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Discrimination of mediastinal metastatic
lymph nodes in NSCLC based on radiomic
features in different phases of CT imaging
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Abstract

Background: We aimed to develop radiomic models based on different phases of computed tomography (CT)
imaging and to investigate the efficacy of models for diagnosing mediastinal metastatic lymph nodes (LNs) in non-
small cell lung cancer (NSCLC).

Methods: Eighty-six NSCLC patients were enrolled in this study, and we selected 231 mediastinal LNs confirmed by
pathology results as the subjects which were divided into training (n = 163) and validation cohorts (n = 68). The
regions of interest (ROIs) were delineated on CT scans in the plain phase, arterial phase and venous phase,
respectively. Radiomic features were extracted from the CT images in each phase. A least absolute shrinkage and
selection operator (LASSO) algorithm was used to select features, and multivariate logistic regression analysis was
used to build models. We constructed six models (orders 1–6) based on the radiomic features of the single- and
dual-phase CT images. The performance of the radiomic model was evaluated by the area under the receiver
operating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value (PPV) and negative
predictive value (NPV).

Results: A total of 846 features were extracted from each ROI, and 10, 9, 5, 2, 2, and 9 features were chosen to
develop models 1–6, respectively. All of the models showed excellent discrimination, with AUCs greater than 0.8.
The plain CT radiomic model, model 1, yielded the highest AUC, specificity, accuracy and PPV, which were 0.926
and 0.925; 0.860 and 0.769; 0.871 and 0.882; and 0.906 and 0.870 in the training and validation sets, respectively.
When the plain and venous phase CT radiomic features were combined with the arterial phase CT images, the
sensitivity increased from 0.879 and 0.919 to 0.949 and 0979 and the NPV increased from 0.821 and 0.789 to 0.878
and 0.900 in the training group, respectively.

Conclusions: All of the CT radiomic models based on different phases all showed high accuracy and precision for
the diagnosis of LN metastasis (LNM) in NSCLC patients. When combined with arterial phase CT, the sensitivity and
NPV of the model was be further improved.
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Background
Lung cancer is one of the most common malignancies
and is associated with the highest cancer morbidity and
mortality rates worldwide. Non-small cell lung cancer
(NSCLC) accounts for approximately 85% of all lung can-
cers [1]. Lymph node metastasis (LNM) is the most com-
mon type of tumor metastasis in NSCLC and remains an
essential prognostic factor and guide for adjuvant therapy.
In clinical practice, comprehensive treatment that includes
surgery, chemotherapy and radiotherapy is the standard
treatment for stage I–IIIB NSCLC. However, the scope of
lymph node (LN) dissection and the LN areas targeted by
radiotherapy remain controversial among different med-
ical centers. Currently, positron emission tomography
(PET)/computed tomography (CT) is a relatively accurate
imaging technique for the diagnosis of metastatic LNs,
with a relatively high specificity for LN staging in patients
with NSCLC [2, 3]. However, the low prevalence and high
cost of PET/CT equipment limit its clinical application.
Additionally, CT has disadvantages for the identification
of metastatic LNs, as high rates of false-positive and false-
negative results occur when images are analyzed for mor-
phological changes, including size, shape, necrosis, and
external capsule invasion [4, 5]. Hence, a great need exists
for sensitive and accurate methods to preoperatively assess
the status of LNs, which could help to decrease the rate of
radical surgery, select appropriate chemotherapy regi-
mens, and delineate the radiotherapy target area.
Due to the emergence of personalized medicine and

targeted therapy, the need for quantitative image analysis
has increased with the rapid increase in the amount of
standard medical data. Radiomics provides promising
opportunities in this regard, endowing medical imaging
to play an increasingly important role in analyzing
tumor heterogeneity [6]. Previous studies have shown
that objective and quantitative image features could po-
tentially be used as prognostic or predictive biomarkers
[7]. However, most studies have focused on single-phase
CT images, which may not obtain the best model from a
series of CT images.
Therefore, in the present study, we investigated the

accuracy of radiomic and delta radiomic features be-
tween CT scans different phases for the preoperative dis-
crimination of metastatic LNs in NSCLC patients to
provide the best reference model for the clinical diagno-
sis of mediastinal lymph nodes.

Methods
Patient information
The Institutional Review Board approved the retrospect-
ive review of the medical records for this analysis. Partic-
ipants were selected according to the inclusion and
exclusion criteria and were limited to patients treated
between January 2015 and June 2018 at our hospital,

resulting in a total of 86 patients who were included in
this study. The inclusion criteria were as follows: (I) all
patients underwent surgical lung resection and system-
atic LN dissection within 2 weeks after undergoing non-
contrast and contrast CT scans; (II) the tumor subtypes
and LNs status were confirmed by pathology results; and
(III) multiple tumors and other manifestations were ab-
sent. Due to the high cost and low prevalence of PET/
CT, it was not required for eligibility in preoperative ex-
aminations for this retrospective study. The exclusion
criteria were as follows: (I) clinical data were incomplete,
or statistical analysis could not be performed; (II) pa-
tients received treatments before the scans were per-
formed; (III) poor image quality affected the quantitative
analysis; and (IV) CT images were reconstructed using
different algorithms, thicknesses, or equipment.
Then the enrolled patients were divided into two inde-

pendent cohorts: 61 patients treated between January
2015 and June 2017 constituted the training cohort, and
25 patients treated between July 2017 and June 2018
constituted the validation cohort. Tumor subtypes and
lymph node status were proven by pathological results,
and clinical factors including gender and stage were
derived from medical records. Disease stage was evalu-
ated according to the TNM Classification of Malignant
Tumors, 7th Edition.

CT image acquisition
All patients underwent routine and enhanced CT scan-
ning, and a Philips scanner (Holland, CT LightSpeed 16)
was used with the following imaging protocol: tube volt-
age 120 kV, cube current 300 mA, thickness 2 mm and
in-plane resolution 0.97 × 0.97. The contrast medium
was injected into the elbow vein at an injection rate of
2.3~3.0 ml/second, and the maximum dose was 100 ml.
An arterial phase scan was performed 25 to 30 s after
contrast medium injection, and a venous phase scan was
performed 90 s later. Plain, arterial and venous phase im-
ages were obtained. All images were exported in the Digital
Imaging and Communications in Medicine (DICOM) for-
mat for image feature extraction.

Radiomics workflow
The radiomics workflow included: (1) image segmenta-
tion, (2) feature extraction, (3) feature selection, and (4)
predictive model building.

Lesion segmentation
We performed manual segmentation on arterial phase
CT images using MIM Maestro version 6.8.2 (MIM soft-
ware, Cleveland, OH), and pathologically confirmed LNs
were defined as regions of interest (ROIs). Using the
arterial phase CT image as the reference, plain and ven-
ous phase CT images were corrected by the nonrigid
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registration method, and the contouring results were
mapped to the plain and venous phase images, respect-
ively. The target images were delineated by two senior
radiologists with 20 years of experience in chest CT
diagnosis, and differences in the findings were resolved
by a third high-ranking radiologist when disputes oc-
curred. Figure 1 shows schematic diagrams of the ROIs
on three CT images in different phases.

Feature extraction
Radiomic features were extracted from LNs using 3D
Slicer software, an open-source Python package for the
extraction of features from medical images (version 4.6,
http://www.slicer.org) [8]. In total, 841 radiomic features
were extracted and were organized into two categories:
(I) based on original images; and (II) based on wavelet
images. Eighteen first-order features derived from the
tumor intensity histogram reflected the distribution of
the values of individual voxels without concern for
spatial relationships. Thirteen shape features provided
the geometric tumor volume. Seventy-four texture fea-
tures described the spatial arrangement of voxels, as cal-
culated from different parent matrices, which included
the gray level dependence matrix (GLDM), the gray level
cooccurrence matrix (GLCM), the gray level size zone
matrix (GLSZM), the gray level run length matrix
(GLRLM) and the neighborhood gray-tone difference
matrix (NGTDM) [9]. In addition, 736 wavelet features
derived from eight filtering modes were obtained.

Feature selection and radiomic models development
A least absolute shrinkage and selection operator
(LASSO) logistic regression algorithm was used to select
significant features with nonzero coefficients to develop
models. In this study, we constructed six models based
on the radiomic features of single-phase imaging and
joint two-phase imaging, which included models 1, 2,
and 3 (based on the plain, arterial and venous phase
radiomic features, respectively), and models 4, 5, and 6

(based on the delta radiomic features between plain and
arterial phase imaging, plain and venous phase imaging,
and arterial and venous phase imaging, respectively).
This process was implemented in R software (version:
3.3.3, https://www.r-project.org). The classification per-
formance of the radiomic models was quantified by the
area under the receiver operator characteristic curve
(AUC), sensitivity, specificity, accuracy, positive predict-
ive value (PPV) and negative predictive value (NPV) in
both the training and validation cohorts.

Statistical analysis
Data analysis was performed using Statistical Package
for Social Sciences (SPSS) software version 23.0 (SPSS,
Chicago, IL, USA) and R software (version 3.4.0, https://
www.r-project.org). We compared clinical characteristics
between the training and verification groups by Wilcoxon
ranksum test. P values less than 0.05 were considered
statistically significant.

Results
Characteristics of patients in the training and validation
cohorts
The characteristics of patients in both the training and
validation cohorts were displayed in Table 1. A total of
231 LNs which has surgical-pathologic information were
examined from 86 patients, including 58 males and 28
females aged 35–84 years. In the training cohort, 60.7%
(99/163) of LNs were pathologically positive, and 39.3%
(64/163) of LNs were pathologically negative. In the val-
idation cohort, 61.8% (42/68) of LNs were pathologically
positive, and 38.2% (26/68) of LNs were pathologically
negative. No significant differences were observed in two
cohorts, with P-value ranging from 0.139 to 0.885.

Selection of features and the construction of radiomic
models
A total of 841 features were extracted from each phase
CT image of the training cohort. We screened these

Fig. 1 CT images from a 56-year-old man with mediastinal LNM confirmed by pathology. Panels a, b and c show the ROIs on plain, arterial and
venous phase CT images, respectively
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features and chose 10, 9, 5, 2, 2, and 9 features that had
nonzero coefficients as potential predictors using the
LASSO logistic regression model. The weighted values of
the nonzero characteristics selected to develop models
were summarized in an Additional file 1. Figure 2 depicted
the process of feature selection. The radiomic models all
showed a favorable predictive efficacy for identifying
mediastinal LNM in NSCLC patients, with AUC values
higher than 0.830 in the training cohort (Fig. 3).

Analysis of models based on the single- and joint-phase CT
Based on single-phase CT images and joint-phase CT
images, we constructed six models in this study. As
shown in Table 2, model 1 yielded the highest AUC,
specificity, accuracy and PPV, which were 0.926 and
0.925; 0.860 and 0.769; 0.871 and 0.882; and 0.906 and
0.870 in the training and validation sets, respectively.
However, the sensitivity and NPV of model 2 were
higher than those of the other single-phase models. We

observed that the AUC value of model 4–6 was lower
than that of model 1–3, but the sensitivity and NPV of
the training group were significantly higher. Compared
with those of model 1, the sensitivity and NPV of model
4 increased from 0.879 and 0.821 to 0.949 and 0.878,
respectively. Moreover, compared with those of model 3,
the sensitivity and NPV of model 6 increased from 0.919
and 0.789 to 0.979 and 0.900, respectively. The sensitiv-
ity, specificity, accuracy, NPV, and PPV of each model
are listed in Table 2.

Discussion
The International Association for the Study of Lung
Cancer (IASLC) showed that, based on a newly estab-
lished large database, the 5-year survival rates for pa-
tients with LNM ranged from 26 to 53% [10]. The
systematic dissection of LNs in lung cancer patients has
been widely accepted, but the extent of LN dissection
has remained a matter of debate due to the precise as-
sessment of metastatic LNs [11, 12]. LNM is an import-
ant factor that affects tumor and LN staging. Therefore,
the noninvasive preoperative evaluation of the LN status
is crucial for determining the lung cancer stage, surgical
plan, and prognosis [13].
Currently, CT are the most routinely used noninvasive

methods for the clinical diagnosis of LNs. The inter-
national standard for the diagnosis of metastatic LNs by
CT in lung cancer is a short-axis LN diameter larger
than 10mm. However, due to the single diagnostic cri-
terion, the accuracy of the diagnosis is limited to some
extent. Also, PET/CT is a noninvasive method for sta-
ging cancer that has been increasingly employed by
multidisciplinary lung cancer teams. Many studies have
reviewed the diagnostic performance of PET/CT for LN
staging in patients with NSCLC [14–16]. A systematic
review showed that the summary sensitivity and specifi-
city estimates for a maximum standard uptake volume
(SUVmax) ≥2.5, which is the PET/CT positivity criter-
ion, were 81.3 and 79.4%, respectively [17]. However, the
low prevalence and high cost of PET/CT equipment
have resulted in it being less commonly used than CT
alone in preoperative examinations. If the accuracy of
CT in the diagnosis of LNs could be improved, it would
provide more important clinical guidance for identifying
the radiotherapy targets and surgical range.
Recently, the development of radiomics has enabled

medical images to be converted into high-throughput
quantitative data, providing information that can be ex-
plored and used to guide clinical decision-making. In con-
trast to subjective descriptions of the volume and shape of
lesions, radiomic features can more comprehensively de-
scribe the state of lesions, overcoming the disadvantages
of traditional diagnostic methods [18–20]. Therefore,
radiomics is expected to improve the accuracy of diagnosis

Table 1 Characteristics of patients in the training and validation
cohorts

Characteristic Training
Cohort

Validation
Cohort

P-value

Gender, n(%) 0.570

male 40 (65.6) 18 (72.0)

female 21 (34.4) 7 (28.0)

Age (years) 0.139

Mean 58.64 60.25

Range 35–84 42–78

T stage, n(%) 0.818

T1 16 (26.2) 6 (24.0)

T2 28 (45.9) 14 (56.0)

T3 7 (11.5) 1(4.0)

T4 10 (16.4) 4 (16.0)

N stage, n(%) 0.123

N0 9(14.8) 7 (28.0)

N1 6 (9.8) 2 (8.0)

N2 19 (31.1) 9 (36.0)

N3 27 (44.3) 7 (28.0)

M stage, n(%) 0.576

M0 35 (57.4) 16 (64.0)

M1 26 (42.6) 9 (36.0)

Pathological subtype, n(%) 0.394

Adenocarcinoma 36 (59.0) 17 (68)

Squamous cell carcinoma 23 (37.7) 8 (32)

Large cell lung cancer 2 (3.3) 0 (0)

Lymph nodes status, n(%) 0.885

Positive 99 (60.7) 42 (61.8)

Negative 64 (39.3) 26 (38.2)
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based on CT images. Moreover, studies have demon-
strated the feasibility of using radiomic features to predict
LNM in rectal, breast and esophageal cancers, providing
theoretical support for this study [21–23].
In the present study, we constructed radiomic models

based on pathological diagnostic results to facilitate the
preoperative identification of metastatic LNs in NSCLC
patients. The results showed that the diagnostic models
based on different phases all exhibited favorable discrim-
ination (AUC values greater than 0.8, a maximum sensi-
tivity of 97.9%, and a maximum specificity of 86.0%),
and model 1 (plain CT) yielded the highest AUC, specifi-
city, accuracy and PPV. The underlying reason for the
better performance on non-contrast images may be that
the biological heterogeneity within the LNs that can be
described by radiomic features may be confounded by the
intravenous injected contrast material, which may then
lead to worse discrimination between malignant and be-
nign LNs due to the existing intratumoral contrast mater-
ial. On the other side, the result of this stduty showed that
more texture features (10 texture features) were selected
from non-contrast CT than contrast-enhanced CT (9 or 5
texture features), and the texture features from plain CT
scan were found to be more significant in discriminating

mediastinal metastatic lymph nodes. Moerover, previous
researches have confirmed this interesting finding. He
et al. [24] evaluated the effects of contrast-enhancement
on the diagnostic performance of radiomics signatures in
solitary pulmonary nodules (SPNs), which indicated that
contrast-enhancement can affect the diagnostic perform-
ance of radiomics signatures in SPNs and that non-
contrast CT is more informative. Similarly, Sui et al. [25]
confirmed that the radiomics features of the non-contrast
CT have a better predictive performance than those of
contrast CT in anterior mediastinal lesion risk grading. In
the research of classifying mediastinal LNM of NSCLC
from 18F-FDG PET/CT images, Yao et al. [26] summa-
rized the diagnostic results from 22 research centers and
found that the overall sensitivity and specificity were 0.66
and 0.82, respectively. In addition, another study showed
that the sensitivity and specificity of CT for the diagnosis
of mediastinal LNM were 0.79 and 0.72, respectively [27].
Compared to those published studies, the methods
proposed in our study have the advantages of being
quantitative and reproducible, with a higher sensitivity
and specificity than the previously reported methods.
Moreover, we not only extracted radiomic features

from plain, arterial, and venous phase CT images but

Fig. 2 The feature selection process. a LASSO coefficient profiles of the 841 features. b Tuning parameters (λ) selected in the LASSO model were
used for applied 10-fold cross-validation with the minimum criteria. The Y-axis indicates misclassification errors, and the lower X-axis indicates the
average deviance ln(λ) values, which were − 2.19, − 2.44, − 2.14, − 1.61, − 1.75, and − 2.61 in models 1–6, respectively. The vertical lines through
the red dots show the upper and lower limits of the deviances. Dotted vertical lines were drawn at the optimal values using the minimum
criteria with 1 standard error (the 1-SE criteria). Numbers along the upper X-axis represent the average number of predictors
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also calculated delta radiomic feature values between dif-
ferent phase CT images in different phases. The arterial
phase mainly reflects the tissue perfusion of the tumor,
and the venous phase mainly reflects the clearing of the
tissue blood flow, which is also an important imaging

feature of tumor metastasis [28]. Dynamic CT texture
analysis can assess temporal changes in tumor hetero-
geneity after the administration of contrast material and
could provide another dimension of physiologic tumor
assessment [29]. The sensitivity and NPV of the model
were significantly better when combined with arterial
phase CT in our study, which may have been because
temporal changes in texture features can potentially pro-
vide diagnostic and prognostic information and canin-
crease the utility of contrast-enhanced CT. In clinical
practice, for NSCLC patients treated with neoadjuvant
therapy and routine radical surgery, false-positive LNs
will not result in insufficient treatment or lead to treat-
ment delay. However, the higher NPV of this approach
means that negative LNs will be more accurately identi-
fied, which may change the clinical treatment plan [23].
These findings suggest that the accuracy of models can
be improved when combined with dual-phase radiomic
features in future clinical applications.
This method of integrating a large number of features

in CT images that cannot be recognized or distinguished
by the human eye has high accuracy and sensitivity for
diagnosing mediastinal LNM in NSCLC patients and is
expected to improve the efficacy of treatments for
NSCLC. However, there are still some limitations of this

Table 2 Efficacy of models for identifying mediastinal LNM in
the training and validation groups

Model Group AUC SEN SPE ACC PPV NPV

1 training 0.926 0.879 0.860 0.871 0.906 0.821

validation 0.925 0.952 0.769 0.882 0.870 0.909

2 training 0.875 0.929 0.609 0.804 0.786 0.848

validation 0.876 0.976 0.423 0.765 0.732 0.917

3 training 0.857 0.919 0.469 0.742 0.728 0.789

validation 0.802 0.905 0.500 0.750 0.745 0.765

4 training 0.850 0.949 0.563 0.798 0.770 0.878

validation 0.813 0.952 0.423 0.750 0.727 0.846

5 training 0.831 0.879 0.594 0.767 0.770 0.760

validation 0.800 0.952 0.615 0.824 0.889 0.889

6 training 0.841 0.979 0.281 0.706 0.678 0.900

validation 0.702 0.928 0.192 0.647 0.650 0.625

SEN sensitivity, SPE specificity, ACC accuracy, PPV positive predictive value, NPV
negative predictive value

Fig. 3 ROC curves of the radiomic models. Panels a-f correspond to models 1–6, respectively
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study. First, the data used in this study were obtained
from the same center. Second, the diagnostic capacity of
combined clinical and quantitative imaging features
could not be evaluated. Third, a minority of patients in
our study underwent both CT and PET/CT before sur-
gery because of the high cost of PET/CT and the high
radiation exposure. In addition, this study only demon-
strated the feasibility of discriminating mediastinal LNs.
And we will explore the differences in diagnostic per-
formance of mediastinal, hilar and intralobar LNM since
adequate LNs were collected in the future. In summary,
all of the CT radiomic models based on different phases
all showed high accuracy and precision for the diagnosis
of LNM in NSCLC patients. The combination of plain
and venous phase CT scans with arterial phase CT radio-
mic features can further improve the sensitivity and NPV.

Conclusions
Our study demonstrated the superiority of CT radiomic
analysis for diagnosing mediastinal metastatic LNs in
NSCLC patients and presents the difference between
radiomic models of non-contrast and contrast-enhanced
CT. All of the radiomic models based on different CT
phases showed high accuracy and precision, and the sensi-
tivity and NPV was be further improved when combined
with arterial phase CT. Therefore, we believe it is a prom-
ising and applicable alternative approach for discriminat-
ing LNs of NSCLC with the advantage of quantitative,
non-invasive and low cost, which may serve as a comple-
mentary tool to facilitate making clinical decisions.
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