 
FCM clustering in this study was only LIC images. If the 
quality of LIC images was not good enough, it would 
cause poor segmentation performance. The combina-
tion of gray values of TE images and LIC values (multi-
dimensional FCM), might help in this situation, which 
was inspired by our previous research [18, 20]. Next, 
a single membership threshold (MT) value was opti-
mized and used for all data. Similar to [20], we noticed 
that each LIC range might be suitable for different MT 
values. Therefore, the adaptive MT value for each LIC 
range or each LIC image could help to improve the seg-
mentation performance. This revision in our method is 
planned for our future studies.

Conclusion
This study aimed to develop an automated liver seg-
mentation in MR images by using the LIC map to auto-
mate the whole process for median LIC calculation in 
clinical application. The FCM clustering technique 
combined with anatomical landmark data was applied 
for segmentation processes. Morphological processes 
were applied in post-processing to decrease the seg-
mentation errors and adjust the liver region for clini-
cal usage. The experimental results showed that the 
proposed method could increase the efficiency of the 
conventional FCM clustering. It provided good grade 
outputs of approximately 81% of all data with good 

evaluation matrices. Approximately 11% of the total 
data required an easy modification step to correct 
the segmentation results. The rest, approximately 8%, 
needed manual segmentation. A high correlation in 
the median LIC between our proposed method and the 
current method was shown in our experiments. There-
fore, our method could be used in place of the current 
method. Although the manual liver segmentation was 
time-consuming but not complicated, our automated 
method could reduce the workload of users.
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