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Abstract 

Background:  Neonatal hyperbilirubinemia is a common clinical condition that requires medical attention in new-
borns, which may develop into acute bilirubin encephalopathy with a significant risk of long-term neurological 
deficits. The current clinical challenge lies in the separation of acute bilirubin encephalopathy and non-acute bilirubin 
encephalopathy neonates both with hyperbilirubinemia condition since both of them demonstrated similar T1 hyper-
intensity and lead to difficulties in clinical diagnosis based on the conventional radiological reading. This study aims 
to investigate the utility of T1-weighted MRI images for differentiating acute bilirubin encephalopathy and non-acute 
bilirubin encephalopathy neonates with hyperbilirubinemia.

Methods:  3 diagnostic approaches, including a visual inspection, a semi-quantitative method based on normal-
ized the T1-weighted intensities of the globus pallidus and subthalamic nuclei, and a deep learning method with 
ResNet18 framework were applied to classify 47 acute bilirubin encephalopathy neonates and 32 non-acute bilirubin 
encephalopathy neonates with hyperbilirubinemia based on T1-weighted images. Chi-squared test and t-test were 
used to test the significant difference of clinical features between the 2 groups.

Results:  The visual inspection got a poor diagnostic accuracy of 53.58 ± 5.71% indicating the difficulty of the chal-
lenge in real clinical practice. However, the semi-quantitative approach and ResNet18 achieved a classification accu-
racy of 62.11 ± 8.03% and 72.15%, respectively, which outperformed visual inspection significantly.

Conclusion:  Our study indicates that it is not sufficient to only use T1-weighted MRI images to detect neonates with 
acute bilirubin encephalopathy. Other more MRI multimodal images combined with T1-weighted MRI images are 
expected to use to improve the accuracy in future work. However, this study demonstrates that the semi-quantitative 
measurement based on T1-weighted MRI images is a simple and compromised way to discriminate acute bilirubin 
encephalopathy and non-acute bilirubin encephalopathy neonates with hyperbilirubinemia, which may be helpful in 
improving the current manual diagnosis.

Keywords:  Acute bilirubin encephalopathy, Hyperbilirubinemia, Normalized T1-weighted intensities, Deep 
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Background
Neonatal jaundice, which develops in about 60% of term 
and 80% of preterm babies during their first week of life, 
is one of the most common conditions that require medi-
cal attention in newborns [1, 2]. It is mainly caused by the 
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inability of the newborn’s immature liver to process the 
excessive bilirubin that was produced by the accelerated 
breakdown of red blood cells at this age[3, 4]. Although 
most jaundice is benign, 8–9% of infants might develop 
severe hyperbilirubinemia (HB), with approximately 4% 
affected after 72 h [5]. In even more serious, due to the 
lack of appropriate diagnoses and delayed treatments, 
severe HB patients may develop acute bilirubin encepha-
lopathy (ABE) in response to the entry of bilirubin tox-
icity into the basal ganglia and various brain nuclei. And 
a long-term outcome of ABE could be kernicterus which 
is a permanent disabling neurologic condition classically 
characterized by the movement disorders of dystonia and 
choreoathetosis, hearing loss caused by auditory neu-
ropathy spectrum disorders, and oculomotor pareses [6]. 
A recent study indicated that ABE accounts for 3.4% of 
neonatal admissions with 21.4% of those infants in severe 
conditions and at least 15% of them died [7]. Therefore, 
early diagnosis of neonates with a high risk of ABE and 
timely taking effective intervening measures are very 
important for pediatricians to minimize the mortality or 
prevent them from kernicterus.

The total serum bilirubin (TSB) measurement is a tra-
ditional and most widely used method for screening and 
diagnosing HB in neonates, but it needs a blood draw 
which is invasive and carries a risk of infection and ane-
mia [8]. Meanwhile, as it is not a direct measurement 
of actual bilirubin level in the brain, TSB alone could 
not accurately predict the occurrence of ABE [9, 10]. 
Magnetic resonance imaging (MRI), as a non-radiation 
and non-invasive imaging technique, is widely used in 
the ABE diagnosis in newborns [11]. Many MRI stud-
ies found that newborns following ABE in the first days 
to weeks showed an increased signal on T1-weighted 
images (T1WI) at globus pallidus (GP) and subthalamic 
nucleus (STN) in most cases, while T2-weighted imaging 
of these regions was often unremarkable or shows sub-
tle T2-hyperintensity[12–16]. Although the T1 hyperin-
tensity in GP provides an efficient marker for diagnosing 
ABE neonates, it remains challenging to further separate 
ABE and non-ABE HB patients since both groups may 
demonstrate elevated T1 signals. On the other hand, not 
all ABE patients develop abnormalities in their T1WI at 
the time. A study from Mao [17] reported that 20 of 36 
HB neonates have symmetric hyperintense GP on T1WI; 
and among these 20 HB neonates, 15 of 20 were ABE 
neonates. Another study from Wang et al. [14] reported 
19 of the 24 ABE patients in their study were observed T1 
hyperintensity in the bilateral GP while other 5 of 24 were 
not; and among these 19 patients, 10 of 19 had high T1 
intensities in the STN while others had not. Coskun et al. 
[12] investigated the GP involvement in 13 neonates with 
ABE, and 8 of them demonstrated bilateral, symmetric 

increased signal intensity in GP on T1WI, while others 
did not. These studies based on manually radiological 
reading were subjective and prone to bias since various 
degree of T1 singal might be involved and there was not 
a standard for how high the T1 intensity can be a hyper-
intensity, which may result in different results for differ-
ent observers. Therefore, improving the sensitivity and 
specificity of identifying ABE from HB patients based on 
T1WI alone remains challenging in conventional radio-
logical reading.

In recent years, computer-aided diagnosis (CAD) 
technology was wildly used to improve the radiologist’s 
performance [18–20]. One of the important CAD meth-
ods named deep convolutional neural networks (CNN) 
was applied in our study, which demonstrated remark-
able ability in diagnosing a variety of neurological dis-
eases [21–25]. In this study, we compared 3 approaches 
to differentiate the ABE and non-ABE neonates from a 
cohort of HB babies based on routine clinical 2D mul-
tislice T1WI, including (1) radiological reading, (2) 
semi-quantitative analysis with normalized T1 intensi-
ties, (3) CNN-based classification with ResNet18 [26]. 
We systematically evaluated the diagnostic accuracy of 
3 approaches in a retrospective study of 79 HB patients 
including 47 ABE and 32 non-ABE neonates. To the best 
of our knowledge, this is the first work to use semi-quan-
titative assessment and CNN in ABE diagnosis.

Methods
Study subjects
All procedures performed in this study involving human 
participants were following the ethical standards of the 
institutional and national research committee and with 
the 1964 Helsinki declaration and its later amendments 
or comparable ethical standards. Informed consent was 
obtained from all individual participants included in the 
study. All the MR images were collected retrospectively 
from routine clinical scans at the Children’s Hospital of 
Zhejiang University School of Medicine between the 
years of 2009 and 2018. A total of 79 HB patients (ABE/
non-ABE = 47/32, male/female = 52/27), who had MRI 
examinations at chronological age from 1 to 18 days dur-
ing their hospitalization, were selected. The diagnostic 
criteria for ABE positive cases met either of the follow-
ing clinical diagnosis criteria, including (1) sever hyper-
bilirubinemia; (2) at least one of the ABE-related clinical 
symptoms with bilirubin-induced neurologic dysfunc-
tion (BIND) score ≥ 1 point, where 1, 2, or 3 points cor-
responding to mild, moderate, or severe symptoms based 
on the severity of the crying pattern, behavioral and men-
tal status, and muscle tone (a total of 9 points). Overall 
BIND score of 1–3 points, 4–6 points, 7–9 points rep-
resented subtle signs of mild ABE, moderate ABE, and 
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advanced ABE, respectively. At last, 47 ABE and 32 non-
ABE (HB) cases were confirmed by 2 experienced pediat-
ric radiologists. (S.XX and C.L.).

MRI Acquisition
T1WI was acquired on a 3.0 T Achieva scanner (Philips 
Healthcare, Best, the Netherlands) using a 2D multislice 
T1-weighted fast field-echo sequence in the axial direc-
tion with the following parameters: echo time of 2.14 ms, 
repetition time of 200 ms, flip angle of 80°, field-of-view 
of 330 × 330  mm, resolution of 0.45  mm, and 18 slices 
with a thickness of 4.5 mm. All slices were visually exam-
ined by the radiologists with high image quality and none 
of them were excluded.

Visual inspection of the MR images
We invited three pediatric radiologists, including a sen-
ior radiologist with 12  years of experience (C.L.) and 
2 fellows (L.Y. and Z. S.) with 7  years of experience, to 
independently review the MR images. Since there are 
currently no radiological standards for diagnosing ABE, 
the raters were first trained by reviewing all the MR 
images with true labels (ABE or non-ABE) and the corre-
sponding clinical information, such as age, sex, TSB, etc. 
One week after the training, they were asked to review 
the images again without the labels nor the clinical infor-
mation to make a diagnosis decision based on T1WI 
only. The images were shuffled with re-assigned identifi-
cation numbers at the training and testing sessions.

Semi‑quantitative diagnosis with normalized T1 Intensity
We chose a slice from T1WI of each HB neonate cover-
ing the largest area of GP and STN for analysis. Region 
of interest (ROI) was manually delineated on the selected 
slice, including the anterior subcortical white matter 
(WM), GP, and STN, as shown in Fig. 1a. WM was used 
as the reference region to normalize the T1-signals in GP 
or STN, becasue there are no known T1-signal changes 
in WM between the ABE and non-ABE patients. The 
normalized T1 intensities of GP and STN were defined as

where GP , STN  , and WM denote the averaged T1WI 
intensities in the GP, STN, and WM ROIs, respectively. 
We then applied the Youden Index [27–29] in the soft-
ware of IBM SPSS Statistics 21 to determine the optimal 
cut-off threshold of GPnorm and STNnorm for separating 
ABE and non-ABE patients, respectively.

(1)GPnorm =
GP

WM

(2)STNnorm =
STN

WM

Deep learning framework
In this section, we describe the deep learning procedure 
for classification work. 2 or 3 continuous T1WI slices 
covered the GP from each patient were selected as inputs 
of the CNN. A total of 190 slices were collected, including 
95 randomly selected slices from ABE patients (approxi-
mately 2 continuous slices per patient) and 95 slices from 
non-ABE patients (approximately 3 continuous slices per 
patient). All selected images were normalized between 0 
and 1 with a min–max normalization algorithm.

As our classifier was performed based on a pre-trained 
CNN in Matlab 2019a (https://​www.​mathw​orks.​com), 
which requires 3 channels image input with a size of 
224 × 224x3 pixels. Consequently, the normalized image 
was resized into 224 × 224 pixels and then replicated to 3 
channels to form a 224 × 224x3 image which served as an 
input of the network. The dataset was randomly split into 
a training dataset and testing dataset with 80% and 20% 
split ratio, respectively. Then, fivefold cross-validation 
was followed to estimate the model’s performance.

We employed a CNN of Resnet18 [26] which consists 
of 18 residual blocks, where each residual block is defined 
as:

where x and y were the input and output, and F(x, {Wi}) 
represented the residual mapping to be learned. 
ResNet18 applied residual learning to every few stacked 
layers. A residual block was different from conventional 
CNN architecture in the existence of a shortcut connec-
tion between the input and output, serving as an identity 
projection for alleviating the vanishing gradient issue in 
deep networks[26], as shown in Fig.  2a. The mapping 
function H(x) = F(x) + x was realized as a residual short-
cut connection in a feedforward neural network and per-
forms element-wise addition.

The ResNet18 architecture was shown in Fig. 2b, con-
taining 18 learnable layers. The convolutional layers 
used 3 × 3 filters, and the downsampling was performed 
for every 4 layers after the input layer by convolutional 
layers with a stride of 2. Note the number of filters get 
doubled as a downsample took place. At the end of 
ResNet18, an average-pooling was applied followed by a 
fully-connected layer and a softmax layer. Residual short-
cut connections denoted as the curves in Fig.  2b were 
added throughout the network. The solid curves were 
used when input and output had the same dimensions; 
while the dotted curves were used when the dimension 
increased, where the shortcut performed identity map-
ping with zeros padding for the increased dimension with 
a stride of 2.

Since the size of our dataset was limited, we applied 
the transfer learning approach for our classification 

(3)y = F(x, {Wi})+ x

https://www.mathworks.com
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model [30]. The weights of ResNet18 were initialized by 
pre-training on the ImageNet [31] and then fine-tuned 
with our datasets. Data augmentation was also applied 
on the training datasets to enhance our model’s perfor-
mance, which included image rotation with a random 
angle in the range of -30° to 30°, image vertical flipping 
with 50% probability, images zooming by a random scale 
within the range of 0.9 to 1.1, image horizontal and verti-
cal translation with random distance in the range of −30 
to 30 pixels. The learning rate was initialized to 0.0003, 
MaxEpoch = 6, Stochastic Gradient Descent Momentum 
based solver is used with a minibatch size of 10 images 
for training.

To investigate which brain areas influence our classifi-
cation results most, we applied the class activation map-
ping (CAM) to each testing subject. CAM is a technique 
used to get visual interpretations of the regional contri-
butions to the predications of CNN [32].

The model was implemented under the environment 
of Matlab 2019a on a computer having specifications of 
16 GB RAM and Inter® Core™ i7-8700, CPU@ 3.20 GHz, 
GPU NVIDIA Geforce GT 730.

Statistical analysis
The group differences in the sex distribution among 
groups were evaluated using the chi-squared test, while 
other clinical features were evaluated by t-test.

The group differences in GPnorm and STNnorm between 
the ABE and non-ABE patients were accessed by using 

analysis of covariance (ANOVA) with age, sex, gesta-
tional age at birth, and PMA as covariates.

To evaluate the classification performances of differ-
ent methods, serval performance metrics were applied 
in this study, including sensitivity, specificity, precision, 
F1-score, and the area under the curve (AUC) of the 
Receiver Operating Characteristic (ROC) curves [33, 34]. 
χ2-test was applied to determine the significant differ-
ences in the classification accuracy by different methods.

All statistical analysis was performed using IBM SPSS 
Statistics 21 (https://​www.​ibm.​com/​produ​cts/​spss-​stati​
stics).

Results
The demographic and clinical characteristics of the HB 
patients were listed in Table  1, including the patient’s 
sex, age, weight, gestational age, TSB, and albumin. The 
results were shown in Table 1.

Figure  3 showed several representative T1WI from 
ABE and non-ABE patients who were diagnosed with 
HB. The two groups exhibited similar image features with 
hyperintensity in the GP and large individual variations 
were observed.

Results of visual inspection of the MR images
We recorded the 3 experienced radiologists’ visual diag-
nosis results, and their average diagnostic results were 
52.48%,55.21%,62.95%,0.5679,53.58%,0.5387 for sensi-
tivity, specificity, precision, F1-score, accuracy, AUC, 
respectively, shown in Table 2. The results indicated the 
difficulty in separating the 2 groups by conventional 

Fig. 1  ROI of the image and distribution map of patients’ GP norm and STN norm. a ROI definitions. Green: white matter, red: globus pallidus, blue: 
subthalamic nucleus. GPnorm (b) and STNnorm (c) in the ABE and non-ABE HB patients

https://www.ibm.com/products/spss-statistics
https://www.ibm.com/products/spss-statistics
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radiological reading in real clinical practice. The over-
all Fleiss’ kappa coefficient for intraobserver reli-
ability is 0.5082 (p < 0.05), indicating the agreement of 

3 radiologists was moderate and not accidental. Fur-
thermore, χ2-test also indicated that there was no sta-
tistically significant difference in the results between 3 

radiologists’(p > 0.05). The ROC curve generated based 
on the diagnosis results of the senior radiologist, which 
was the best among the three raters, was shown in Fig. 4d 
(blue curve).

Results of Semi‑quantitative diagnosis with normalized T1 
intensity
The distribution of normalized T1 intensity in GP and 
STN were shown in Fig. 1b and Fig. 1c for the ABE and 
non-ABE patient groups. The t-test indicated that a sig-
nificant difference between the ABE and non-ABE in 
the GPnorm (1.39 ± 0.06 and 1.33 ± 0.06, p < 0.05), but no 
significant difference in the STNnorm (1.47 ± 0.09 and 
1.42 ± 0.07, p > 0.05). The ROC curve based on GPnorm 
was shown in Fig. 4d (orange curve). The AUC was 0.769 
for GPnorm, and 0.678 for STNnorm, respectively. The opti-
mal cut-off thresholds based on the Youden Index were 

1.3621 and 1.5118 for GPnorm and STNnorm, respectively.
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Fig. 2  a The basic residual block. b The ResNet18 architecture. The numbers in each convolutional layers denote the number of filters

Table 1  The demographic and clinical characteristics of the HB 
patients used in this study

Clinical features ABE positive (n = 47) ABE negative 
(HB) (n = 32)

p value

Sex (male) 29(61.70%) 23(71.88%) 0.349

Age (days) 9.83 ± 3.05 12.15 ± 5.28 0.032

Weight (kg) 3.21 ± 0.48 3.36 ± 0.43 0.162

Gestational age 
(weeks)

38.47 ± 1.58 38.38 ± 1.47 0.792

TSB (μmol/L) 369.11 ± 114.78 326.13 ± 79.20 0.070

Albumin (g/L) 38.34 ± 2.98 38.45 ± 3.21 0.873

Table 2  The classification performance of visual inspection, GPnorm, and ResNet18 in separating ABE from non-ABE HB patients, as 
evaluated by sensitivity, specificity, precision, F1-score, Accuracy, AUC​

The maximum value of performance metrics for each method was marked in bold

Methods Sensitivity Specificity Precision F1-Score Accuracy AUC​

Visual inspection 52.48 ± 13.58% 55.21 ± 7.86% 62.95 ± 3.58% 56.79 ± 8.90% 53.58 ± 5.71% 53.87 ± 4.11%

GPnorm 68.10% 78.10% 82.05% 74.42% 72.15% 76.90%
ResNet18 78.95 ± 17.85% 45.26 ± 19.19% 59.58 ± 7.09% 67.11 ± 8.28% 62.11 ± 8.03% 68.92 ± 11.06%
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Results of ResNet18
The diagnostic performance of ResNet18 as evaluated by 
five-cross validation was: 78.95 ± 17.85%, 45.26 ± 19.19%, 
59.58 ± 7.09%, 67.11 ± 8.28%, 62.11 ± 8.03%, 
68.92 ± 11.06% for sensitivity, specificity, precision, 
F1-score, accuracy, AUC, respectively, which were listed 
in Table 2.

Figure 5b demonstrated four examples of the CAM on 
the testing samples that were correctly predicted by the 
network. The red regions in the CAM represented the 
brain regions that contributed most in predicting the 
results, and they were mostly located in the center of the 
brain covering the areas of bilateral GP and STN.

Comparison of three methods
The classification performances of different methods 
were compared in Table 2. The semi-quantitative method 
based on GPnorm showed superior performance com-
pared to the other two approaches except for the sensi-
tivity measure. Figure  4a-c was the confusion matrix of 
classification results of three different methods. Figure 4d 
showed the ROC curves based on the three methods for 
direct comparison. χ2-test indicated that the accuracy of 
GPnorm marker was significantly higher than that of vis-
ual inspection (p = 0.014), but no difference was found 

between the results of visual inspection and ResNet18 
(p = 0.234) or between results of ResNet18 and GPnorm 
(p = 0.153).

Discussion
Currently, the radiological finding of ABE is T1 hyper-
intensity in the areas of GP and STN since they were 
affected by the bilirubin [14, 35]. A previous study [36] 
indicated that the relatively high resting neuronal activ-
ity in the GP and STN are postulated to make them more 
vulnerable to oxidative stresses from mitochondrial tox-
ins, such as bilirubin, or genetic mitochondrial disorders. 
Such damages to the GP and STN of the ABE infants can 
be often observed on their T1WI, resulting in T1 hyper-
intensity in various degrees [14, 35]. However, the sensi-
tivity and specificity of this radiological feature are only 
moderate since only T1WI is studied without any other 
complementary and useful information [12] [14] [17]. 
A future study including multi-modal MRI and clinical 
information of the patients is expected to improve the 
diagnostic performance.

Our study aimed to investigate the utility of T1WI 
for the diagnosis of ABE in neonates. 3 different diag-
nostic methods are performed. As shown in Table  2, 
the accuracy and AUC from low to high are visual 
inspection (53.58 ± 5.71%, 0.5387 ± 4.11%), ResNet18 

Fig. 3  Representative T1WI from three ABE and three non-ABE neonates who were diagnosed as HB. The arrows pointed to the bilateral areas of 
the globus pallidus
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(62.11 ± 8.03%, 68.92 ± 11.06%), and semi-quantitative 
diagnostic method with GPnorm (72.15%, 0.7690). The 
study demonstrated that the performance of conven-
tional radiological reading based on T1WI for diagnosing 
ABE is unsatisfactory. Advanced analytical approaches 
with deep learning and semi-quantitative measurement 
outperformed the conventional radiological reading, and 
therefore, offering the opportunity to improve the diag-
nostic accuracy of the ABE in clinical practice.

Although MRI has been increasingly applied to investi-
gate the neuropathology induced by ABE in the neonatal 
clinical practice, the efficiency and accuracy of the con-
ventional radiological reading strategy solely based on 
visual inspection of GP and STN on T1WI were hardly 
satisfactory. This is because the T1 intensity of GP and 
STN in ABE demonstrated a high extent of heterogeneity 
and the level of T1 hyperintensity may be confounded by 

the normal development of GP as well as myelination in 
the adjacent posterior limb of the internal capsule. There 
is no clear boundary between ABE and normal neonates, 
nor to mention the distinction between ABE and non-
ABE HB neonates, e.g., some non-ABE cases also showed 
slight T1 hyperintensity in GP and STN (Fig. 3). Besides, 
the diagnosis of routine visual inspection is qualitative 
and subjective, e.g., we observed a relatively high inter-
rater variability among the three raters (Fleiss’ kappa 
coefficient = 0.5082, p < 0.05).

As the deep learning technology has been wildly used 
in medical image analysis, we applied the deep learn-
ing model ResNet18 to T1WI-based diagnosis of ABE. 
The CAM map in Fig.  5 indicated the center regions of 
the brain covering bilateral GP and STN played a criti-
cal role in the classification task. This was consistent with 
our prior knowledge that most ABE patients followed an 

Fig. 4  Confusion matrices and ROC curves of classification results of three different methods. a Confusion matrix based on the radiological 
inspection. b Confusion matrix based on ResNet18. c Confusion matrix based on semi-quantitative measurement of GPnorm. d ROC curves for three 
different methods. The corresponding AUC values were denoted in the lower right corner
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Fig. 5  a A training progress of ResNet18 in fivefold cross-validation: the accuracy and loss history. b Class activation map of resnet18 for 4 
exemplary test samples. The colormap showed the contribution of the voxels in the network in predicting results and the red region contribute 
most



Page 9 of 11Wu et al. BMC Med Imaging          (2021) 21:103 	

increased T1-signals in GP and STN [12–17]. However, 
the improvement in diagnostic accuracy was only mod-
erate (from 53.58% for visual inspection to 62.11% for 
ResNet). It because some image samples applied in our 
study have not prominent or even inverse manifesta-
tion between ABE and non-ABE. The misclassified sam-
ples by ResNet18 shown in Fig.  6 indicated that some 
non-ABE images have a prominent T1 hyperintensity 
in GP, whereas some ABE images did not show visual 
abnormalities. It is a common phenomenon in clinical 
practice as the hyperintensity of GP on T1WI is only a 
clinical manifestation of ABE that is likely to occur but 
not necessarily[12, 14], which indicates that ABE diag-
nosis based only on T1WI is not sufficient in the clinical 
practice. Thus, additional clinical information is needed 
to support the diagnosis of ABE, such as TSB, Albumin, 
etc.[37]. Also, we found that during the training process, 
the overall tendency of training accuracy did not increase 
much during the training process, which indicated that 
ResNet18 cannot perfectly differentiate the samples that 
did not have instinct features. We noticed that in Fig. 5a 
validation loss increased after 40 iterations and the train-
ing loss kept decreasing, which indicated overfitting 
took place. This, in turn, means that the complexity of 
our model was greater compared to the limited train-
ing samples. Moreover, the generalizability of our model 

is unknown, which is a known caveat of CNN for small 
sample size data [38]. Additional studies, ideally covering 
a large number of cases from multiple centers, are needed 
to further improve the diagnosis of neonatal ABE.

To circumvent the issues related to small sample size, 
model complexity, and generalizability, we took a sim-
ple and model-free approach using the semi-quantita-
tive based on normalized T1 intensity in GP and STN 
regions. We found a statistical difference in GPnorm 
between ABE and non-ABE and there was no distinct 
line yet; meanwhile, no statistical difference was found in 
STNnorm. Therefore, an optimal threshold of 1.3621 was 
determined to separate ABE patients from HB neonates 
based on GPnorm, which achieved significantly improved 
diagnostic performance compared to the visual inspec-
tion. This semi-quantitative diagnostic pipeline would is 
expected other datasets given the minimal requirement 
on preprocessing, computational power, and training 
data. We deem that GP can be observed at T1WI and 
its T1-intensity may have a subtle variation when differ-
ent MRI equipment was applied. However, the value of 
GPnorm would not be changed as it is a normalized value. 
Nevertheless, the results of all three experiments dem-
onstrated that it is not enough to make an accurate diag-
nosis only based on the T1WI alone. Therefore a study 
combining the information of T1WI and other MRI 

Fig. 6  Examples of false-positive cases (non-ABE HB patients who were misclassified as ABE) and false-negative cases (ABE patients who were 
misclassified as non-ABE HB) by the ResNet18 network
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modalities, i.e. T2-weighted, diffusion-weighted MRI, 
etc. is essential in the future work for a more accurate 
diagnostic result.

Conclusion
The current study investigates the utility of T1WI in 
diagnosing ABE conditions through three analytical 
approaches. The semi-quantitative diagnostic method 
provided the highest performance followed by ResNet18, 
which both outperformed the conventional visual 
inspection strategy. In particular, the semi-quantitative 
GPnorm achieved the highest accuracy of 72.15% and 
AUC of 76.90%. Our work showed advanced analytical 
approaches to make the best use of conventional T1WI 
which would assist the diagnosis of ABE in real clinical 
practice.
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