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Abstract 

Background:  Object detection and image segmentation of regions of interest provide the foundation for numerous 
pipelines across disciplines. Robust and accurate computer vision methods are needed to properly solve image-based 
tasks. Multiple algorithms have been developed to solely detect edges in images. Constrained to the problem of 
creating a thin, one-pixel wide, edge from a predicted object boundary, we require an algorithm that removes pixels 
while preserving the topology. Thanks to skeletonize algorithms, an object boundary is transformed into an edge; 
contrasting uncertainty with exact positions.

Methods:  To extract edges from boundaries generated from different algorithms, we present a computational 
pipeline that relies on: a novel skeletonize algorithm, a non-exhaustive discrete parameter search to find the optimal 
parameter combination of a specific post-processing pipeline, and an extensive evaluation using three data sets from 
the medical and natural image domains (kidney boundaries, NYU-Depth V2, BSDS 500). While the skeletonize algo-
rithm was compared to classical topological skeletons, the validity of our post-processing algorithm was evaluated by 
integrating the original post-processing methods from six different works.

Results:  Using the state of the art metrics, precision and recall based Signed Distance Error (SDE) and the Intersec-
tion over Union bounding box (IOU-box), our results indicate that the SDE metric for these edges is improved up to 
2.3 times.

Conclusions:  Our work provides guidance for parameter tuning and algorithm selection in the post-processing of 
predicted object boundaries.
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Background
Boundaries are crucial in object detection methods. 
They provide the means to distinguish objects of interest 
in an image from the background. In humans, this task 
appears to be intuitive although it is accomplished using 
complex processes that integrate a priori knowledge. 

Knowing where the boundary of an object lies requires 
human annotators and/or algorithms to find a dividing 
line between two areas of an image that exhibit different 
visual features (e.g.,  object boundaries, material proper-
ties boundaries, lighting boundaries). However, in both 
cases there remains an uncertainty as to where the edge 
lies. This uncertainty varies and is even exacerbated by 
the domain specificity (e.g.,  natural image domain). In 
turn, it prevents the definition of precise edges and the 
generalization of edge-related methods. In this work, we 
distinguish between this area of uncertainty (ramp edge) 
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and a thin edge. Our problem description defines the 
former as the boundary, where the intensity change is 
not instantaneous but occurs over a finite distance with 
the occurrence of discontinuities (i.e.,  incomplete object 
boundary). The latter, or thin edge, is a 1 pixel wide exact 
representation from a post-processed ramp edge. While a 
boundary in an image is represented as a per-pixel uncer-
tainty value, an edge is represented as a per-pixel binary 
dichotomy. Our aim is to improve the creation and defini-
tion of ramp edges after they have been detected to meet 
the constraints of an 1-pixel edge. That is to say, post-pro-
cessing the ramp edge, i.e., the boundary, to a thin edge.

Historically, edge detection is a core discipline in com-
puter vision that allows many different tasks, e.g., image 
segmentation [1], object detection [2, 3], and augmented 
reality [4]. These tasks have evolved in different direc-
tions: (a) pixel based, where individual pixel value dif-
ferences are investigated in a local neighborhood of an 
edge [5–7], (b) models based on human perception [8], 
and (c) computational approaches on step edges [9]. 
However, these works provide all edges of an image and 
the task of filtering out non-relevant edge remains. The 
extraction of task-relevant edges, called semantic edges, 
is an active research topic across many research fields 
[10–14]. A graph-based solution was introduced by 
stitching together appropriate edge fragments to pro-
duce a closed or linked object boundary [15]. Boundary 
fragments are identified using an encoding of the Gestalt 
laws of proximity and continuity. Two other works were 
proposed that rely on the concept of object consistency. 
They tackle the same task of segmentation, however they 
do so by considering hue or saturation between neigh-
boring objects. One proposed solution used the color 
differences of neighboring pixels combined with progres-
sive block-oriented edge detection [16]. Another solution 
introduced the use of differences in gray values between 
pixels with the addition of not taking into account edges 
between other features [17].

In the medical research field, deep learning based algo-
rithms have been reported [10, 14, 18, 19]. For minimally 
invasive surgery, and specifically laparoscopic image data, 
the task of semantic segmentation has proven challeng-
ing due to different limiting factors (e.g., the occlusion by 
fatty tissue or surgical instruments, or the homogeneity of 
the texture of the target organ) [20]. In our proposed deep 
learning based edge detector [14], the neural net predicts 
kidney boundaries that are then post-processed into 1 
pixel wide edges. In this work, the specific edge location 
is determined by a confidence value, that is represented by 
the pixel intensity within the predicted boundary. Related 
work relied on this same approach to address the task of 
head-circumference delineation from fetal ultrasound 
images in the domain knowledge of prenatal ultrasounds 

[21]. Yet, adapting this algorithm warrants further investi-
gations to improve post-processing steps.

This work details the how to improve the resulting 
edges by proposing a formalization of an edge detection 
pipeline that contains the conversion of such boundaries 
or ramp edges to thin edges as a post-processing step. 
This allows us to seamlessly integrate our approach into 
many existing edge detection pipelines and help improve 
methods for a variety of tasks. Further, we introduce a 
novel skeletonize algorithm and evaluate its performance 
compared to the state-of-the-art results across different 
research fields (c.f.,  Table  3). We benchmark our algo-
rithm against morphological medial axis transformation 
algorithms to enable a comparable evaluation. We con-
sider these three algorithms: a 2D skeletonize [22], a 3D 
skeletonize [23], and the novel Gray-Weighted Path Skel-
etonize (GWPS). To evaluate and improve the accuracy 
of the resulting edges, we use state-of-the-art metrics, 
that is the Signed Distance Error (SDE) and the Inter-
section over the Union of the bounded connected com-
ponent (IoU-box), respectively. To avoid introducing 
and separating metrics of downstream tasks from edge-
specific metrics, we restrict our analyses to the resulting 
1-pixel edge maps. We assess the validity of the proposed 
post-processing algorithm by relying on three data sets: 
(1) Kidney boundaries [14], (2) NYU Depth Dataset V2 
[24], and (3) BSDS 500 [25].

This work would help the community at large by pre-
senting: (a) a parameterized post-processing algorithm 
to achieve a thin edge that also enables a combinatorial 
optimization, (b) a novel skeletonize algorithm by inter-
mediate transformation into a gray-weighted distance 
image, and (c) an extensive evaluation regarding perfor-
mance metrics.

Methods
To improve the accuracy of topological skeletons, we first 
formalize an edge detection pipeline as a composition of 
multiple functions. Second, and to enable a combinato-
rial optimization, we describe the post-processing func-
tion, including its parameters. Third, we propose a novel 
skeletonize algorithm that is adapted to better object 
boundary processing. Fourth and last, we detail the used 
data sets, lay out the evaluation, and report the employed 
metrics.

We define an edge detection pipeline P as a composi-
tion of two functions:

where I3 is the space of the three RGB channels and IB 
the space of binary images. The function defining the 
pipeline contains two parts:

(1)E ◦A : I3 → IB, x �→ (E ◦A)(x;α,β , γ ),



Page 3 of 9Arnold et al. BMC Med Imaging          (2021) 21:119 	

where I1 is the space of 1-channel gray scale images.

This function composition maps our approach of predict-
ing ramp edges or boundaries, then processing them into 
thin edges as follows: 

1	 A takes a RGB image s ∈ S as input and predicts the 
boundaries of the objects of interest as a gray scale 
image g ∈ G.

2	 E extracts from g ∈ G the thin edges and produces 
the output of the pipeline o ∈ O , i.e., binary image.

S, G and O are sets of images in image spaces I3, I1 and 
IB , respectively. Figure 1 presents a visual overview of P.

Edge extraction function E
The predicted boundaries of an image g ∈ G from A are 
converted to a thin edge using the extraction function E 
defined in Eq. 3 with the following parameters: 

1	 Input image g : Gray scale output image of function A 
containing the predicted boundaries.

2	 Threshold α : Due to noise in the predicted boundary, 
we set a pixel value threshold α . Iff the pixel value is 

(2)A : I3 → I1, x �→ A(x),

(3)E : I1 → IB, x �→ E(x;α,β , γ ).

below α , the pixel gets set to a value of zero, other-
wise it remains the same.

3	 Skeletonize algorithm β : This algorithm converts the 
boundary to a thin edge. We benchmark our skele-
tonize algorithm ‘GWPS’ to the following algorithms: 
2D skeletonize [22] (called ‘2D’), 3D skeletonize 
[23] (called ‘3D’). For the ‘2D’  and ‘3D’  algorithm 
the boundary images are converted to binary image 
representations before applying the skeletonize algo-
rithm. That is to say, while a pixel value of 1 implies a 
contribution to the boundary, 0 belongs to the back-
ground.

4	 Pruning γ:  After applying the skeletonize algorithm 
spurs are introduced because of small irregularities in 
the boundary. Spur pruning removes all spurs with a 
maximum length  l [26]: 

 With the image width w and height h in pixels. This 
definition allows for the relative comparison of the 
pruning effectiveness between images of different 
sizes.

Our post-processing algorithm (Algorithm 1) defines the 
necessary steps to implement the aforementioned edge 
extraction function E on a per image basis. 

(4)l =
γ

100
∗
√

w2 + h2.

Fig. 1  Edge detection pipeline P . The pipeline is split into five parts: (a) S , the set of input images in RGB color space, (b) the function A that takes 
G as input and produces a boundary image set S , (c) the output of A as gray scale images, (d) the edge extraction function E with parameters 
{α,β , γ } that converts boundaries into edges, (e) the output O of the function E , the set of binary images containing thin edges. Figure 3 shows a 
specific example this pipeline
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The parameter set {α,β , γ } is bounded, such that:

Gray‑weighted path skeletonize (GWPS)
Figure  2 shows an example predicted boundary as a 
three-dimensional surface. The goal of the GWPS algo-
rithm is to find the ridge along this surface and extract 
it as a thin edge in two-dimensional space. To use the 
ridge of the surface, we introduce an algorithm that 
computes the resulting edge with the help of an inter-
mediate representation of the distance field using a 
Gray-Weighted Distance Transformation or GWDT 
[27]. The GWDT assigns each contributing pixel a value 
representing the cost of the shortest path to the back-
ground, where costs correspond to the accumulated 
pixel intensity values along the path. In the context of 
our problem, background pixels have the value zero 
and therefore all other non-zero pixels are contributing 
information to the thin edge.

(5)
0 ≤α ≤ 255,

β ∈ {’2D’, ’3D’, ’GWPS’},

0 ≤γ ≤ 100

The GWDT value at pixel position (i,  j), given an 
image; where f(i,  j) represents the pixel value at posi-
tion (i,  j), is calculated by minimizing the accumulated 
cost along the path from the current position to a back-
ground pixel. A pixel path W is defined as

where the following properties hold:

That is to say, all pixels in the sequence are four-way con-
nected, the first n− 1 pixels are foreground pixels, and 
the path ends in a background pixel. We optimize the 
cost along this path for all non-zero pixels of the input 
image and assign the cost as the corresponding pixel 
value of the GWDT image t ∈ I1

that is to say, the pixel value at position (i, j) is optimal as 
it is set to the minimum of the accumulated costs along 
the pixel path W.

Using the resulting image as an intermediate rep-
resentation, we propose Algorithm  2 to reduce the 
GWDT to a thin edge. This algorithm uses the eight-
way neighborhood number Nc [28] that is defined for a 
pixel x0 using its neighborhood, as depicted in Table 1 
and Eq. 9.

 

(6)W = ((i1, j1), (i2, j2), . . . , (in, jn)) n ∈ N≥2

(7)
|ir − ir−1| +

∣

∣jr − jr−1

∣

∣ = 1,

f (i1, j1), . . . , f (in−1, jn−1) > 0,

f (in, jn) = 0

(8)t[i, j] = min
W

∑

(ir ,jr )∈W

f (ir , jr),

(9)
Nc(x0) =

∑

k∈{1,3,5,7}

xk − xk ∗ xk+1 ∗ xk+2

x = 1− x

Fig. 2  Three-dimensional representations of a predicted boundary. 
Images created by mapping the increasing pixel intensity to height. 
Algorithm 2 retrieves the ridge of the three-dimensional surface as a 
thin edge in two-dimensional space

Table 1  Eight-way-neighborhood numbering around center 
point x0 [28]

x4 x3 x2

x5 x0 x1

x6 x7 x8
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Fig. 3  Example illustration of an edge detection using 
α = 40,β = ’GWPS’, γ = 2 of one sample image in the BSDS 500 
data set and the work of [25]. The boundaries of the original image 
(a) are shown in (b). By performing a GWDT as described in Eq. 8, we 
obtain (c). After applying the skeletonize algorithm (c.f., Algorithm 2), 
we obtain the thin edge (d)

The resulting image contains the desired thin edge 
represented by non-zero pixels along the ridge of the 
distance field’s surface. The edge is also eight-way con-
nected due to the evaluation of the eight-way-neighbor-
hood number. In summary, our skeletonize algorithm 
comprises two steps: 

1.	 Calculate the GWDT of the image and,
2.	 Extract the thin edge of the GWDT by running 

GWPS (c.f., Algorithm 2).

Data sets
To meet the requirement of creating thin edges, the 
pipeline is used to find the best parameter sets for the 
post-processing methods. This means the evaluation is 
carried out for every data set on the predicted bounda-
ries versus the published edges. We report below the 
data sets that are used to evaluate our computational 
strategies and the pipeline usage:

•	 Kidney boundaries: We use this data set as is [14]. 
It consists of 2250 images captured during porcine 
partial nephrectomies and for the task of kidney 
edge detection. For the investigated method, we do 
not modify the original pipeline.

•	 NYU Depth V2: We adapt this data set to an edge 
detection problem [24]. This is achieved by using 
pre-processing scripts from [29] that extract edges 
from ground truth segmentations. The data set 
contains 1449 images from a variety of indoor 
image scenes. For the two investigated methods, we 
only use the RGB image components. That is to say, 
we disregard the depth component.

•	 BSDS 500: We use this data set as is. It contains 
natural images with human ground truth object 
boundary annotations. This data set contains 500 
images [25]. For the three investigated methods, we 
do not modify the original pipeline.
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Evaluation
To improve the resulting thin edges, both qualitatively 
and quantitatively, we focus on the metrics as reported 
in the state of the art [14]. Specifically, metrics that 
reflect the reliability of all evaluated pipelines. That is 
to say, the SDE and IoU-box metric, as the former inte-
grates both precision and recall, and the latter evalu-
ates the thin edge shape and its absolute position to the 
ground truth.

To find the optimal parameters for function E , we 
perform a combinatorial optimization iteratively for 
each data set; that is on the validation set. The param-
eter combination yielding the best SDE result is then 
selected and used for evaluation of the test set. The 
parameter set of function E is evaluated in the bounds 
defined by Eq.  5. The originally presented pixel accu-
racy based metrics (i.e.,  precision, recall and SDE) are 
modified to be used in cases where no edges are pre-
dicted. Yet, some are present in the corresponding 
ground truth image and vice versa. This is modification 
is achieved by identifying all described cases during 
evaluation and then adding an edge pixel in the center 
of the empty binary image.

Results
We present the results for the parameter search regard-
ing the function E , then compare our results on the test 
sets of each related work. Figure 3 shows the result of a 
sample image at different parts of our pipeline.

In Table  2, we found that in four of the six investi-
gated related work (66.67%), the edge extraction yields 
the lowest SDE score by using the GWPS algorithm. 
Further, pruning was only necessary in one pipeline, as 
all other reported parameter combinations are optimal 
with γ = 0 . That is to say, pruning was not used.

We evaluated the best parameters on the test part of 
each data set. All results are reported in Table  3. The 
term original refers to running the methodology as is, 
meaning that we follow the original data set usage and 
post-processing algorithm. We report in parenthesis 
the standard deviation for each result.

Using our previous work [14], we achieved an SDE 
score of 2515.0 ( σ = 7053.22 ), which is 10.8× worse 
than the original, and an IoU-Box of 0.04 ( σ = 0.07).

Using the NYU Depth Dataset V2, our Algorithm  1 
achieved a SDE of 4.2 ( σ = 1.7 ) and an IoU-Box of 0.6 
( σ = 0.2 ). However, using the algorithm of [30], we 
achieved a SDE score of 7.4 ( σ = 3.91 ) and an IoU-
Box of 1 ( σ = 0.04 ) using [31]. For this data set, we 
improved the average SDE by 1.13 times (x).

Using the BSDS 500 data set and the algorithm of 
[25], we reported a SDE score of 21.8 ( σ = 31.28 ). That 
is an improvement of 2.3× , while maintaining a similar 

IoU-Box score of 0.6 ( σ = 0.18 ). While we increased 
the SDE using the algorithm of [32] to 12.0 ( σ = 13.08 ), 
that is 1.08× worse, we managed to increase the IoU-
Box to 0.8 ( σ = 0.17 ), that is an 1.6× increase. Using 
the algorithm of [33] an 1.08× increase in SDE to 10.3 
( σ = 9.51 ) was reported. Although, increasing the 
IOU-Box to 0.8 ( σ = 0.15 ), which corresponds to an 
improvement of 1.6×.

Discussion
Our evaluation of a new and refined post-processing 
algorithm have found improvements, in regards to the 
average SDE and the IOU-box metrics, across several 
data sets and the majority of the established works. 
Indeed, using an optimized parameter set for our pro-
posed edge detection pipeline P , specifically for the 
function E , was found to be beneficial to improving the 
measured edge quality. Instead of relying solely on fixed 
classical post-processing algorithms, our work proposes 
adjusting the algorithm to adopt the parameter set to the 
task at hand. We discuss several pointers below.

First, to find the optimal parameter combination 
we used a non-exhaustive discrete parameter search. 
Due to the computational expense of such a parameter 
search, we reduces the search space by evaluating every 
tenth value for α and each integer from 0 to 10 with 
the addition of every tenth value from 20 to 100 for γ , 
respectively. Although computationally intensive, the 
granularity of such a search may be increased to find bet-
ter sets of suitable parameters for each tested work.

Second, the introduction of an error correction step, 
that is to say pruning, was determined to only improve 
the evaluated metrics for one of the examined works. 
Evaluating the pruning with a higher granularity may 
lead to a potential improvement of metrics by allowing 
non-integer pruning values.

Third, the modification of the SDE computation 
(c.f., evaluation section) led to an inconsistency in the 
evaluation of our previous work [14]. Due to predicted 
images with no edge, the original evaluation algorithm 

Table 2  Parameter sets found during validation of the 
combinatorial optimization using Algorithm 1

The optimal parameter set {α,β , γ } minimizes the mean SDE metric

Data set Work α β γ SDE

Kidney boundaries [14] 240 2D 0 1144.7

NYU Depth Dataset V2 [29] 100 2D or 3D 0 4.2

[31] 40 GWPS 0 7.4

BSDS 500 [25] 40 GWPS 2 24.5

[32] 160 GWPS 0 16.0

[33] 190 GWPS 0 10.6
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miscalculates the SDE value. By implementing our 
adjusted SDE calculation algorithm, we obtained higher 
SDE scores for a few predicted images. This can be seen 
in the discrepancy between the mean and median value 
as well as the high standard deviation of 7053.22. This is 
mainly due to the post-processing algorithm failing on a 
small subset of the images.

Fourth, the usage of a boundary that represents a dis-
tance field, that is used in [14], prompted us into creating 
Algorithm  2. Using the available certainty information 
inside the boundary, our algorithm is designed to find 
the optimal edge along the ridge of the three-dimen-
sional representation of the step edge or the boundary. 
Although the algorithms from the investigated works 
were not particularly designed with this idea in mind, we 
apply the GWPS algorithm on all boundary based predic-
tions as presented in Table 3. Additionally, we hypothe-
size that our results may be improved if we incorporate 
the distance field based prediction into the respective 
algorithms. For example, this could be achieved by train-
ing a neural network to make the predicted boundaries 
more suitable for Algorithm 2.

Fifth, the choice of the α parameter is critical to the 
quality of the resulting 1-pixel edges. The presence of 
noise in the input data to our pipeline is a major factor 
in poor edge predictions. Existing methods that adapt 
our pipeline as a post-processing step should take spe-
cial care in setting the α parameter, as it reflects only a 
very rudimentary form of noise filtering. Rather, it might 
even be advantageous to use additional noise reduction 
to achieve better results. The influence of the β param-
eter is less than that of α , as tests have shown similar but 

only slightly worse results when the selected β is changed 
in Table 3. γ influences the results the least, as seen from 
Table 3, and can often be neglected.

Sixth, our evaluation pointed towards a complex inter-
dependence between the employed boundary prediction 
algorithm, including edge detectors, the data set, and 
the resulting optimal parameter choice. To achieve the 
best SDE score, we conducted a sensitivity analysis. This 
permitted us to find the most suitable parameter set for 
the used data sets. In the worst case scenario, the com-
bination of other data sets, computational approaches 
(e.g,  detectors, predictors, etc) and the wrong param-
eters, would result in unsatisfactory results. Given these 
combinations, we recommend additional investigation of 
the failing pipeline step and the implementation of coun-
termeasures, e.g., the noise reduction step (see previous 
discussion point). Given an example data set and two 
algorithms, we found that the difference in value of each 
parameter pair influenced our decision for a good post-
processing algorithm. Although this decision is non-triv-
ial, formalizing an evaluation pipeline from end-to-end 
better helped us consider the solution space and find the 
optimal one. In sum, the evaluation results support our 
effort to improve the resulting edges.

Seventh, the choice of an appropriate post-processing 
algorithm is an important step in the definition of an 
edge detection method. Yet, the related work that tackles 
the task of edge detection are not attributing the neces-
sary care of parameter tuning and algorithm selection 
regarding the processing of the predicted boundaries. We 
believe that an integration of our parameter optimization 
approach will help achieve a better edge quality.

Table 3  Evaluation results using optimal parameters on the test part of each data set

Reported metrics are mean and median values ( ̃x ). We compare the results of Algorithm 1 to each method specific results. We note that the original post-processing 
implementations did not include a thresholding step except for [14]

Originally used post-processing methods: a 2D skeletonize algorithm, b 3D skeletonize algorithm, c standard non-maximum suppression. d Values in this row were 
taken from the original paper and not recomputed (c.f., discussion section point three for details)

Data set Work Post-processing SDE x̃SDE IoU-box x̃ IOU−box

Kidney boundaries [14]b Originald 232.9 103.5 0.32 0.33

Our method 2515.0 954.5 0.04 0.02

NYU depth dataset V2 [29]a Original 4.9 4.3 0.6 0.6

Our method 4.2 3.8 0.6 0.6

[31]a Original 8.1 7.3 0.9 1

Our method 7.4 6.4 1 1

BSDS 500 [25]a Original 50.0 25.6 0.8 0.8

Our method 21.8 12.0 0.6 0.6

[32]c Original 11.1 7.9 0.5 0.6

Our method 12.0 6.8 0.8 0.8

[33]c Original 9.5 7.1 0.5 0.4

Our method 10.3 6.3 0.8 0.9
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Eighth, the evaluation of additional data sets, such as 
the PASCAL VOC 2012 [34] or Multi-cue [35] data set, 
could provide insight into the robustness of our proposed 
method in a greater variety of domains. Unfortunately, 
due to the unavailability of ground truth data for the 
PASCAL VOC 2012 data set and computational limita-
tions this remains part of a potential future work.

Ninth and last, regardless of the application area, 
the task of edge detection can be supplemented by our 
herein presented methodology to optimize the post-
processing step. This work can be generalized using the 
following two steps: (a). evaluate the SDE metric on the 
validation set using an appropriate parameter search 
technique and find the optimal values for {α,β , γ } , and 
(b). use this parameter set and the selected algorithms for 
post-processing the test set data. We examined different 
approaches and their corresponding parameters of step 
(a) and (b) and can therefore provide a reference to adapt 
our post-processing algorithm. We believe that our work 
is a stepping stone for future endeavors that involve edge 
detection tasks using predicted signed distance fields or 
boundaries in images.

Conclusion
In this work, we have introduced a post-processing algo-
rithm that can be employed in an edge detection context. 
Despite the high impact on edge quality, edge detection 
methods primarily focus on one specific post-process-
ing reasoning. We investigated how edge quality can be 
improved by introducing a post-processing algorithm 
with multiple parameters. By incorporating the param-
eters of thresholding, the type of the skeletonize algo-
rithm, and the pruning into an edge extraction function, 
we were able to improve state-of-the-art metrics in mul-
tiple pipelines, across different data sets and from multi-
ple domains. The division of the evaluation process into 
multiple parameters and making our work open source 
renders our approach readily available, adaptable, and 
extendable. Additionally, we introduced a novel skele-
tonize algorithm that works in analogy to extracting the 
ridge of a 3D surface and projecting it into a 2D plane. 
Apart from the challenge of improving kidney boundary 
edge detection, our pipeline successfully improved SDE 
or IoU-Box metrics for all other tested works on the two 
different data sets. Based on our evaluation pipeline, we 
believe that future edge detection methods can achieve 
better edge quality.
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