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Radiomic analysis 
of Gd‑EOB‑DTPA‑enhanced MRI predicts Ki‑67 
expression in hepatocellular carcinoma
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Abstract 

Background:  Nuclear protein Ki-67 indicates the status of cell proliferation and has been regarded as an attrac-
tive biomarker for the prognosis of HCC. The aim of this study is to investigate which radiomics model derived from 
different sequences and phases of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-
enhanced MRI was superior to predict Ki-67 expression in hepatocellular carcinoma (HCC), then further to validate the 
optimal model for preoperative prediction of Ki-67 expression in HCC.

Methods:  This retrospective study included 151 (training cohort: n = 103; validation cohort: n = 48) pathologically 
confirmed HCC patients. Radiomics features were extracted from the artery phase (AP), portal venous phase (PVP), 
hepatobiliary phase (HBP), and T2-weighted (T2W) images. A logistic regression with the least absolute shrinkage and 
selection operator (LASSO) regularization was used to select features to build a radiomics score (Rad-score). A final 
combined model including the optimal Rad-score and clinical risk factors was established. Receiver operating charac-
teristic (ROC) curve analysis, Delong test and calibration curve were used to assess the predictive performance of the 
combined model. Decision cure analysis (DCA) was used to evaluate the clinical utility.

Results:  The AP radiomics model with higher decision curve indicating added more net benefit, gave a better 
predictive performance than the HBP and T2W radiomic models. The combined model (AUC = 0.922 vs. 0.863) includ-
ing AP Rad-score and serum AFP levels improved the predictive performance more than the AP radiomics model 
(AUC = 0.873 vs. 0.813) in the training and validation cohort. Calibration curve of the combined model showed a 
good agreement between the predicted and the actual probability. DCA of the validation cohort revealed that at a 
range threshold probability of 30–60%, the combined model added more net benefit compared with the AP radiom-
ics model.

Conclusions:  A combined model including AP Rad-score and serum AFP levels based on enhanced MRI can preop-
eratively predict Ki-67 expression in HCC.
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Background
Hepatocellular carcinoma (HCC) remains a leading cause 
of cancer-related morbidity and mortality worldwide, 
which accounts for 75–85% of all primary liver can-
cer cases [1]. The poor prognosis of HCC after surgical 
resection is mainly due to recurrence and metastasis [2, 
3]. Nuclear protein Ki-67 expression level- indicates the 
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status of cell proliferation activity which corresponds 
with tumor biological behavior, treatment efficacy and 
prognosis [4, 5]. Previous studies have demonstrated that 
high Ki-67 expression was associated with poor overall 
survival (OS) [6–10], disease-free survival (DFS) [6, 9, 
11], relapse-free survival (RFS) [8, 9, 12]. In particular, 
Ki-67 is proposed to be an attractive therapeutic target 
for cancer because it is highly expressed in most malig-
nant cells but rarely detected in normal cells, though this 
targeting Ki-67 therapy has not been applied in the clini-
cal [5]. Accurate identification of Ki-67 expression level 
is crucial for prognosis and treatment decision-making 
to achieve a satisfactory outcome. However, it is difficult 
to differentiate the nuances among HCCs with different 
Ki-67 expression through conventional imaging.

Current radiomics, which involves numerous 
advanced, quantitative, high-throughput features 
extracted from medical images, has been used to develop 
diagnostic, predictive, and prognostic models [13, 14]. 
Previous studies have reported that tumor characteris-
tics at the cellular and genetic levels can be reflected in 
the phenotypic patterns and subsequently captured by 
radiomics signatures [15–20]. Gadolinium ethoxybenzyl-
diethylenetriamine pentaacetic acid (Gd-EOB-DTPA), 
which has characteristics of both a blood-pool agent 
and a hepatobiliary agent, is commonly used in clinical 
practice. Previous studies have applied texture analysis 
on Gd-EOB-DTPA-enhanced MRI to preoperatively pre-
dict Ki-67 expression in patients with HCC and indicated 
that the texture analysis was superior to subjective MRI 
characteristics determined by radiologists and obtained 
a good result in predicting Ki-67 expression [21, 22]. 
Although previous studies were valuable, they have not 
compared predictive performance of radiomics models 
derived from different sequences and phases based on 
Gd-EOB-DTPA-enhanced MRI.

Thus, this study aimed to develop and compare pre-
dictive performance of radiomics models derived from 
different sequences and phases based on Gd-EOB-DTPA-
enhanced MRI, then to further validate the optimal 
model for preoperative prediction of Ki-67 expression in 
patients with HCC.

Methods
Patients
   This is a retrospective study for which ethical approval 
was obtained and informed consent from patients was 
waived. Between January 2013 and November 2019, 
patients who underwent Gd-EOB-DTPA-enhanced MRI 
examination before surgery or biopsy were consecu-
tively included in this study according to the following 
inclusion and exclusion criteria. The inclusion criteria 
were: (1) pathologically confirmed HCC; (2) received 

Gd-EOB-DTPA-enhanced MRI of the liver within 1 
month before surgery or biopsy; (3) images without 
obvious artifact; (4) if multiple lesions were present, the 
largest one was selected with matched  pathological and 
immunohistochemical diagnosis. The exclusion criteria 
were: (1) received previous treatment, such as anti-tumor 
therapies, radiofrequency ablation, transcatheter arterial 
chemoembolization (TACE), and so on; (2) incomplete 
clinical or pathological information. All enrolled patients 
were randomly divided into training and validation 
cohorts at a ratio 7:3.

Histopathological examination
The tumor tissue sections were stained using monoclonal 
mouse anti-human Ki-67 antibody (Beijing Zhongshan 
Golden Bridge Biotechnology Company, Beijing, China). 
The Ki-67 expression was evaluated by calculating the 
frequency of 1 Ki-67-positive cells. Ki-67 was considered 
positive when the cell nuclei were stained brown yellow. 
Immunoreactive cells were classified as low Ki-67 expres-
sion (≤ 14% immune-reactivity) or high Ki-67 expression 
(> 14% immune-reactivity) according to previous studies 
[5, 16]. Referring to previous study, we dichotomized his-
tologic subtypes using low-grade tumors and high-grade 
tumors. Low-grade tumors correspond to well differenti-
ated, well and moderately differentiated, and moderately 
differentiated HCC. High-grade tumors correspond to 
moderately and poorly differentiated, poorly differenti-
ated, and undifferentiated HCC.

MRI protocol
The details of MRI protocol and the sequences used in 
this study were presented in the Additional file 1.

Tumor segmentation
Tumor segmentation was manually performed on (arte-
rial phase, AP), (portal venous phase, PVP), (Hepatobil-
iary phase, HBP) and T2W images with 3D Slicer (http://​
www.​slicer.​org), and a three-dimensional (3D) region of 
interest (ROI) that covered the whole tumor was delin-
eated along the border of tumors. HBP or T2W images 
were first for manual segmentation. Subsequently, AP 
and PVP images were delineated, as the tumor margins 
on HBP or T2W images were clearer than that on AP 
and PVP images. Taking this delineating order would 
mitigate software-related segmentation errors. The seg-
mentation was independently performed by two radiol-
ogists (Y.Y., 10 years of liver imaging experience; Y.F., 8 
years of liver imaging experience) in 30 randomly chosen 
patients to assess inter-observe reproducibility. The seg-
mentation was performed again by the radiologist (Y.F.) 
at another day to assess the intra-observe reproducibility. 
The remaining images of patients were segmented by the 
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radiologist (Y.F.). Both radiologists were blinded to the 
clinical outcomes.

Preprocessing and radiomic features extraction
Before radiomic features extraction, preprocessing of 
images was performed, including Laplacian of Gauss-
ian (LoG) preprocessing, wavelet transformations, bin 
discretization and radiomic matrix symmetry. Features 
extraction was performed using the Slicer Radiomics 
extension, which incorporates the PyRadiomics library 
into 3D Slicer [23]. Extracted features included first order 
statistics, shape and texture features, which were gray 
level co-occurrence matrix (GLCM), gray level size zone 
matrix (GLSZM), gray level run length matrix (GLRLM), 
gray level dependence matrix (GLDM) and neighboring 
gray tone dependence matrix (NGTDM). Among these 
features, flatness and least axis from shape features were 
excluded based on the definition of the feature, as dis-
cussed in the documentation of PyRadiomics, and sum 
average was excluded because it is directly correlated 
with joint average [24]. Thus, a total of 1,300 radiomic 
features were extracted for each unique lesion.

Radiomic feature selection and model development
The least absolute shrinkage and selection operator 
(LASSO) logistic regression with 5-fold cross-validation 
was used to select the most useful features in the training 
cohort. Rad-score was calculated for each patient using 
the linear combination of selected features multiplied by 
their respective coefficients.

Comparison of radiomics model in the training 
and validation cohort
These models assessed in the training cohorts were 
applied to validation cohorts. The Receiver operating 
characteristic (ROC) curve, Delong test, calibration curve 
and decision curve analysis (DCA) were utilized to illus-
trate the diagnostic performances of these constructed 
models, and the cutoff values were selected according to 
the Youden index to determine the corresponding sensi-
tivity and specificity.

Combined model development and validation
For the development of combined model, we performed 
multivariate logistic regression analysis of clinical factors 
in training cohort, including age, sex, hepatitis B, hepa-
titis C, cirrhosis, serum alanine aminotransferase (ALT) 
level, serum aspartate aminotransferase (AST) level, 
serum gamma-glutamyl transferase (GGT) level, and 
serum alpha-fetoprotein (AFP) level. Clinical factors that 
reached statistical significance with P values less than 

0.05 were selected into the combined model, which also 
included the optimal Rad-score.

Calibration curves were adopted to analyze the diag-
nostic performance of the combined model in both 
training and validation cohort. Decision curve analy-
sis was conducted to determine the clinical usefulness 
of the combined model by quantifying the net benefits 
at different threshold probabilities in the validation 
cohort.

Statistical analysis
The continuous variables were described as median and 
interquartile range, and the categorical variables were 
described as frequency and percentage. D’Agostino–
Pearson test was used to test normality of dates. 
Independent sample t-test or Mann–Whitney U non-
parametric rank sum test was used to compare clini-
cal characteristics between the training and validation 
cohort, and between high Ki-67 expression and low Ki-67 
expression groups in the training and validation cohort 
for continuous variables, while.

the Chi-squared test or Fisher exact test were con-
ducted for categorical variables. Two-sided P val-
ues < 0.05 were considered statistically significant. The 
inter-observer and the intra-observer reproducibility to 
the extracted features were assessed by the intra-class 
correlation coefficient (ICC). ICC ≥ 0.8, 0.5–0.79 and 
< 0.5 indicated high, middle, and low consistency, respec-
tively [25]. LASSO logistic regression, and multivariable 
logistic regression analysis were performed to select radi-
omics features and clinical risk factors using the “glmnet” 
and “rms” package running in R software, version 3.0.1 
(http://​www.​Rproj​ect.​org.​org). The calibration and deci-
sion curve were plotted using the “rms” and “rmda” pack-
age. Other statistical analyses were performed using the 
MedCalc software (Version 16.2.0, https://​www.​medca​lc.​
org).

Results
Baseline characteristics
One hundred fifty-one patients were collected, including 
103 patients in the training cohort and 48 patients in the 
validation cohort (Table 1). Baseline characteristics were 
not significantly different between training and validation 
cohort. Among all 151 patients, high Ki-67 expression 
was pathologically diagnosed in 112 patients (74.2%), 
low Ki-67 expression was pathologically diagnosed in 39 
patients (25.8%). In both cohorts, the serum AFP levels 
and tumor grade were significantly higher in high Ki-67 
expression group than that in low Ki-67 expression 
group. In both cohorts, low-grade tumors were more 
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frequently in patients with low Ki-67 expression group. 
In the training cohort, the number of patients with hepa-
titis B in high Ki-67 expression was larger than that in the 
low Ki-67 expression group (Table 2).

Features selection and radiomics model 
development
No statistically significant difference was found between 
the inter-observer or between the intra-observer (P val-
ues ranged from 0.691 to 0.815, 0.755 to 0.891). Of tex-
ture features, for AP, HBP, and T2W radiomics models, 
1300 features were respectively reduced to 12 (Fig.  1a, 
b), 6, and 12 potential predictors in 103 patients of the 
training cohort. For VP images, no valuable features were 
selected by the LASSO regression analysis. Rad-score 
was calculated for each patient by using the linear combi-
nation of selected features multiplied by their respective 
coefficients. These features were presented in the Rad-
score calculation formula (Additional file 2).

Comparison of predictive performance among radiomics 
models in training and validation cohorts
The AUC values, sensitivity, specificity, and accuracy of 
the AP, HBP, T2W, combined AP and HBP radiomics 
model in predicting Ki-67 expression in training and vali-
dation cohort were in Table 3; Fig. 2. Delong test showed 
that there was no significant difference in AUC values 
among AP, HBP, combined AP and HBP, and T2W radi-
omics models. DCA showed that the curve of AP was 
generally higher than HBP and T2W radiomics models 
(Fig. 3), and combined AP and HBP radiomics model did 
not result in significantly extra benefits compared with 
the AP radiomics model only (Fig. 4).

Combined model development and validation
The multivariate logistic regression analysis showed 
that only serum AFP level and AP Rad-socre was asso-
ciated with Ki-67 expression in the training cohort 
(P < 0.05). The combined model was constructed with 
AP Rad-score and serum AFP level. It yielded an AUC 
value of 0.922 (95% CI 0.852–0.965) in the training 
cohort and 0.863 (95% CI 0.733–0.94.5) in the vali-
dation cohort (Table  3; Fig.  2). Delong test showed 

Table 1  Baseline clinical characteristics of the training and validation cohort

AFP alpha-fetoprotein, ALT alanine aminotransferase, AST aspartate aminotransferase, GGT​ gamma-glutamyltransferase

Total (n = 151) Training (n = 103) Validation (n = 48) P values

Age(years), median (IQR) 58.0 (51.0, 67.0) 61.0 (50.3, 68.0) 56.0 (51.0, 64.0) 0.307

Gender, no.(%) 0.355

 Male 119 (78.8) 79 (76.7) 40 (83.3)

 Female 32 (21.2) 24 (23.3) 8(16.7)

ALT, (U/L), median (IQR) 33.5 (20.8, 47.8) 29.70 (20.7, 45.3) 35.4 (20.9, 52.9) 0.220

AST, (U/L), median (IQR) 33.0 (24.4, 44.1) 32.4 (24.5, 43.4) 33.9 (24.0, 49.8) 0.407

GGT, (U/L), median (IQR) 50.8 (29.2, 108.8) 49.6 (30.2, 92.7) 52.1 (27.9, 144.5) 0.771

AFP, (µg/L), median(IQR) 15.3 (3.1, 417.5) 15.5 (3.1, 527.4) 11.6 (2.9, 301.6) 0.718

AFP group.no(%) 0.555

 ≤ 20 µg/L 79 (52.3) 54 (52.4) 25 (52.1)

 20–400 µg/L 34 (22.5) 21 (20.4) 13 (27.1)

 > 400 µg/L 38 (25.2) 28 (27.2) 10 (20.8)

Hepatitis B, no.(%) 0.856

 Negative 36 (23.8) 25 (24.3) 11 (22.9)

 Positive 115 (76.2) 78 (75.7) 37 (77.1)

Hepatitis C, no.(%) 1.000

 Negative 145 (96.0) 99 (96.1) 46 (95.8)

 Positive 6 (4.0) 4 (3.9) 2 (4.2)

Cirrhosis, no.(%) 0.520

 Negative 43 (28.5) 31 (30.1) 12 (25.0)

 Positive 108 (71.5) 72 (69.9) 36 (75.0)

Tumor grade, no.(%) 0.398

 Low-grade tumor 100 (66.2) 71(68.9) 29(60.4)

 High-grade tumor 51(33.8) 32 (31.0) 19(39.6)
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that the AUC value of combined model (0.922, 95% 
CI 0.852–0.965) was higher than that of AP radiom-
ics model (0.873, 95% CI 0.793–0.930) (P = 0.015) in 
the training cohort. In the validation cohort, the AUC 
value of combined model (0.863, 95% CI 73.3–94.5) 
also showed an improved predicting performance in 

Ki-67 expression over the AUC value of AP radiom-
ics model (0.813, 95% CI 0.674–0.911), despite the 
non-significant statistical significance (P = 0.254). The 
calibration curves showed a good agreement between 
predicted and actual events in the training and vali-
dation cohorts (Fig. 5a, b). The DCA of the validation 

Fig. 1  Feature selection using the least absolute shrinkage and selection operator (LASSO) logistic regression in AP radiomics model. a Tuning 
parameter (λ) selection in the LASSO model used 5-fold cross-validation. Dotted vertical lines were drawn at the optimal values by using the 
minimum criteria and the 1 standard error of the minimum criteria (the 1-SE criteria). A λ value of 0.045, with log (λ), − 2.725 was chosen (1-SE 
criteria). b Vertical line was drawn at the value selected, where optimal λ resulted in 12 nonzero coefficients

Table 3  Comparison of the predictive performance of the five models in predicting Ki-67 expression

AP alpha-fetoprotein, AUC​ area under receiver operating characteristic curve, HBP hepatobiliary phase, NPV negative predictive value, PPV positive predictive value
a Combined model includes AP Rad-score and serum AFP level

Models AUC (95% CI) Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%)

AP radiomics model

Training (n = 103) 0.873 (79.3–93.0) 92.5 (74/80) 78.3 (18/23) 89.3 (92/103) 93.7 (74/79) 75.0 (18/24)

Validation (n = 48) 0.813 (67.4–91.1) 81.3 (26/32) 81.3 (13/16) 81.3 (39/48) 89.7 (26/29) 68.4 (13/19)

Total (n = 151) 0.837 (76.8 89.2) 90.2 (101/112) 69.2 (27/39) 91.4 (138/151) 89.4 (101/113) 71.1 (27/38)

HBP radiomics model

Training (n = 103) 0.813 (72.4–88.3) 98.8 (79/80) 47.8 (11/23) 87.4 (90/103) 86.8 (79/91) 91.7 (11/12)

Validation (n = 48) 0.740 (59.3–85.6) 84.4 (27/32) 62.5 (10/16) 89.6 (43/48) 81.8 (27/33) 66.7 (10/15)

Total (n = 151) 0.793 (72.0-85.5) 87.5 (98/112) 59.0 (23/39) 80.1 (121/151) 86.0 (98/114) 62.2 (23/37)

T2W radiomics model

Training (n = 103) 0.889 (81.2–94.4) 72.5 (58/80) 95.7 (22/23) 77.7 (80/103) 98.3 (58/59) 50.0 (22/44)

Validation (n = 48) 0.698 (54.9–82.2) 90.6 (29/32) 43.8 (7/16) 75.0 (36/48) 76.3 (29/38) 70.0 (7/10)

Total (n = 151) 0.823 (75.2, 88.0) 67.9 (76/112) 68.4 (27/39) 68.2 (103/151) 86.4 (76/88) 42.9 (27/63)

Combined AP and HBP radiomics model

Training (n = 103) 0.880 (0.802–0.936) 86.2 (69/80) 82.6 (19/23) 70.9 (73/103) 78.4 (69/88) 26.7 (4/15)

Validation (n = 48) 0.799 (0.658–0.901) 75.0 (24/32) 75.0 (12/16) 75.0 (36/48) 85.7 (24/28) 60.0 (12/20)

Total (n = 151) 0.852 (78.5, 90.4) 83.9 (94/112) 76.9 (30/39) 82.1 (124/151) 91.3 (94/103) 62.5 (30/48)

Combined modela

Training (n = 103) 0.922 (0.852–0.965) 98.7 (79/80) 78.3 (18/23) 94.2 (97/103) 94.0 (79/84) 94.7 (18/19)

Validation (n = 48) 0.863 (73.3–94.5) 90.6 (29/32) 75.0 (12/16) 85.4 (41/48) 87.9 (29/33) 80.0 (12/15)

Total (n = 151) 0.806 (73.4–86.6) 83.0  (93/112) 64.1 (25/39) 78.1 (118/151) 86.9 (93/107) 56.8 (25/44)
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cohort revealed that at a range threshold probability of 
30–60 %, the combined model is an optimal decision-
making strategy to add the net benefit compared with 
AP radiomics model (Fig. 3).

Discussion
In this study, we compared the predictive performance 
of AP, HBP, T2W, and combined AP and HBP radiomics 
models. Then, we established and validated a combined 

radiomics model, including AP Rad-score and AFP based 
on Gd-EOB-DTPA-enhanced MRI for preoperative pre-
diction of Ki-67 expression in patients with HCC. Results 
showed that the AP radiomics model yielded an incre-
mental performance in predicting Ki-67 expression of 
HCC over the HBP and T2W radiomics model, and the 
combined AP and HBP radiomics model does not result 
in extra benefits compared with the AP radiomics model 
only. The combined model yielded higher performance 
with an AUC value of 0.922 (95% CI 0.852–0.965).

As high Ki-67 expression indicates an active status of 
cell proliferation, which requires more neovascularities 

Fig. 2  ROC curves for the radiomics model in predicting Ki-67 expression in the training and validation cohort, respectively. a ROC curve in training 
cohort. b ROC curve in validation cohort 

Fig. 3  Decision curve analysis of the AP, HBP, T2W radiomics model 
and combined radiomics model in the validation cohort. The red line, 
blue line, yellow line, and green line represent the AP, HBP, T2W and 
the combined radiomics model, respectively. The combined model 
includes AP Rad-score and serum AFP level. The curve of AP radiomics 
model was generally higher than that of HBP and T2W radiomics 
model. Decision curve shows that at a range threshold probability of 
30-60 %, the combined model is optimal decision-making strategy to 
add the net benefit compared with AP radiomics model only

Fig. 4  Decision curve analysis of the AP, combined AP and HBP 
radiomics model in validation cohort. The red line and blue line 
represent the AP, and combined AP and HBP radiomics model. The 
decision curve shows that combined AP and HBP radiomics model 
does not result in extra significant benefits compared with AP 
radiomics model in validation cohort
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for tumor growth. AP images based on enhanced MRI 
can best demonstrate the information about the neo-
vascularities of tumors. Accordingly, the AP radiomics 
model added more net benefit in predicting Ki-67 expres-
sion of HCC compared with HBP radiomics model. 
Although a previous study has reported the AP model 
of Gd-EOB-DTPA-enhanced MRI was inferior, possi-
bly due to artifacts affecting extraction and calculation 
of textural-based features [26], our study excluded those 
patients with obvious artifacts caused by transient severe 
motion (TSM) [27, 28].

Radiomics, including texture analysis and other fea-
tures, such as shape and intensity [29], is considered to 
be a potential bridge between medical imaging and per-
sonalized medicine [30]. In our study, 41 features most 
relevant for Ki-67 expression were selected. Among 
these features, 13 were first-order statistics, 28 were tex-
ture features including gray level co-occurrence matrix 
(GLCM), gray level dependence matrix (GLDM), gray 
level run length matrix (GLRLM), gray level size zone 
matrix (GLSZM), and neighboring gray tone dependence 
matrix (NGTDM). Although some scholars have recently 
published articles on the same topic of using a radiomics 
model based on Gd-EOB-DTPA-enhanced MRI to pre-
dict Ki-67 expression in HCC [21, 22], there are many dif-
ferences in details compared with our study. In the study 
of Li et al. [21], a single slice with the largest proportion 
of lesion was delineated, and the predictive performance 
of models were compared only by misclassification rate. 
In our study, all slices covering the whole tumor were 
delineated, and, the predictive performance of different 
models were compared by AUC values, calibration curve 
and DCA. In the study of Ye et al. [22], a sum of texture 
signatures derived from AP, PVP, pre-contrast T1W 

and T2W images was used to predictive Ki-67 expres-
sion by multivariate logistical regression, and predictive 
performance of radiomics model derived from different 
phases were not be compared. Although, in the study of 
Ye et al. [22], the C-index (AUC) of the combined model 
(AUC = 0.936) was approximately equivalent to that 
in our study—the AUC value of combined model was 
0.922 in the training cohort in our study, the study of Ye 
et  al. incorporated a sum of texture signatures derived 
from multiple phase into one radiomics model, which 
was cumbersome in clinical practice. Our study devel-
oped and compared predictive performance of radiom-
ics models derived from different sequences and phases, 
including T2W, AP, PVP, and HBP images, then further 
validated the optimal model for preoperative predic-
tion of Ki-67 expression in HCC, which obtained a good 
result and would be feasible for clinical practice. Moreo-
ver, both of the previous studies lacked the validation 
cohort to validate whether their models were overfit.

There are several limitations in this study. Firstly, the 
sample size is still small compared with the number of 
included variables, especially the sample size of the low 
Ki-67 expression group, and our validation cohort was 
from the single institution as the training cohort, which 
restricted the generalizability of our findings to other 
institutions or settings. Secondly, our study compared 
predictive performances of AP, HBP, and T2W radiom-
ics model of the Gd-EOB-DTPA-enhanced MRI for pre-
dicting Ki-67 expression of HCC, however, our study did 
not compare AP radiomics model of Gd-EOB-DTPA-
enhanced MRI with Gd-diethylenetriaminepentaacetic 
acid (Gd-DTPA)-enhanced MRI. Thirdly, there is cur-
rently no standardized Ki-67 expression level threshold 
in HCC, and it may be controversial that we defined 14 % 

Fig. 5  Calibration curve for the combined model in training and validation cohort. a Calibration curves for the combined model in training cohort. 
b Calibration curves for the combined model in validation cohort
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as the cutoff value. In summary, interpreting the complex 
associations between the biologic processes and radiom-
ics features remains an enormous challenge, although it 
is in line with the current trend toward precise and per-
sonalized medicine.

Conclusions
Our study established and validated a combined model 
including AP Rad-score and serum AFP level based on 
enhanced MRI, for predicting Ki-67 expression in HCC 
patients. It provides a new non-invasive approach for 
accurate diagnosis.
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