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Abstract 

Background:  To determine the predictive capability of MRI-based radiomics for extrathyroidal extension detection in 
papillary thyroid cancer (PTC) pre-surgically.

Methods:  The present retrospective trial assessed individuals with thyroid nodules examined by multiparametric 
MRI and subsequently administered thyroid surgery. Diagnosis and extrathyroidal extension (ETE) feature of PTC 
were based on pathological assessment. The thyroid tumors underwent manual segmentation, for radiomic feature 
extraction. Participants were randomized to the training and testing cohorts, at a ratio of 7:3. The mRMR (maximum 
correlation minimum redundancy) algorithm and the least absolute shrinkage and selection operator were utilized 
for radiomics feature selection. Then, a radiomics predictive model was generated via a linear combination of the 
features. The model’s performance in distinguishing the ETE feature of PTC was assessed by analyzing the receiver 
operating characteristic curve.

Results:  Totally 132 patients were assessed in this study, including 92 and 40 in the training and test cohorts, respec-
tively). Next, the 16 top-performing features, including 4, 7 and 5 from diffusion weighted (DWI), T2-weighted (T2 WI), 
and contrast-enhanced T1-weighted (CE-T1WI) images, respectively, were finally retained to construct the radiomics 
signature. There were 8 RLM, 5 CM, 2 shape, and 1 SZM features. The radiomics prediction model achieved AUCs of 
0.96 and 0.87 in the training and testing sets, respectively.

Conclusions:  Our study indicated that MRI radiomics approach had the potential to stratify patients based on ETE in 
PTCs preoperatively.
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Background
Papillary thyroid carcinoma (PTC) constitutes about 
80% of all differentiated thyroid cancers, representing 
the commonest type of thyroid cancer [1]. PTC shows 

aggressive properties, including extrathyroidal extension 
(ETE), and lymph node and distant metastases, suggest-
ing poor prognosis [2, 3]. ETE reflects a primary tumor 
that extends beyond the thyroid capsule and invades 
the neighboring tissues [4]; it is considered to have an 
elevated risk of local recurrence [5, 6] and utilized in 
multiple staging systems [7–9]. Based on the degree of 
invasion, ETE is divided into minimal and gross ETE. 
Traditional treatment options for PTC include total 
and subtotal thyroidectomies, with or without cervi-
cal lymph node dissection, and subsequent radioactive 
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iodine remnant ablation [10]. However, PTC risk is rela-
tively low, with recurrence and survival rates of 3–4% 
and > 99%, respectively [11]. According to the 2015 ATA 
Guidelines [12], ipsilateral lobectomy is recommended 
rather than total thyroidectomy in low risk patients with 
PTC, and thyroidectomy with prophylactic central cer-
vical lymphadenectomy is not recommended for non-
aggressive PTCs because of complications, including 
laryngeal nerve injury and hypoparathyroidism. Cur-
rently, the aggressive properties of tumors, especially the 
ETE feature, can only be obtained by pathological evalu-
ation of specimens after thyroidectomy [13]. Therefore, 
preoperative assessment of PTC aggressiveness may help 
clinicians better plan surgical procedures. This suggests 
that noninvasive examination methods for identifying the 
aggressiveness of tumors are urgently needed for more 
targeted treatment.

Ultrasound (US) represents the commonest imaging 
method for thyroid nodule detection. However, its accu-
racy in assessing deep neck structures is not satisfactory 
due to the influence of bones and air [12, 14]. Further-
more, US is ambiguous for minor extrathyroidal exten-
sion [15, 16]. Fine-needle aspiration (FNA) biopsy can be 
accurately and cost-effectively applied [12], but has low 
ability in revealing the aggressive features of thyroid nod-
ules [3, 17, 18].

Magnetic resonance imaging (MRI) can provide excel-
lent contrast of soft tissues and allow multi-planar eval-
uation of anatomical details. MRI also assesses tumor 
aggressiveness, such as the ETE feature and cervical 
lymph node metastasis [19–21]. Another study [3] dem-
onstrated that DW-MRI-based ADC values could help 
stratify PTC patients according to the ETE, although the 
average ADC of ROIs utilized might not comprehensively 
reflect the tumor features. Identification of an effective 
non-invasive imaging approach would provide insights 
into early PTC management.

Radiomics represents a high-throughput quantitative 
feature extraction method, which converts images into 
minable data, and then analyzes these data to provide 
decision support. These data are mined using complex 
bioinformatics tools for developing models that could 
ameliorate diagnosis, prognosis, and prediction accuracy 
[22–25]. A previous study showed that MR-based radi-
omics has a potential value in the presurgical prediction 
of lymph-vascular space invasion in cervical cancer [26]. 
Another study revealed that radiomics provides a nonin-
vasive approach for analyzing breast cancer subtypes and 
TN stages [27].

However, there are few reports applying radiomics to 
assess extrathyroidal extension in PTC, indicating a gap 
in knowledge. Therefore, MR-based radiomics might pro-
vide an accurate approach for extrathyroidal extension 

prediction in PTC. This work aimed to evaluate whether 
radiomics applying multiple parametric MRI has the 
potential to detect extrathyroidal extension in PTC.

Methods
Patients
The current retrospective trial assessed consecutive indi-
viduals with thyroid nodules firstly identified by US from 
January 2018 to March 2019. Based on the American 
College of Radiology Thyroid Imaging, Reporting, and 
Data System [28], tumor grades were TR3-TR5.

All patients were examined by multiparametric MRI 
and subsequently administered thyroid surgery, subto-
tal or total thyroidectomy, within 1 week following MRI. 
PTC was pathologically confirmed with surgical speci-
mens. Exclusion criteria were: (1) pathological diagnosis 
not reflecting PTC; (2) tumor size < 5  mm; (3) no asso-
ciation of pathological data of tumor specimens with 
MR imaging findings; (4) poor MR quality. Finally, 132 
cases were assessed. Figure 1 depicts the patient selection 
process.

The Institutional Review Board of our Hospital 
approved this study and waived the requirement for writ-
ten informed consent due to its retrospective nature.

MRI acquisition
All patients were scanned on an EXCITE HD 1.5T 
scanner (GE Healthcare, USA) comprising an 8-chan-
nel special neck surface coil, using the same scanning 
protocol. The applied parameters were as follows: axial 
T2-weighted (T2WI) fast recovery fast spin-echo with fat 
suppression with an echo time (TE) of 85  ms, a repeti-
tion time (TR) of 1280 ms, a slice thickness of 4–5 mm, 
a matrix of 288 × 192, spacing of 1  mm, a field of view 
(FOV) of 18  cm, and a number of excitations (NEX) of 
4; DWI with a single-shot echo planar imaging (EPI) 
sequence, with minimal TE, a TR of 6550  ms, a slice 
thickness of 4–5  mm, a matrix of 128 × 128, spacing of 
0.5 mm, a FOV of 14 cm, and a NEX of 4 (b value, 800 s/
mm2); contrast-enhanced axial T1WI (CE-T1) with mul-
tiphase utilizing a fast-spoiled gradient recalled echo 
sequence (TE = 1.7 ms, TR = 5.7 ms, matrix = 192 × 256, 
FOV = 14  cm, and NEX = 1). The Magnevist contrast 
agent (Bayer Healthcare, USA) was administered by 
intravenous injection at 3  ml/s (0.2  ml/kg), followed by 
flushing with 20 ml of normal saline. Scanning was per-
formed at 30, 60, 120, 180, 240 and 300 s after contrast 
administration, respectively, and images of the six phases 
were obtained, including breath-holds. Spatial saturation 
bands were employed for removing signals generated by 
overlying fat and surrounding tissues.
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Histopathologic analysis
Surgical tumor samples were evaluated and analyzed by 
an experienced pathologist (> 10 years of related experi-
ence). Paraffin-embedding of tumor samples was fol-
lowed by sectioning and hematoxylin and eosin (H&E) 
staining. Then, established criteria were utilized by the 
pathologist for evaluating the extrathyroidal extension 
(ETE) feature [12]. The patients were then assigned to the 
non-ETE and ETE groups.

MRI radiomics
Tumor segmentation
ITK-SNAP (http://www.itk-snap.org) was applied for 
the segmentation of thyroid tumors. Regions of inter-
est (ROIs) were manually drawn on MR images by 
2 radiologists (9 and 12  years of related experience, 
respectively). In case of disagreement, they reached a 
consensus through additional reading sessions. The ROIs 
were delineated slice-by-slice to represent the 3D volume 
of the whole tumor. The largest tumor was selected in 
each patient and delineated on MR images, which could 
reduce potential bias of multiple tumors in the same indi-
vidual and improve the applicability of findings.

Radiomics feature extraction
To facilitate imaging analysis, all T2WI, ADC and 
CE-T1 images were resliced at 4 mm. Radiomic features 

were automatically extracted with the AK software ver-
sion 3.2.2 (GE healthcare). A total of 402 features were 
extracted, including shape, histogram, gray-level run-
length matrix (GLRLM), gray-level cooccurrence matrix 
(GLCM), and gray-level size zone matrix (GLSZM) 
indexes.

Feature selection and model construction
Participants were randomized to the training and test 
cohorts (ratio, 7:3). To assess interobserver agreement, 
30 patients were randomly selected and intraclass cor-
relation coefficients (ICCs) for various features were cal-
culated. According to the 95% confidence intervals (CIs), 
values below 0.4, from 0.41 to 0.60, from 0.61 to 0.80, and 
above 0.80 were classified as poor, medium, good, and 
excellent reliability, respectively. Various features were 
utilized for further extraction, with ICCs reaching 0.80 
[29].

Radiomic feature selection
Firstly, the mRMR (maximum correlation minimum 
redundancy) algorithm was applied in the training group 
to eliminate redundant and irrelevant features, and 30 
features with high correlation with labels, and with-
out redundancy were retained. Then, the least absolute 
shrinkage and selection operator (LASSO) with ten-fold 
cross-validation was applied, and the feature subsets was 

Fig. 1  Study flowchart. US ultrasound, PTC papillary thyroid carcinoma, ETE extrathyroidal extension, MR magnetic resonance

http://www.itk-snap.org
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further selected through regularization by optimizing the 
hyperparameter λ. The coefficients of some candidate 
features were compressed to zero at the optimal λ, and 
features with non-zero coefficients were retained for con-
structing a radiomics signature via a linear combination. 
Finally, the radiomics score (rad-score) was calculated.

Model building and validation
The performance of the model in distinguishing the ETE 
feature of PTC was evaluated and validated by receiver 
operating characteristic (ROC) curve analysis in the 
training and test cohorts, respectively. The area under 
the curve (AUC), sensitivity, specificity, accuracy, and 
negative and positive predictive values were calculated. 
In addition, 100 times leave-group-out cross-validation 
(LGOCV) was carried out to verify the model’s reli-
ability, indicating the results given in the model were not 
contingent.

Results
Patient features
Totally 132 patients aged 45.42 ± 13.99  years (range, 
12–77  years) were assessed. Among them, 27 patients 
(44.89 ± 13.56 years old; age range, 12–73 years) and 105 
(45.55 ± 14.10  years old; age range, 22–77  years) were 
assigned to the ETE and non-ETE groups, respectively, 
based on pathologic results. ETE patients were divided 
into those with minimal ETE (n = 15), and gross ETE 
(n = 12) according to the degree of invasion. Table 1 sum-
marizes the clinical features of PTC cases enrolled in this 
study. The training cohort included 92 patients, while the 
testing set had 40 patients.

US prediction
Of the 27 patients with ETE, 12 had ETE identified 
by presurgical US, while the remaining 15 showed no 

presurgical US evidence of the ETE feature. The sensitiv-
ity, specificity and accurate of US were 44.4%, 97.1% and 
86.4% in predicting ETE.

PTC ETE prediction
For predicting ETE and non-ETE masses, 16 top-per-
forming features, including four DWI, seven T2WI, and 
five CE-T1WI indexes, were finally retained to construct 
the radiomics signature (Table 2). The proportion of fea-
tures derived from T2WI was elevated (7/16). There were 
eight RLM, five CM, two shape and one SZM features. 
Table  2 shows the coefficients of the selected features. 
All 16 features showed significant differences between 

Table 1  Patient features in the ETE and non-ETE groups

ETE group (n = 27) Non-ETE group 
(n = 105)

P

Total Minimal ETE  (n = 15) Gross ETE (n = 12)

Age (years) 44.89 ± 13.82 40.13 ± 14.08 50.83 ± 11.38 45.55 ± 14.17 0.828

Diameter (mm) 13.59 ± 6.66 12.24 ± 4.93 15.29 ± 8.26 9.93 ± 4.64 0.001

Sex

 Female 18 (66.7%) 9 (33.3%) 9 (33.3%) 83 (79.0%) 0.363

 Male 9 (33.3%) 6 (22.2%) 3 (11.1%) 22 (21.0%)

Preoperative ultrasound

 Subcapsular location of the tumor 15 (55.6%) 102 (97.1%) 0.000

 Extrathyroidal extension 12 (44.4%) 3 (11.1%) 9 (33.3%) 3 (2.9%)

LN metastasis 13 (48.1%) 5 (18.5%) 8 (29.6%) 27 (25.7%) 0.024

Histological subtype 6 (22.2%) 2 (7.4%) 4 (14.8%) 10 (9.5%) 0.071

Table 2  Extracted modeling features predictive of  ETE 
and non-ETE tumors

Feature variable Coefficient

T1_SmallAreaEmphasis − 1.974

T2_ClusterProminence_angle45_offset4 1.783

T1_LongRunEmphasis_angle45_offset7 0.51

DWI_ShortRunEmphasis_angle90_offset7 1.184

T2_InverseDifferenceMoment_AllDirection_offset4_SD − 0.54

T1_RunLengthNonuniformity_AllDirection_offset1_SD − 0.172

T2_RunLengthNonuniformity_AllDirection_offset7_SD − 0.064

T2_Elongation 0.589

T1_LongRunHighGreyLevelEmphasis_AllDirection_off-
set1_SD

− 0.494

T1_SphericalDisproportion 0.497

DWI_LongRunEmphasis_angle90_offset4 0.876

T2_LongRunEmphasis_angle45_offset7 4.905

DWI_GLCMEnergy_angle135_offset4 − 0.13

T2_HaralickCorrelation_angle135_offset7 0.064

DWI_ClusterShade_angle0_offset4 0.04

T2_MinorAxisLength 0.162
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ETE and non-ETE masses (P < 0.05). Figure 2 shows ROC 
curves for the radiomics model in distinguishing ETE 
from non-ETE masses in the training and test cohorts. 
The radiomics prediction model yielded AUCs of 0.96 
(95% CI 0.93–0.99) and 0.87 (95% CI 0.75–0.98) in the 
training (Fig.  2a) and test (Fig.  2b) sets, respectively. 

Figure 3a shows the results of 100 fold LGOCV. The clini-
cal decision curve of the radiomics model is depicted in 
Fig.  3b. Table  3 shows the radiomics model’s diagnostic 
performance. Sensitivity, specificity and accuracy were 
0.895, 0.934 and 0.917 in the training set, respectively, 
and 0.750, 0.800 and 0.789 in the test set, respectively. 

Fig. 2  Receiver operating characteristic curves (ROCs) for the radiomics model in predicting ETE and non-ETE tumors in the training (a) and test (b) 
cohorts

Fig. 3  Boxplot of 100 fold LGOCV data (a). Decision curve of the radiomics model (b) showing that in a threshold range of 0–1, the radiomics model 
provided a benefit

Table 3  Diagnostic performance of the radiomics model

Group Accuracy
(95%CI)

Sensitivity
(95%CI)

Specificity
(95%CI)

Positive predictive 
value
(95%CI)

Negative 
predictive 
value
(95%CI)

Training 0.917 (0.857,0.958) 0.895 0.934 0.911 0.922

Test 0.789 (0.627,0.904) 0.750 0.800 0.500 0.923
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The negative predictive value was 92% in the test group. 
These results indicated an overall good performance of 
the prediction model.

Discussion
The results of this study indicate that radiomics analysis 
based on multiparametric MRI data has the potential 
to detect the presence of ETE in PTC. The above find-
ings showed that radiomics features yielded a high AUC 
in predicting ETE in PTC. According to the 2015 ATA 
Guidelines [12], thyroid lobectomy or thyroidectomy 
without prophylactic central neck dissection suffices for 
treating non-aggressive PTCs. Predicting ETE by radi-
omics based on MRI data would help clinicians identify 
individuals likely to benefit from more aggressive initial 
treatment. Therefore, such tool has an important impact 
on patient management, especially in cases of low-risk 
thyroid cancer. This study showed that radiomics based 
on multi-parameter MRI accurately distinguished ETE 
from non-ETE in PTC, and these findings are expected to 
promote the development of a non-invasive method for 
evaluating ETE in PTC.

Our results demonstrated that US had good specificity 
and accuracy but low sensitivity in predicting ETE, while 
MRI radiomics showed better performance. The evalu-
ation by US was relatively subjective and depended on 
the diagnostic level of the operator. MRI is a noninvasive 
imaging method without ionizing radiation. It is widely 
available around the world, with a simple and fast clini-
cal setup. Radiomics provides multiple features extracted 
from images to quantify tumors, and offers the possibil-
ity of revealing differences that the human eye cannot 
recognize. Radiomic features were obtained from mul-
tiparametric MRI comprising T2WI (7/16), ADC (4/16) 
and CE-T1 (5/16) images. A previous report [3] revealed 
ADC’s associations with various aggressive features of 
tumors, and showed that only ETE reached significance. 
Another study by Hu et  al. [19] showed that ADC is 
effective in assessing aggressiveness using ETE in PTC. 
Ma et al. [30] found that a radiomics signature utilizing 
T2WI data could predict the pathological extracapsular 
extension status in prostate cancer patients. However, no 
similar study regarding multiparametric MRI-based radi-
omics for the preoperative assessment of ETE in PTC has 
been published.

This study extracted multiple radiological features, 
including shape-based, intensity-related and texture fea-
tures, which comprehensively reflect the underpinning 
tumor biology. The LASSO was utilized as the feature 
selection method. It represents a regression analysis tech-
nique performing both regularization and variable selec-
tion for enhancing prediction accuracy [31]. The LASSO 
is considered a promising technique for optimal feature 

selection, and could combine these radiomic features to 
generate a radiomic signature [32, 33]. A previous study 
[34] assessed many feature selection techniques, and 
LASSO showed an optimal performance.

The above results showed that the MR-based predic-
tion model for differentiating ETE and non-ETE masses 
achieved high AUC values in both the training (0.96) and 
test (0.87) groups. It is worth mentioning that each fea-
ture in the model had a significant difference between the 
two groups. Radiomics based on MRI can significantly 
improve the diagnostic performance. PTC patients could 
benefit from the entire risk threshold of 0 to 1 according 
to the decision curve. The radiomics model in this study 
had more features derived from T2WI (7/16) compared 
with T1WI and DWI, and the most highly weighted fea-
ture was from T2WI. A previous study [35] also showed 
that features extracted from T2WI achieve a higher pre-
diction performance than those obtained from other 
sequences, indicating that T2WI may provide more 
information. The combination of sequences can provide 
more information than each of them individually [36]. In 
this study, the proportions of GLRLM (8/16) and GLCM 
(5/16) features were the largest in the final constructed 
model. The GLRLM is broadly utilized to extract statisti-
cal features [37], whose entries record distributions and 
relationships of image pixels, which can better reflect 
regional heterogeneous differences. The GLCM provides 
a second-order technique to generate texture features for 
determining associations among combinations of gray 
levels in image indexes [38], which can reflect internal 
spatial heterogeneity of the lesions.

The present study had limitations. Firstly, the sample 
size was modest, which may limit the predictive per-
formance of the model. Indeed, this was an exploratory 
study and the data were collected from a single institu-
tion and lacked validation in external cohorts. Secondly, 
due to the small sample size of ETE, patients with mini-
mal ETE and gross ETE were categorized in the same 
group for ETE to enable binary classification. In the 
future, a large-scale study is warranted to confirm that 
this method could be used to distinguish ETE from non-
ETE in PTC and for further subgroup analysis. Thirdly, 
the size of the lesions significantly differed between 
the ETE and non-ETE groups, introducing a potential 
bias in the interpretation of the radiomics prediction 
model results. Also, thyroid tumors smaller than 5  mm 
were not included in this study. Future more advanced 
MR techniques could improve the detection of smaller 
tumors. Fourthly, TNM staging and follow-up data were 
not included for evaluating tumor aggressiveness. PTC 
generally has a favourable prognosis [11, 39], and our 
retrospective interval was just one year. Thus, further 
investigation should be performed.
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Conclusions
Overall, the MRI radiomics approach has the potential 
to stratify patients according to the ETE status in PTC 
before surgery, and could help improve therapeutic strat-
egies and patient prognosis.
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