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Abstract 

Background:  Artificial Intelligence (AI) is a promising tool for cardiothoracic ratio (CTR) measurement that has been 
technically validated but not clinically evaluated on a large dataset. We observed and validated AI and manual meth-
ods for CTR measurement using a large dataset and investigated the clinical utility of the AI method.

Methods:  Five thousand normal chest x-rays and 2,517 images with cardiomegaly and CTR values, were analyzed 
using manual, AI-assisted, and AI-only methods. AI-only methods obtained CTR values from a VGG-16 U-Net model. 
An in-house software was used to aid the manual and AI-assisted measurements and to record operating time. Intra 
and inter-observer experiments were performed on manual and AI-assisted methods and the averages were used in 
a method variation study. AI outcomes were graded in the AI-assisted method as excellent (accepted by both users 
independently), good (required adjustment), and poor (failed outcome). Bland–Altman plot with coefficient of vari-
ation (CV), and coefficient of determination (R-squared) were used to evaluate agreement and correlation between 
measurements. Finally, the performance of a cardiomegaly classification test was evaluated using a CTR cutoff at the 
standard (0.5), optimum, and maximum sensitivity.

Results:  Manual CTR measurements on cardiomegaly data were comparable to previous radiologist reports (CV 
of 2.13% vs 2.04%). The observer and method variations from the AI-only method were about three times higher 
than from the manual method (CV of 5.78% vs 2.13%). AI assistance resulted in 40% excellent, 56% good, and 4% 
poor grading. AI assistance significantly improved agreement on inter-observer measurement compared to manual 
methods (CV; bias: 1.72%; − 0.61% vs 2.13%; − 1.62%) and was faster to perform (2.2 ± 2.4 secs vs 10.6 ± 1.5 secs). The 
R-squared and classification-test were not reliable indicators to verify that the AI-only method could replace manual 
operation.

Conclusions:  AI alone is not yet suitable to replace manual operations due to its high variation, but it is useful to 
assist the radiologist because it can reduce observer variation and operation time. Agreement of measurement 
should be used to compare AI and manual methods, rather than R-square or classification performance tests.
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Introduction
Chest radiography (CXR) is the most widely-used 
modality for screening of lung and heart diseases in 
clinical practice due to its easy accessibility and cost-
effectiveness [1]. The cardiothoracic Ratio (CTR) 
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obtained from CXR is the preferred index to provide 
prognostic information on heart disease [1–4]. The 
CTR is derived from a ratio of heart to internal tho-
racic diameters with a value of more than 0.5 indi-
cating the presence of cardiomegaly [2]. Manual 
calculation of CTR introduces observer variation and 
is time consuming. Therefore, automatic calculation of 
CTR could be a useful tool for clinicians and radiolo-
gists to improve accuracy and reduce workload.

Deep Learning (DL), a subset of Artificial Intelli-
gence (AI) methods, has demonstrated advances in 
medical imaging [5–8]. DL techniques can reliably/
accurately classify CXR abnormalities [8], and detect 
diabetic retinopathy in fundus images [6]. The tech-
nique has also been employed to automatically cal-
culate CTR [9–12]. Presently, all DL techniques in 
CTR calculation are based on the U-Net model, the 
most successful convolutional network for biomedical 
image segmentation [13]. Since its conception, U-Net 
has inspired many successors and previous studies 
have reported that modification of encoding architec-
ture can further improve accuracy [14–17]. While DL 
techniques in CTR calculation have been technically 
validated, only two reports [9, 11] with small sample 
size (n = 100) were conducted in the clinical setting. 
Therefore, there is a need to clinically validate this cal-
culation technique with a large dataset before it can be 
implemented in routine hospital settings.

We aimed to assess CTR measurement agreement 
using manual and AI methods on both observer and 
method variations in a large dataset, and to investi-
gate the clinical utility of the AI method. Specifically, 
we assessed if the AI method could be used indepen-
dently and how much time it could save compared to 
the manual approach. We also investigated agreement 
of measurement, linear correlation, and classification 
performance tests as indicators to determine if the AI 
method could replace manual operations.

Materials and methods
Study population
This study complied with the Declaration of Helsinki and 
was approved by the Siriraj Institutional Review Board 
(Si069/2020). Informed consent was waived due to the 
retrospective nature of the study. There were two data 
groups, normal and cardiomegaly, in the study. Data were 
acquired from chest x-ray radiologist reports between 
2010–2019 from patients aged over 17  years, and their 
PA-upright CXR images were retrieved from the Pic-
ture Archiving Communication System (PACS) in our 
radiology department. Normal chest x-rays, and chest 
x-rays with cardiomegaly with CTR measurements were 
included. Five-thousand normal CXR images were ran-
domly obtained and all 2,517 cardiomegaly images were 
acquired for a total of 7,517 images. The CTR values from 
radiologist reports were considered to be the reference 
method. Reference CTR values were only available for 
the cardiomegaly data because in our high patient vol-
ume clinical setting, radiologists measure CTR only on 
cases suspected of having cardiomegaly.

AI model
The deep learning technique employed in this study was 
based on U-Net with VGG-16 encoding. The model 
was an in-house development project and a collabora-
tion between radiologists and machine learning scien-
tists [10]. Due to the lack of high-quality open-source 
solutions and the shortage of large, open datasets with 
high-quality segmentation annotations, we adopted a 
well-known U-Net model architecture and then trained 
the model using public datasets. U-Net leverages feature 
pooling to generate context and successive up-sampling 
operators to achieve a high-resolution mask output 
(Fig.  1). The network consists of two connecting parts; 
the down-sampling part also referred to as the encoder 
or the contraction path, and the up-sampling part also 
known as the decoder or the expansion path. The con-
traction path uses successive convolutional layers with 

Fig. 1  Model architecture of U-Net with VGG-16, the AI model used in this experiment
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max pooling that consecutively reduces the input dimen-
sions. This encoding part is replaced with VGG-16. The 
expansion path utilizes a stack of up-sampling blocks, 
each block containing an up-sampling operation followed 
by a 2 × 2 up-convolution. The output of each block is 
concatenated with the feature maps from the corre-
sponding layer of the encoder, and parsed through two 
consecutive convolutions for output assembly.

The network was trained using a limited public data-
set [10], and manually labeled by radiologists and non-
experts with 2,002 samples with ground-truth heart 
segmentations and 1,238 samples with ground-truth 
lung samples. In the CTR calculation process, the net-
work produces thoracic and cardiac masks. The left and 
right extreme points of these masks were used to find 
heart and lung diameters and to calculate the heart and 
lung ratio or CTR (Fig. 2b). Our data were not part of a 
training or validation process for the DL model, and so 
functioned as a test of the model itself [18]. Finally, the 
technique was considered to have given a failed outcome 
when it could not segment the lung or heart (i.e., the 
technique gave unreasonable lung or heart size, such as 
heart size less than 3 mm).

Experimental setting
The study was designed to investigate observer and 
method variations of CTR measurements between man-
ual and AI techniques, which were performed on both 
normal and cardiomegaly data groups (all data) and only 
on cardiomegaly group to emulate normal clinical prac-
tice at our hospital. Three CTR measurement methods 
were applied; manual, AI-assisted and AI-only. AI-only 

methods obtained CTR values from the U-Net with 
VGG-16 encoding model. A medical scientist with expe-
rience in medical image processing (PY) and a second-
year radiology resident (KR) independently performed 
CTR measurements in the manual and AI-assisted 
methods with supervision from four experienced chest 
radiologists (TT, TS, WS, and PT). The independent 
measurements were performed separately and two weeks 
apart on each dataset to reduce measurement bias. PY 
performed the measurement twice (intra-observer), KR 
performed the measurement once, and the average of 
these three measurements was used for method variation 
studies.

We developed a program using MATLAB software 
(R2019a, MathWorks, Inc., Natick, MA, USA) to assist 
the user operations as shown in Fig.  2a. The software 
provides graphical user interface for CTR measurement 
and records the user-interaction time of each measure-
ment. In the manual method, users were presented with 
three lines of heart and chest borders in a default posi-
tion (Fig. 2a) and asked to adjust these lines to the appro-
priate locations (Fig. 2b). In the AI-assisted method, the 
lines were positioned as suggested by the AI calculation 
and users could choose to accept them without further 
adjustment or to disagree, which required adjustment of 
the lines. If there were any failure in the AI calculations, 
then the default line positions from the manual method 
were used. Based on human/user interaction in the AI-
assisted method, AI outcomes could be categorized into 
excellent, good, and poor categories. Any AI calculation 
failure was classified as poor and its data were excluded 
from the variation and correlation experiments. When AI 

Fig. 2  An in-house software for CTR measurement. The green and red lines are heart and chest border lines at default (a) and user-adjusted (b) 
positions, and the spine line is yellow. CTR was calculated from the ratio of these heart and chest lines (b)
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outcomes were accepted by both users independently, it 
was classified as excellent. Finally, if any adjustment was 
required by a user then the outcome was considered to 
be good. The time of each case was measured from the 
start of line adjustment to acceptance (i.e., hit the save 
button as in Fig. 2b).

Statistical analysis
Statistical analysis was performed on MATLAB and 
MedCalc (19.5.3, MedCalc software Ltd, Ostend, Bel-
gium) software. The paired Student’s t-test was used for 
parametric evaluation between measurement meth-
ods with the statistical significance level set at p < 0.05. 
Bland–Altman plot and linear correlation were employed 
to evaluate agreement and correlation between meas-
urement methods, respectively. Coefficient of variation 
(CV) signifying level of agreement was calculated from 
the standard deviation of the differences between two 
methods, then divided by their mean and expressed as a 
percentage. Thus, the lower the CV the better agreement 
was between two measurement methods. Coefficient of 
determination (R-Squared or R2) was defined into four 
categories: poor (less than 0.5), moderate (0.5 – 0.75), 
good (0.75–0.9), and excellent (more than 0.9). Finally, 
the performance of the cardiomegaly classification test 
was evaluated using accuracy, sensitivity, specificity, area 
under receiver operating characteristics curve (AUC), 
and F1-score metrics on CTR cutoff values at 0.5 (the 
standard), the optimum (i.e., maximize both sensitivity 
and specificity), and the maximum sensitivity (i.e., to rule 
out cardiomegaly).

Results
Patient characteristics
There were 4,933 (1,431 males and 3,502 females; aged 
42.5 ± 14.8 years) patients with normal CXRs, and 2,419 
(675 males and 1,744 females; aged 64.2 ± 14.0  years) 
CXRs from patients with cardiomegaly (Table  1). 
According to the radiologist reports (reference method), 
the mean CTR value in the cardiomegaly group was 
0.569 ± 0.047.

AI outcomes
With the AI-assisted method, 40% of outcomes were 
excellent, 56% were good, and 4% were poor (Fig. 3). Poor 
outcomes were mostly (97%; 290/299 cases) observed in 
the normal group, while only nine of 2,571 cardiomegaly 
cases had a poor outcome. Furthermore, most failures 
involved the heart segmentation calculation. Three exam-
ples of the poor outcome are displayed in Fig. 3j–l, which 
also illustrates CTR measurements from the AI-assisted 
method.

Observer variations
Intra- and inter-observer variations from the manual and 
AI-assisted methods are presented in Fig. 4 and Table 2. 
Overall, the CV and bias of observer variations from both 
methods was lower than 2.2% and 1.7%, respectively, 
while the inter-observer variation of the manual method 
was 2.13%(CV) and −  1.62% (bias). The AI-assisted 
method significantly (p < 0.001) improved agreement on 
inter-observer measurements compared to the manual 
method (CV; bias: 1.72%; −  0.61% vs 2.13%; −  1.62%). 
Observer variations in the normal and the cardiomegaly 
group were comparable to that of both groups combined 
(data not shown). Therefore, the AI-assisted method 
increased observer agreement compared to the manual 
method.

Method variations
CTR values from manual, AI-only, and AI-assisted 
methods were not significantly different on normal 
(0.455 ± 0.043, 0.447 ± 0.058, and 0.453 ± 0.044, respec-
tively) and cardiomegaly (0.570 ± 0.045, 0.569 ± 0.049, 
and 0.570 ± 0.044, respectively) data. They also did not 
differ from the reference method (0.569 ± 0.047). Varia-
tions (CVs) from the reference method to manual and AI-
assisted methods were at a similar level to inter-observer 
variation of the manual method (CVs of 2.04% and 2.23% 
vs 2.13, respectively). Our CTR measurements on car-
diomegaly data, hence, were comparable to the previous 
reports by experienced radiologists.

In contrast, the CVs of comparison between manual 
and AI-only methods were about three times higher than 
the inter-observer variation in the manual method on 
all data (5.78%), and in the cardiomegaly (5.61%) groups 
(Fig. 5b, d, and Table 3). Interestingly, although these two 

Table 1  Patient demographic data

Normal group Cardiomegaly group

Number of patients 4,933 2,419

Gender

Male 1,431 (29%) 6,75 (28%)

Female 3,502 (71%) 1,744 (72%)

Mean age (years) 42.5 ± 14.8 64.2 ± 14.0

Age

 < 18 33 (0.7%) 0 (0%)

18–35 1,771 (35.9%) 87 (3.6%)

36–50 1,562 (31.7%) 300 (12.4%)

51–65 1,225 (24.8%) 831 (34.3%)

66–80 329 (6.7%) 926 (38.3%)

 > 80 13 (0.2%) 275 (11.4%)

CTR value 0.454 ± 0.043 0.569 ± 0.047
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groups had similarly high variation, their coefficients of 
determination were noticeably different: all data was 
good (R2 = 0.79) while the cardiomegaly group was poor 
(R2 = 0.34) (Fig.  5a, c). The CVs of comparison between 

the manual and AI-assisted methods, on the other hand, 
were significantly lower than the inter-observer vari-
ation of manual method, 1.50% and 1.54% vs 2.13%, on 
all and cardiomegaly data groups, respectively (Fig.  6b, 

Fig. 3  CTR measurements on normal, mild cardiomegaly and cardiomegaly cases using AI-only (the first and second rows) and manual (the 
third and fourth rows) methods. The first (a–c) and second (d–f) rows are CTR measurements by AI-only which accepted and rejected by user, 
respectively. The third row (g–i) is the user adjustment of the rejected AI-only operation (the second row) while the last row (j–l) demonstrates the 
failed cases from AI-only operation required fully manual operation. CTR value is displayed at the lower right corner of each image
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d). Furthermore, unlike the AI-only method, their coef-
ficients of determination were in a similar excellent cat-
egory (R2 > 0.9) (Fig.  6a, c). The AI-assisted method, 
therefore, had a similar variation as the manual method 
but the AI-only method was about three times higher 
than the manual one. Furthermore, these results demon-
strate that the R-squared measurement is not a reliable 
indicator to verify the AI method.

The performances of cardiomegaly classification tests 
are presented in Table 4. All performance metrics from 

manual and AI-assisted methods were comparable on 
all cutoff points, and all were in the excellent level (e.g., 
AUC > 0.9 with all cutoff points around 0.5). The AI-
only method gave similar outcomes only on the stand-
ard and optimum cutoffs, but provided a poor outcome 
on the cutoff point at the maximum sensitivity, (e.g., 
accuracy of 34.8% with cutoff point around 0.2). The 
classification metrics were not reliable parameters to 
evaluate the performance of the AI-only method. For 
example, the AI-only method had almost three times 
higher observer and method variations as compared to 
the manual method, but if standard or optimum cutoffs 
were used, they would misleadingly suggest that the 
AI-only method also had the same excellent classifica-
tion performance as the manual method. In contrast, 
if the cutoff for ruling out cardiomegaly (i.e., cutoff at 
the maximum-sensitivity) was used then classification 
performance would be very poor. Thus, the cutoff cri-
teria will dictate the outcome of the AI study in CTR 
measurement.

Fig. 4  Bland–Altman plots of Manual (a, c) and AI-assisted (b, d) methods. Note: AI-assisted method had lower bias and CV as compared to Manual 
method on both intra- and inter-observer variation studies

Table 2  Bias, 95% CI, and coefficient of variation of intra- and 
inter-observer CTR measurements from Manual and AI-assisted 
methods on normal and cardiomegaly dataset

Method Intra-observer Inter-observer

Bias (95% CI) (%) CV(%) Bias (95% CI) (%) CV (%)

Manual 0.09 (−4.10 4.29) 1.51 −1.62 (−6.50 3.25) 2.13

AI-assisted 0.17 (−2.90 3.23) 1.10 −0.61 (−5.22 3.99) 1.72
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Measurement time
Average CTR measurement time for the manual method 
was about 10.6 ± 1.5 secs per case while it was almost five 
times faster (2.2 ± 2.4 secs) in the AI-assisted method 
on all data and on the cardiomegaly group alone (data 
not shown). From the AI-assisted method, the measure-
ment times were 0  s, 3.1 ± 1.8 secs, and 10.2 ± 1.3 for 
the excellent, good, and poor categories, respectively. 
The AI-assisted method then is almost five times faster 
to perform than the manual method. Furthermore, if the 
data were selected from the AI-only and manual meth-
ods using the AI’s excellent outcome criteria, then the 

CTR differences from the two methods will be in the 
range of ± 1.8% (calculated from 95% confidence inter-
val of data). In other words, if the outcome from the 
AI-only method differs from the manual method by less 
than ± 1.8%, then its outcome can be accepted without 
any further interaction from the user (i.e., an excellent 
category).

In summary, the method variations from the AI-
only method were about three times higher than from 
the manual method. CTR calculations from the AI-
only method, however, are a very useful tool to assist 

Fig. 5  Linear correlation (a, c) and Bland–Altman (b, d) plots of Manual and AI-only method on all (the first row) and cardiomegaly (the last row) 
data. Note: Even these comparisons had high variation on both types of data, their R-squared were interestingly different as in good (0.7945) and 
poor (0.3384) in all and cardiomegaly data, respectively

Table 3  Comparison of Bias, 95% CI, and coefficient of variation (CV) of CTR measurements

Comparison Normal and cardiomegaly data Cardiomegaly data

Bias (95% CI) (%) CV (%) Bias (95% CI) (%) CV (%)

Manual vs AI-only −0.93 (−15.0 13.14) 5.78 −0.09 (−13.30 13.12) 5.61

Manual vs AI-assisted −0.08 (−4.22 4.07) 1.50 0.08 (−4.20 4.37) 1.54
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Fig. 6  Linear correlation (a, c) and Bland–Altman (b, d) plots of Manual and AI-assisted method on all (the first row) and cardiomegaly (the last row) 
data. Note: These comparisons had low variation on both types of data and unlike from Manual and AI-only method (Fig. 5), their R-squared were 
consistency at good category (0.978 and 0.9482)

Table 4  Classification test on Manual, AI-only, and AI-assisted methods using cutoff points at the Standard (0.5), Optimum (maximum 
sensitivity and specificity), and maximum-sensitivity (Max-Sens)

Method Test CTR Cutoff Sensitivity (%) Specificity (%) Accuracy (%) F1 AUC​

Manual Standard 0.5 100 83.6 89.3 0.866 0.978

Optimum 0.518 95.8 91.8 93.2 0.907

Max-Sens 0.505 100 86.0 90.9 0.884

AI-only Standard 0.5 97.5 82.8 87.9 0.849 0.962

Optimum 0.521 90.3 91.0 90.8 0.872

Max-Sens 0.219 100 0.10 34.8 0.516

AI-assisted Standard 0.5 100 84.3 89.8 0.873 0.977

Optimum 0.516 96.0 91.3 92.95 0.904

Max-Sens 0.501 100 85.0 90.2 0.876
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the user, providing a better agreement and are almost 
five times faster to perform. Furthermore, CV is a 
better parameter than R-squared or the classifica-
tion performance test for the validation of AI in CTR 
measurement.

Discussion
CTR derived from CXR is a valuable index for the evalu-
ation of heart diseases, especially cardiomegaly [1–4]. 
To measure it, however, still requires manual operations 
that are user dependent and time consuming. Despite its 
utility, the measurement process is a burden in clinical 
practice. Recently, the AI method successfully provided 
automatic calculations of such an index and has been val-
idated technically in various studies [9–12]. To use AI in 
the clinical setting, there is a need for clinical evaluation 
to assess the measurement agreement with the manual 
method. However, there have been only two published 
pilot studies [9, 11] with small datasets that addressed 
this issue.

To our knowledge, this study was the first report of 
observer and method variations to validate CTR meas-
urement using AI on a large dataset (n = 7,517). Using a 
modified U-Net deep-learning model (i.e., 2D VGG-16 
U-Net) for CTR calculation, AI-only was found not to be 
suitable for use as an automated method of CTR meas-
urement due to its high variations compared to the man-
ual method. Its CTR calculations, on the other hand, can 
assist the user to obtain better results. Furthermore, the 
coefficient of determination (R2) or classification perfor-
mance test (e.g., AUC) should not be employed because 
it may lead the investigator to falsely conclude that the 
AI-only method can be employed on an automated basis. 
Bland–Altman plot with Covariant of Variation (CV) 
parameters evaluated on a large data should be utilized 
instead to indicate agreement between these methods.

We found that the AI-only method can provide excel-
lent outcomes in about 40% of the data, which is a desira-
ble result for an automated method. However, about 56% 
of outcomes required adjustment by the user (i.e. good 
outcome), a condition that must be improved before AI-
only can be used automatically. Specifically, the AI-only 
method needs to be improved on heart diameter calcula-
tion which is difficult to perform because its pixel value 
is low, and its edges are fused with the lung borders or 
the thoracic spine [19]. In addition, the AI-only method 
also had about a 4% failure rate (i.e., poor outcome) most 
of which was in the normal data group (97%: 290/299). 
In routine clinical usage, where CTR is measured only 
on suspected cardiomegaly cases, this failure is infre-
quent (9 failures in 2,517 cardiomegaly data). Neverthe-
less, most of the segmentation failure was on hearts with 
quite short diameters (e.g., Fig.  3j). This may be due to 

an inadequate presentation of such heart data shape in 
the training dataset. Fine tuning the model using a local 
heart shape dataset should further reduce such failures.

We found that the AI-assisted method had lower inter-
observer bias and variation than the manual method (CV 
and bias: 1.72% vs 2.13% and − 0.61 vs − 1.62). This may 
be due to the AI’s excellent outcome in about 40% of data 
which can help to improve measurement agreement. 
Furthermore, it is almost five-fold faster to perform than 
using the manual method, and increases F1 from 0.866 to 
0.872 at the standard CTR cutoff point of 0.5. This clearly 
demonstrates the usefulness of the AI method to assist 
with CTR measurement. Our AI-assisted time perfor-
mance was also in agreement with a recent study by Ber-
cean et  al. [9] which found a similar magnitude of time 
reduction (22.5 vs 5.1 secs, or 4.4 times). Even on a small 
dataset (n = 200), that study also found that the model-
assisted method can improve the individual radiologist’s 
cardiomegaly F1 score (0.845 to 0.851) compared to the 
manual method.

We concluded that the classification performance test 
of the AI-only method was not better than from the 
manual method, a finding at odds with a report by Li 
et al. [11] that found that the sensitivity and negative-pre-
dictive values of the AI-only method were significantly 
better than the manual method. This may be due to two 
factors. First, the performance of deep learning algo-
rithms in automated CTR measurement tasks depends 
on their ability to correctly locate heart and lung bounda-
ries. In Li et al. [11], algorithms may have achieved more 
precise anatomical segmentations, although the authors 
did not provide precision metrics on an open dataset for 
comparison with the model we used [10]. Second, the 
algorithm in Li et al. [11] was trained and tested on the 
same dataset, while the model used in this paper was 
trained on an open dataset, and tested in an out-of-sam-
ple fashion. It would be useful to validate their finding by 
performing the classification test using their model on 
our dataset.

CTR measured from manual and AI-assisted methods 
were in substantial agreement with the reference method 
(CVs of 2.0 and 2.2%, respectively). The AI-only method, 
in contrast, had almost three times higher CVs on all 
comparisons. This strongly suggests that the AI-only 
method is not yet suitable to be employed as an auto-
mated method. However, its R2 of all data (normal and 
cardiomegaly groups) and classification performance test 
at the standard or optimum cutoffs were similar to other 
methods. This is because R2 measures linear association 
rather than agreement of data [20, 21] and measure-
ments with highly correlated data may have poor agree-
ment [21], as in our case. Furthermore, the correlation 
typically depends on the range of measure. This is why 
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the R2 of the manual and AI-only methods was good in 
normal and cardiomegaly groups (R2 = 0.79; CTR data 
range = 0.35–0.85), but poorly correlated in the cardio-
megaly group alone (R2 = 0.34; CTR data range = 0.52–
0.85) (Fig. 5a, c). On the other hand, if the Bland–Altman 
plot and CV present with good agreement (Fig.  6b, d), 
then they are likely to be highly correlated [21] as shown 
in Fig. 6a, c. Thus, the agreement measurement should be 
employed to evaluate the compatibility of the AI to the 
manual method in CTR measurement study.

Classification performance tests may also be mislead-
ing because they only provide information on the per-
formance of normal and cardiomegaly groups, and not 
how the methods agree. For example, Fig.  3d, f present 
cases where the AI-only method gave a false positive 
and negative result, respectively. These two data have an 
effect on the classification test, but most of the AI data 
did not have this effect (i.e., AI’s CTR data did not change 
the classification) as shown in Fig.  3e and Table  4. Still, 
we obtained excellent classification performance at the 
standard CTR cutoff (e.g., AUC = 0.902). However, if 
the AI-only method were employed to rule out cardio-
megaly patients (i.e., using CTR cutoff at the maximum 
sensitivity), then the method would perform poorly (e.g., 
accuracy of 34.8%) and should not replace the manual 
approach. Test agreement is necessary for evaluation of 
the AI-only method if it is to be implemented as an auto-
mated method, and its agreement should be comparable 
to the manual method (CV = 2.1%).

We performed observer and method variation tests 
on a large dataset using only a modified U-Net Deep-
Learning model because we wished to obtain baseline 
AI performance data. Our results, especially the manual 
measurement of 7,517 CXRs, will serve as a reference to 
evaluate other state-of-the-art AI models [22]. Our plan 
is to test these models on our dataset and accept the AI 
outcome only if it differs from our manual results by less 
than ± 1.8% (i.e., an excellent category where the user 
can accept its outcome without adjustment). Any model 
with > 70% acceptance rate will be studied prospectively 
in a clinical setting and evaluated by our radiologists. 
Furthermore, at such an acceptance rate, we will perform 
another retrospective study in our PACS data (around 
one million CXR images). Such a pioneering study would 
provide more insight into CTR values and useful infor-
mation for clinicians.

There were some limitations in our dataset and meth-
ods. We used only normal and cardiomegaly data and 
there was no data from other pathologies, such as the fat 
pad of the pericardium or pleural effusion. These patho-
logic conditions may limit the DL model’s ability to seg-
ment heart and lung, and may lower the performance 

of CTR measurement. Such data should be included in 
future studies to better evaluate the performance of the 
model. Furthermore, we only investigated adult cases, 
but evaluation of CTR measurement by AI in pediatric 
cases is needed. Next, we used only a publicly available 
dataset. Future studies using local datasets are needed to 
improve the model’s performance. Finally, unlike most 
deep learning for CXR analysis studies, this study did not 
address the question of how AI can be trained to match 
human performance in CTR measurement, but focused 
on assessing the extent to which deep learning methods 
can benefit the radiologists’ practice in a clinical setting. 
Future studies may focus more on the patterns of errors 
generated by the algorithms and suggest ways to improve 
their accuracy.

Conclusion
We conclude that AI should be employed to assist radi-
ologists to perform CTR measurement because it can 
significantly reduce variations and is almost five-fold 
faster than the manual method. However, AI alone is 
not yet suitable for automated measurement due to its 
high variations. Agreement of measurement, like the 
Bland–Altman plot and CV should be used to evaluate 
the comparability of AI to the manual method, while the 
coefficient of determination or classification performance 
test should be used with caution because it is not a reli-
able indicator.
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