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Abstract 

Background:  Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are 
important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fibrillation, stroke, and 
diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and 
observer-dependent.

Methods:  This study presents an automated image processing algorithm for time-resolved LA segmentation in 
cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views 
using active contours. The proposed algorithm combines mitral valve tracking, automated threshold calculation, edge 
detection on a radially resampled image, edge tracking based on Dijkstra’s algorithm, and post-processing involving 
smoothing and interpolation. The algorithm was evaluated in 37 patients diagnosed mainly with paroxysmal atrial 
fibrillation. Segmentation accuracy was assessed using the Dice similarity coefficient (DSC) and Hausdorff distance 
(HD), with manual segmentations in all time frames as the reference standard. For inter-observer variability analysis, a 
second observer performed manual segmentations at end-diastole and end-systole on all subjects.

Results:  The proposed automated method achieved high performance in segmenting the LA in long-axis cine 
sequences, with a DSC of 0.96 for 2ch and 0.95 for 4ch, and an HD of 5.5 mm for 2ch and 6.4 mm for 4ch. The manual 
inter-observer variability analysis had an average DSC of 0.95 and an average HD of 4.9 mm.

Conclusion:  The proposed automated method achieved performance on par with human experts analyzing MRI 
images for evaluation of atrial size and function.
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Introduction
In the United States, the lifetime risk of developing atrial 
fibrillation (AF) is 1 in 4, in people over 40 years old [1], 
and 6 million Americans are living with left-ventricle 
(LV) heart failure [2]. AF is an abnormal heart rhythm 

characterized by a rapid and irregular heartbeat, pro-
duced by ectopic beats originating from the left atrium 
(LA) [3]. LV heart failure, with or without reduced ejec-
tion fraction (EF), is a condition in which the heart fails 
to produce adequate blood flow to the body. The evalu-
ation of AF, stroke risk, heart failure, and other car-
diomyopathies is potentially enhanced by assessment of 
atrial volumes, function, and strain. For example, larger 
LA volumes and lower strain and LA EF were independ-
ent predictors of AF development in recent studies [4, 5], 
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including sub-clinical AF [6]. LA function may improve 
the diagnostic accuracy and prognostic value of diastolic 
dysfunction in magnetic resonance imaging (MRI) [7]. 
LA evaluation plays an important role in imaging of AF, 
stroke risk related to AF, and diastolic dysfunction evalu-
ation [8]. Despite its importance, values for LA volumes 
and function are not often reported clinically, due in part 
to the lack of available image processing tools for the LA.

Segmentation of the LA is required for evaluation of 
LA size and function [9], which are relevant diagnostic 
and prognostic imaging biomarkers for diverse cardio-
vascular conditions. LA strain evaluation is a more recent 
and potentially superior biomarker of cardiac disease, 
compared to LA size and function. Evaluation for all of 
these measures requires LA segmentation [10–13], and 
for strain the segmentation must be highly accurate and 
include all time-frames.

Cardiac MRI is considered the reference standard for 
cardiac volume assessment, offering accurate evaluation 
of LV and LA structure and function [14]. Cardiac MRI is 
routinely used to acquire time-resolved 2-chamber (2ch) 
and 4-chamber (4ch) long-axis cines of the heart (mul-
tiple 2D slices), providing high-contrast cardiac images 
at multiple points in the cardiac cycle. From these cine 
data, LA volumes can be measured, using the bi-plane 
method [15], and function can be estimated, based on the 
changes in LA volume over the heartbeat.

Volumes and strain during the entire cardiac cycle 
are essential, both for calculating volume-flow rates and 
strain rates, which require time derivatives, and for eval-
uation during multiple phases of the cardiac cycle, which 
include reservoir and conduit phase (filling in LV systole, 
and passive emptying in early diastole) and the active 
emptying phase. For the most part, LA segmentations are 
currently being performed manually, which is time-con-
suming and observer-dependent, underscoring the need 
for automated segmentation algorithms.

Advances in automated heart segmentation have pri-
marily focused on the LV [16], secondarily on the right 
ventricle [17], whereas an automated segmentation 
method for the LA has yet to be routinely used in clini-
cal practice [16] for several reasons. The LA chamber is 
typically smaller than the LV, with a thin myocardial bor-
der and a very variable shape across subjects. Bounda-
ries are not clearly defined, primarily (i) the boundary 
between the LA cavity and pulmonary vein (PV) ostia, 
(ii) between the LA cavity and the left atrial appendage 
(LAA), and (iii) the mitral valve (MV) boundary, which 
separates the LA from the LV. Moreover, the MV has a 
dynamic motion throughout the cardiac cycle and is 
almost invisible in diastole.

Most LA segmentation methods are focused on whole 
heart images [18], with only a few methods developed for 

LA cine. Regarding these, one method uses feature track-
ing to propagate LA contours, once manually initialized 
on end-diastolic and/or end-systolic frames [10, 19], but 
this still demands user interaction. Machine learning 
techniques have been used to segment the LA in long-
axis cine images, integrating a modified U-net based on 
deep convolutional neural networks with the unscented 
Kalman filter to impose temporal consistency in 2, 3 and 
4-chamber views [20]. Another convolutional neural net-
work architecture with a VGG-16 framework was pro-
posed to predict a pixel-wise label map for the LA [21], 
but it was only trained on end-diastolic and end-systolic 
frames and with healthy volunteers. Regarding segmen-
tation performance, the proposed methods provided 
high accuracy. However, from visual inspection it is clear 
that none of these methods provided a smooth delinea-
tion of the PV and LAA and a flat cut across the dynamic 
MV, nor did they present clinically validated, derived 
LA parameters (i.e., volumes, EFs, or strains) from the 
generated contours with validation against manual seg-
mentation. Therefore, an automated method capable of 
segmenting all cine frames, with high accuracy, including 
validation of clinically utilized parameters, is still needed.

In this paper, we propose an automated LA time-
resolved segmentation method for long-axis cine 
images of the 2ch and 4ch via active contours. The 
method combines MV tracking (fully or semi-auto-
mated), automated threshold calculation, edge detec-
tion on a radially resampled image, cost image 
optimization based on a Dijkstra algorithm and post-
processing involving smoothing and interpolation. The 
resulting volumes and functional parameters are then 
compared to manual segmentation.

Methodology
We propose an automated LA segmentation based on 
active contours on a polar grid. The input data passed 
through four key steps: (i) preprocessing, (ii) polar map-
ping, (iii) edge detection and reconstruction, and (iv) 
Cartesian mapping. Figure  1 depicts the segmentation 
workflow in both views from a subject.

Input data
The LA segmentation method used long-axis cine images 
of the 2ch and 4ch views, acquired in a breath-hold with 
a balanced steady-state free precession sequence. Each 
cardiac cycle was composed of 30 images, representing 
time frames. Each image had an average spatial resolu-
tion of 2× 2× 8 mm3 , and the MRI sequence acquisition 
parameters were a repetition time of 3 ms, an echo time 
of 1.5 ms, and a flip angle of 60◦.
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Preprocessing
The MV insertion points were obtained in a semi-auto-
mated manner, using feature tracking [22], and in a 
fully-automated manner, using residual neural networks 
[23], for comparison. The first approach was based on 
template tracking by normalized cross-correlation and a 
priori information by principal component analysis, and 
required a manual initialization of the MV points at end-
diastole. The second approach employed a deep learning-
based landmark annotation with no user interaction, 
whose sensitivity was tested (see Reproducibility due to 
variability in MV point placement section). These points 
define the MV plane, which separates the LA from the 
LV. Figure 1a illustrates the placement of the MV points. 
For the case of 2ch, the red and green points correspond 
to the anterior and inferior points, respectively, whereas 
for the case of 4ch, they correspond to the lateral and 
septal points.

To avoid false edge detection within the blood pool, 
all blood pool pixels with similar intensity were assigned 
under a single threshold value. To implement this thresh-
old, the input image was considered as a Gaussian mix-
ture of two-component pixel intensities, corresponding 
to sections of low intensity (muscle tissue), and high 
intensity (blood tissue). The Gaussian mixture param-
eters were obtained by an adapted Expectation-Maximi-
zation algorithm [24]. The threshold value was defined 
as the mean of the highest Gaussian distribution. Fig-
ure 1b shows the preprocessing step on the same subject, 

in which all pixels above the threshold were set to the 
threshold value.

Polar mapping
The cine images were mapped from a Cartesian grid 
(x, y) to a polar grid (θ , r) . Under this constraint, due to 
the geometric LA shape, other borders within the LA, 
related to the PV ostia and LAA, would be superimposed 
by the LA myocardium and thereby excluded using active 
contours.

The MV points were used to delimit the dynamic mitral 
valve and to initialize the polar mapping step in each 
frame. The reference point, illustrated in blue in Fig. 1b, 
was set in the middle of the mitral valve axis defined by 
the MV annotations. The radial range Nr covered twice 
the mitral valve length, whereas the angular range Nθ was 
uniformly limited by the MV points, meaning it mapped 
from anterior to inferior point for 2ch or from lateral to 
septal point for 4ch, in other words, following the same 
color bar of Fig.  1, from red to green point. Due to the 
MV points’ dynamic behavior along the cardiac cycle, the 
reference point was updated for every time frame.

This task was performed in both views with a difference 
in the reference point position. This point was set exactly 
in the middle of the MV annotations for 2ch. However, 
for 4ch, the point was perpendicularly moved above the 
mitral valve plane for a quarter of its length, as illustrated 
in Fig.  1b. This change was due to the prolonged and 
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Fig. 1  Workflow to automatically segment the left atrium (LA) of a subject in 2-chamber (2ch) and 4-chamber (4ch) views. The left atrial appendage 
(LAA) in 2ch and the pulmonary veins (PVs) in 4ch are marked in purple. a Input images, with mitral valve (MV) annotations, the red and green 
points respectively correspond to the anterior and inferior points for 2ch or the lateral and septal points for 4ch. b Data preprocessing uses an 
automatically calculated threshold value and assigns a signal above the threshold to the threshold value. The polar mapping is performed using a 
reference point, shown in blue (defined as the MV center), and a polar grid, in purple, within the Cartesian plane (x, y). c Resultant image after polar 
mapping (θ , r) of the LA constrained by the MV points. The blue line represents r = 0 for all the angular range, which spans 180◦ for 2ch and 233◦ 
for 4ch. d The images in c are subjected to Canny edge detection followed by active contours, resulting in a final contour shown in orange. e The 
contours are remapped onto a Cartesian grid
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curvilinear LA shape on this view, which was captured by 
this adjustment. The resampled LA shape in both cases 
resembled a “V” shape, as shown in Fig. 1c.

The polar map was generated with sampling intervals �r 
of 0.25 pixels and �θ of 1◦ , to resample the LA region from 
Cartesian coordinates, for each frame. The radial range 
varied from 150 to 200 rows depending on the mitral valve 
length, whereas the angular range was fixed to 180 or 230 
columns, for 2ch and 4ch, respectively, as a result of the dif-
ferent reference point positions. The resultant image was 
interpolated with a bilinear resampling and its resolution 
was controlled by the sampling intervals.

Edge detection and reconstruction
A Canny edge detection technique [25] was used to 
robustly find the edges in each polar image. This resulted 
in a 2D matrix, considered to be the cost image Ic(i, j) , with 
white pixels representing detected edges, with the MV 
points and reference line in polar coordinates as shown in 
Fig. 1d.

The presumed LA edge was found from Ic(i, j) using an 
optimization algorithm based on active contours, in each 
polar image. This active contour f was modeled as a physi-
cal string and defined as the minimization of its internal 
energy, Eint(f ) , and the energy of its position on the image, 
Eim(f , Ic) , by

The use of active contours facilitated the manipulation of 
physical behavior with the tuning parameters elasticity, 
α , and rigidity, β . The elasticity controlled the amount of 
stretch and penalized changes from point to point in the 
contour, while the rigidity controlled the amount of cur-
vature [26]. These tuning parameters defined the internal 
energy, first part of Eq. (1), as

An optimization problem positioned in a Cartesian 
grid in this case would yield local optimums, i.e., non-
convex problem, which may not be the best solution. 
The polar mapping enabled a convex problem restrict-
ing the active contour to a proper discrete function of its 
own f : N1 → N1 , restricted to only pass through each 
column ( θ ) in the grid once. With the reformulation of 
the optimization problem, described and solved with 
dynamic programming in [27], Eint(f ) , or Eq. (2), was dis-
cretized with approximate derivatives as

(1)min
f

{

Eint(f )+ Eim(f , Ic)
}

.

(2)Eint(f ) =
1

2

∫

(

α · f ′(s)2 + β · f ′′(s)2)
)

ds.

where Nr is the radial range previously described, and the 
index of f belongs to 1 . . .Nθ , being Nθ the angular range, 
whereas Eim(f , Ic) , second part of Eq. (1), was discretized 
as

The discretized line f goes from the starting MV point 
(red) to the ending MV point (green) in the polar image, 
as illustrated in Fig.  1d. This optimization problem 
works as follows: (i) the algorithm keeps track of the set 
of included nodes ( N ), (ii) in each iteration the set N is 
extended with one node until all nodes are included 
and the algorithm terminates, (iii) nodes are selected so 
that the total cost from the source node to the included 
node is minimal, in the same way it is chosen in Dijkstra’s 
shortest path algorithm, (iv) the cost for including a node 
is computed from Eq.  (3) and (4), (v) for each included 
node the algorithm also keeps track on the “parent” node, 
(vi) tentative nodes to be included the set N are stored 
in a heap data structure, (vii) the algorithm is initialized 
with an empty set N , (viii) the optimal path through the 
image is finally captured by backtracking nodes from end 
node to start node (see [27] for more details and proof on 
optimality). This reformulation had the main advantage 
of maintaining the physical interpretation of treating the 
contour as a physical string, including its tuning param-
eters, and optimal solution. As the MV points position 
sometimes differed from the myocardial edge, the closest 
edge pixels to the MV points detected in the starting and 
ending columns were considered to be the contour tips. 
The Eint parameters were set as α = 0.02 and β = 0.0002.

A post-processing technique was performed to smooth 
the surfaces and ensure false peaks were not detected. 
As the LA in the polar grid resembled a “V” shape, any 
detected non-predominant peaks in f (θ , r) were fil-
tered. All reconstructed contours from a cine image were 
stacked in a 2D matrix F(θ , t) , with rows representing the 
contour in each time frame and with columns represent-
ing the radial position of each active contour. This matrix 
was smoothed with a median filter. Figure  2 shows an 
example from a 2ch segmentation before and after this 
post-processing technique, with F(θ , t) from the whole 

(3)

Eint(f ) =

Nr−1
∑

i=1

α(fi − fi+1)
2

+

Nr−1
∑

i=2

β(−fi−1 + 2fi − fi+1)
2,

(4)
Eim(f , Ic) =

Nr
∑

i=1

fi
∑

j=fi−1

|fi − j|

|fi−1 − fi| + 1
Ic(i − 1, j)

+
|j − fi−1|

|fi−1 − fi| + 1
Ic(i, j).
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cardiac cycle and f (θ , r) from a time frame. The result of 
the post-processing technique shows a smoothed F(θ , t) 
and a f (θ , r) without the false peak marked in purple.

Cartesian mapping
Once each contour was reconstructed and smoothed, 
it was converted to Cartesian coordinates for the out-
put LA segmentation mask. With the initial reference 
point and the sampling intervals, the radial magnitude 
defined the distance from the reference point, and the 
angular magnitude marked the direction. This mask pre-
sented a dynamic cut with the mitral valve, delineated in 
a D-shaped form, and smooth separations from PV and 
LAA, as illustrated in Fig. 1e.

Evaluation
The method was compared against manual segmentation 
in 37 patients (15 females, age 53 ±  15 years), scanned 
on a 1.5T clinical MRI (Siemens Healthcare, Erlangen) 
for diverse cardiovascular indications, mostly paroxys-
mal AF, who were in sinus rhythm during the MRI cine 
acquisitions. The subjects were enrolled as part of an 
IRB-approved chart-review study. This data comprised a 

total of 1110 images (30 time frames for each patient) for 
each chamber view separately, with their corresponding 
manual segmentation performed with a standard oper-
ating protocol [28] using the software Segment [29]. For 
inter-observer variability analysis, a second observer per-
formed manual segmentations at end-diastole and end-
systole on all subjects.

Segmentation accuracy was evaluated using the Dice 
similarity coefficient (DSC) [30], mean contour dis-
tance  (MCD), and Hausdorff distance (HD) [31]. The 
DSC was measured as the overlap between two seg-
mentation masks, MCD and HD were measured as 
the distance error between two segmentation contours 
with the mean and the maximum values, respectively.

For clinical relevance, LA EDV, LA ESV, LA EF, and 
LA GLS were calculated from the automated and man-
ual segmentation, as described by others [10, 14, 15]. 
LA volume (ml) along time t was calculated with the bi-
plane method as

where the areas were obtained with the segmentation 
contours, and the lengths were calculated on the longitu-
dinal axis as the distance of the perpendicular line meas-
ured from the MV center to the superior aspect of the 
LA. LA EDV (ml) and LA ESV (ml) were measured as the 
minimum and maximum values of LA volume, respec-
tively, and LA EF (%) as

LA strain (%), the change in length normalized by the ini-
tial t = 1 length, was calculated using

where the perimeters were obtained with the segmenta-
tion contours excluding the MV. LA GLS (%) was meas-
ured as the maximum value of LA strain.

Reproducibility due to variability in MV point placement
As the position of MV points automatically initial-
ized our LA segmentation process, differences in input 
points will influence segmentation results. The impor-
tance of MV point placement was assessed by adding 
a variability to the these initialization points. The vari-
ability was chosen as the manual inter-observer vari-
ability of MV points placement, calculated from 10 
subjects to be 1.5 ± 0.7 mm. To study the initialization 

(5)LA Volumet =
16

3π

Area2cht Area4cht

Length2cht + Length4cht

,

(6)LA Ejection Fraction =
LA ESV− LA EDV

LA ESV
.

(7)LA Straint =
Perimeter2cht + Perimeter4cht

Perimeter2cht=1 + Perimeter4cht=1
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Fig. 2  Post-processing of reconstructed edges within the proposed 
workflow of a subject in 2-chamber view, displayed in heat maps 
F(θ , t) and polar grids with their corresponding active contours f (θ , r) . 
The heat maps (firs row) display the distance from the valve central 
point to the detected active contour, for every angle and every time 
frame, while the polar grids (second row) display the edge location in 
a time frame, similar to Fig. 1d. The mitral valve annotations are also 
displayed in red and green. a The detected active contours obtained 
with the proposed optimization problem before filtering. b With 
post-processing, the heat map is smoother and the false peaks were 
removed, marked in purple
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influence of MV point placement, all the MV points 
were randomly varied following this inter-observer 
variability, 100 times. For each simulation, the entire 
segmentation process was performed, and the segmen-
tation accuracy and the clinical error were assessed 
against the first automatically obtained segmentations. 
We also evaluated the LA segmentation accuracy using 
our automated method for MV point placement [23].

Comparison to an automated LA segmentation method
The proposed method’s performance was compared 
against another automated method capable of LA 
volumes derivation, provided by the commercially 
available cardiac MR software CVI42 (Circle Cardiovas-
cular Imaging, Calgary, Canada). A subset of 26 sub-
jects (1560 images) was used for comparison between 
manual measures and automated measures of LA EDV 
and LA ESV. LA EF was manually derived using Eq. (6). 
LA GLS was not reported by the software. Segmenta-
tion masks were not extractable.

Implementation
The LA segmentation method was developed in MAT-
LAB R2019a (Mathworks, Natick, Massachusetts) and 
implemented in the medical image analysis software 
Segment v3.1 R8109 [29] (http://segment.heiberg.se), 
and is freely available for research purposes.

Statistical analysis
Clinical metrics comparisons were performed using 
linear regression analysis, and Bland-Altman plots 
with manual measurements as a reference, includ-
ing the bias with limits of agreement ±  1.96 standard 
deviation [32]. For the analysis, all clinical metrics were 
obtained for each set, by the observers and the method, 
and mean error, intra-class correlation coefficient (ICC) 
with a confidence interval of 95%, correlation value (R), 
and coefficient of variance (CoV) were calculated.

Results
The automated LA segmentation process was evaluated 
for accuracy, regarding both segmentation accuracy 
and accuracy of the clinical metrics, using statistical 
analysis. The total segmentation processing time in 
both chambers took 20  s per patient, compared with 
about 40 min from a manual segmentation.

Case study of an automated LA segmentation
An example of an automated LA segmentation in end-
diastole, mid-systole, end-systole, and mid-diastole, in 
both views, is illustrated in Fig.  3a, showing excellent 

agreement with the corresponding manual segmen-
tation. The LA volume and LA strain plots through-
out the normalized cardiac cycle of the same subject 
compare the expert and automated values, as shown 
in Fig. 3b. This case presents the typical appearance of 
the LAA and PV ostia in the acquired images and their 
exclusion from the segmentation. A movie is avail-
able as additional file illustrating typical segmentation 
results across a cardiac cycle with time-resolved vol-
ume and strain curves (see Additional file 1).

Segmentation accuracy
The DSC, MCD, and HD between manual and automated 
segmentation in all the evaluation set are reported in 
Table  1. The automated segmentation method achieved 
an excellent DSC of 0.96 and 0.95, an excellent MCD of 
1.2 and 1.3 mm, and a good HD of 5.5 and 6.4 mm, for 
2ch and 4ch, respectively. The inter-observer agreement 
for manual segmentation, reported in Table  2, achieved 
an excellent DSC of 0.95 and 0.95, an excellent MCD of 
1.4 and 1.2 mm, and a good HD of 5.0 and 4.8, for 2ch 
and 4ch, respectively.

Clinical metric accuracy
The accuracy of clinical metrics for the LA ESV, LA EDV, 
LA EF, and LA GLS of the automated method are shown 
in Table  3 compared against the manual metrics with 
excellent ICC and low bias. The inter-observer agreement 
is shown in Table  4. The regression and Bland-Altman 
plots for the LA parameters between the automated and 
manual measurements are presented in Fig. 4a, where an 
excellent correlation and good agreement were observed 

Table 1  Automated segmentation accuracy ( n = 37× 30 ) of 
2-chamber and 4-chamber view  evaluated in Dice similarity 
coefficient (DSC), mean contour distance (MCD) and Hausdorff 
distance (HD)

The mean ± standard deviation are reported

DSC MCD (mm) HD (mm)

2-chamber set 0.96 ± 0.028 1.2 ± 0.53 5.5 ± 3.0

4-chamber set 0.95 ± 0.042 1.3 ± 0.59 6.4 ± 3.7

Table 2  Manual inter-observer agreement ( n = 37× 2 ) of 
2-chamber and 4-chamber view  evaluated in Dice similarity 
coefficient (DSC), mean contour distance (MCD) and Hausdorff 
distance (HD)

The mean ± standard deviation are reported

DSC MCD (mm) HD (mm)

2-chamber set 0.95 ± 0.046 1.4 ± 0.68 5.0 ± 2.6

4-chamber set 0.95 ± 0.038 1.2 ± 0.46 4.8 ± 2.5
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for each of the four parameters, with a lower accuracy 
for LA GLS. Figure  4b shows the corresponding inter-
observer variability of these metrics. All reported corre-
lation values are significant (p<0.0001).

Reproducibility due to variability in MV point placement
The reproducibility was studied through the evalua-
tion of the MV points, obtaining the following errors 
(bias  ±  SD) on the clinical metrics: 0.31  ±  2.26 ml, 
− 0.84 ± 5.32 ml, − 0.52 ± 3.24%, and − 0.45 ± 3.43%, 
for the relative errors of LA EDV, LA ESV, LA EF, and LA 
GLS, respectively. This variation contributed an insignifi-
cant impact on the segmentation accuracy, which yielded 
a DSC of 0.97 ± 0.02, an MCD of 0.54 ± 0.44 mm, and an 
HD of 2.18 ± 2.19 mm, compared against the first auto-
mated results.

The agreement on the LA segmentation results 
between the initialization by the semi-automated [22] 

and the automated [23] method to track the MV points 
on the clinical metrics was: 0.52 ± 3.89 ml, 0.87 ± 5.06 
ml, − 0.13 ± 2.85%, and − 0.03 ± 2.94% for LA EDV, LA 
ESV, LA EF, and LA GLS, respectively. The MV point 
placement presented minimal impact on the segmenta-
tion accuracy, yielding a DSC of 0.97 ± 0.02, an MCD of 
0.48 ± 0.49 mm, and an HD of 2.08 ± 2.19 mm.

Comparison with an automated LA segmentation method
CVI42 produced a clinical-metric error (bias  ±  SD) 
against manual measures of 7.83  ±  10.72 ml, 
11.07 ± 14.06 ml, and − 3.36 ± 9.19%, with an agreement 
(ICC) of 0.95, 0.91, and 0.80 for LA EDV, LA ESV, and LA 
EF, respectively. Although this learning-based method 
performance is strong, it was outperformed by our pro-
posed method, as seen in Table 3. However, we were only 
able to compare LA volumes, not segmentations, and LA 

(b) Clinical metric results
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volumes depend strongly on the evaluation of LA length 
(also automatically calculated by CVI42 ), which may be a 
source of discordance.

Discussion
In this study, a fast, automated method for time-
resolved segmentation of the LA in 2ch and 4ch views 
from standard long-axis cine images was developed 
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Fig. 4  Correlation and bias of left atrial clinical measures between an expert manual segmentation and a the automated method, and b 
segmentation by a second observer, on a set of 37 patients. The first column of each analysis shows the regression plots whereas the second shows 
the Bland-Altman plots of the end-diastolic volume (EDV), in brown, the end-systolic volume (ESV), in blue, the ejection fraction (EF), in purple, and 
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black line denotes the identity line, whereas in each Bland-Altman plot, the red line denotes the mean difference (bias) and the two light dotted 
lines denote ± 1.96 standard deviations from the mean
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and evaluated. The measured values for LA volumes 
and EF were in agreement with other studies [33]. The 
proposed method showed excellent agreement with 
manual segmentation by expert readers. The method 
extracts clinically relevant LA functional parameters 
with precision approaching that of expert readers, 
120 times faster, and with minimal sensitivity to user 
input error. This enables accurate, fast, and reproduc-
ible assessment of LA volumes and function in clinical 
routine. Although the approach requiring manual MV 
point insertion is not fully automated, we developed 
an automated MV tracking method for obtaining these 
points using an in-house deep learning-based network 
[23]. We tested its use in this LA segmentation method, 
demonstrating that a fully-automated LA segmentation 
method provides the same accuracy as the semi-auto-
mated version. Indeed, the accuracy of this LA segmen-
tation method is not sensitive to variability in the MV 
points initialization.

While this paper mainly evaluates LA systolic param-
eters, the results should be similar for diastolic time-
points. The proposed method is able to improve the 
value of cardiac MRI in clinical practice as it allows a 
fast assessment of phasic LA function. Indeed, LA func-
tion, especially in diastole, is rarely evaluated in cardiac 
MRI clinical routine. As shown in Fig.  4a, the method 
provides low bias for volumetric values (LA EDV and 
LA ESV), and functional metrics (LA EF and LA GLS). 
The slight overestimation in volumes is mainly caused 

by (i) the exact, automatic delimitation in the LA edge, 
bigger by one or two-layer pixels than the manual seg-
mentation as its delimitation is observer-dependent, and 
by (ii) the difference in excluding the PV or LAA, which 
also influenced a higher HD. The most significant CoV is 
for LA strain, which is more sensitive than volume due 
to errors in perimeter delineation, especially with the 
valve positioning. However, the automatic strain meas-
urement might be better and more reproducible, since 
manual contouring suffers from inconsistencies between 
time frames. Despite these differences, the CoVs of these 
clinical metrics are on par with other reported variations, 
with a range between 5.7 and 28% [11, 34, 35].

The automated method compared well to other seg-
mentation techniques. For instance, an active contour 
LA segmentation method which automatically initial-
izes a seed region with the Hough transform technique 
was evaluated for volumetric 3D MRI of the LA, with a 
good DSC of 0.82 ± 0.06 (n = 12) [36]. Also applied to 
3D volumetric MRI, a multi-view convolutional neural 
network architecture with an adaptive fusion strategy 
yielded an excellent DSC of 0.95 (n = 20) [37]. Further-
more, the methods presented in a benchmark study [18] 
achieved similar performance. However, these methods 
were targeted to single time frame volumetric imaging of 
the LA, which is an entirely different application, and if 
they were applied to cine images, they would not delimit 
the segmentation with the PV, LAA and the MV bounda-
ries. Other methods, similar to ours, sought to segment 

Table 3  Automated clinical metric accuracy ( n = 37 ) of left atrial (LA) derived parameters for end-diastolic volume (EDV), end-systolic 
volume (ESV), ejection fraction (EF) and global longitudinal strain (GLS)

The mean ± standard deviation are reported

Auto. automated, ICC intra-class correlation coefficient, CI confidence interval, R correlation value, CoV coefficient of variation

Manual measures Auto. measures Error measures ICC (95% CI) R CoV (%)

LA EDV (ml) 51 ± 38 52 ± 37 − 1.2 ± 7.1 0.98 (0.97–0.99) 0.98 12

LA ESV (ml) 100 ± 39 102 ± 39 − 2.4 ± 10 0.97 (0.93–0.98) 0.97 8.2

LA EF (%) 52 ± 15 51 ± 15 0.50 ± 4.3 0.96 (0.93–0.98) 0.96 6.7

LA GLS (%) 33 ± 13 32 ± 13 0.75 ± 5.4 0.92 (0.85–0.96) 0.92 13

Table 4  Manual inter-observer agreement ( n = 37 ) of left atrial (LA) derived parameters  for end-diastolic volume (EDV), end-systolic 
volume (ESV), ejection fraction (EF) and global longitudinal strain (GLS)

The mean ± standard deviation are reported

SO second observer, ICC intra-class correlation coefficient, CI confidence interval, R correlation value, CoV coefficient of variation

Manual measures SO measures Error measures ICC (95% CI) R CoV (%)

LA EDV (ml) 51 ± 38 51 ± 37 0.14 ± 4.8 0.99 (0.99–1.00) 0.99 9.1

LA ESV (ml) 100 ± 39 97 ± 38 3.2 ± 8.7 0.97 (0.95–0.99) 0.98 7.4

LA EF (%) 52 ± 15 50 ± 15 1.8 ± 4.3 0.95 (0.91–0.98) 0.96 9.5

LA GLS (%) 33 ± 13 34 ± 14 − 0.60 ± 3.8 0.96 (0.93–0.98) 0.96 9.4
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the LA in long-axis cine images, as noted above. These 
include a convolutional-neural-network method with the 
unscented Kalman filter which yielded an excellent DSC 
of 0.94 ± 0.04 for 2ch and 0.94 ± 0.08 for 4ch (n = 20) 
[20], and a similar method with a VGG-16 framework 
which also yielded an excellent DSC of 0.93 ±  0.05 for 
2ch and 0.95 ±  0.02 for 4ch (n =  600) [21]. However, 
none of these methods reported clinical metrics nor were 
evaluated in a clinical population. We evaluated com-
mercially available clinical cardiac MRI software capable 
of automated LA volume derivation ( CVI42 ) on our data 
sets, and found high performance, although it was still 
lower than our proposed method and unable to derive 
LA strain values.

The segmentation accuracy of the automated method 
was similar to the manual inter-observer accuracy, as 
shown in Fig.  4b. The inter-observer variability dis-
played a lower standard deviation but higher bias, which 
is inherent to each observer. The accuracy in the 4ch 
view was slightly lower than the inter-observer accu-
racy, meaning the 4ch view is more challenging to seg-
ment by this method. However, the automated method 
segmented the LA in the same manner in every frame, 
which improves the segmentation consistency along the 
cardiac cycle.

In the proposed workflow, the edge detection task was 
a key step prior the edge reconstruction. Within the vast 
range of edge detection techniques [38], in this applica-
tion the chosen Canny’s technique achieved a clearer cost 
image preserving the physiological edges while reducing 
the imaging artifact noise, compared to Sobel, Prewitt 
and Roberts edge detection techniques, which were less 
computationally expensive but achieved a lower overall 
performance. Future work on this matter would involve 
the use of an edge detection technique and an adapted 
problem optimization in a three dimensional space, i.e., a 
stack of all cine frames.

Limitations
The main limitation of this study is the small sample size, 
which did not permit an analysis of how specific imag-
ing issues, such as off-resonance artifacts within the LA 
blood pool or non-standard slice-prescription, affected 
segmentation accuracy. Another limitation might be 
a lack of healthy subjects, since our cohort consisted of 
mainly AF patients. However, this represents the types 
of patients who would require LA function evaluation. 
In our experience, analysis of patients is generally more 
demanding compared to controls.

Another limitation of the method is the need of ini-
tialization with the MV points, although this could 
be automated with residual neural networks [23]. An 

initialization task is commonly employed in segmenta-
tion problems, e.g. to initiate a thresholding task [39] or 
a region-growing process [40]. We showed that the inter-
observer variability of MV placement, including the auto-
mated approach we have developed, minimally impacted 
the segmentation process.

Another limitation of this work is that total segmen-
tation time which, while a matter of only seconds, was 
still longer than learning-based methods [20, 21] which 
require less than a second. Although this difference in 
time is a pitfall, compared to human labor our method is 
valuable and an attractive option.

Conclusion
The developed automated method performs time-
resolved segmentation of the LA in cardiac MRI cine 
images using active contours in a polar grid. The method 
performs well in assessing LA volumes and strains 
against manual measurements in a patient population. 
Furthermore, the method yielded clinical metrics in line 
with inter-observer variability between expert readers.

Our LA segmentation method, based on active con-
tours automatically initialized by mitral annular points 
placement, may be introduced as a accurate, fast, and 
reproducible method for measuring phasic LA volume 
and strain in cardiac MRI.
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