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Abstract

skip connections to accomplish the segmentation task.

Background: Coronary artery angiography is an indispensable assistive technique for cardiac interventional surgery.
Segmentation and extraction of blood vessels from coronary angiographic images or videos are very essential
prerequisites for physicians to locate, assess and diagnose the plaques and stenosis in blood vessels.

Methods: This article proposes a novel coronary artery segmentation framework that combines a three—dimensional
(3D) convolutional input layer and a two-dimensional (2D) convolutional network. Instead of a single input image in
the previous medical image segmentation applications, our framework accepts a sequence of coronary angiographic
images as input, and outputs the clearest mask of segmentation result. The 3D input layer leverages the temporal
information in the image sequence, and fuses the multiple images into more comprehensive 2D feature maps. The
2D convolutional network implements down-sampling encoders, up-sampling decoders, bottle—-neck modules, and

Results: The spatial-temporal model of this article obtains good segmentation results despite the poor quality of
coronary angiographic video sequences, and outperforms the state—of-the-art techniques.

Conclusions: The results justify that making full use of the spatial and temporal information in the image sequences
will promote the analysis and understanding of the images in videos.
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Background

Physicians have been practicing interventional surgeries
to diagnose and treat cardiovascular diseases for sev-
eral decades. They locate, assess and diagnose the blood
vessel stenosis and plaques by directly watching the angio-
graphic videos with naked eyes during the surgeries.
Based on their experiences, the physicians quickly make
a qualitative judgment on the patient’s coronary artery
condition and plan the treatment. This direct method
is greatly affected by human factors and lacks accuracy,
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objectivity and consistency. Automated cardiovascular
segmentation will help reduce the diagnostic inaccura-
cies for physicians. Many blood vessel extraction methods
based on image segmentation have emerged driven by
this motivation. Recently, with the development of deep
learning, various deep neural network architectures have
been proposed and applied in the medical image segmen-
tation field [1-4]. Early deep learning—based approaches
used the image patches and a sliding window block to tra-
verse the image [5]. But the sliding window method casts
a huge amount of computation, and misses the global con-
texts of the image at the same time. Yang et al. [6] used
two convolutional neural networks (CNN) to process the
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patches and the whole image to obtained good perfor-
mance in the segmentation of coronary artery vessels in
angiograms, but it is very time—consuming. In 2015, fully—
convolutional network [7], encoder—decoder network [8],
and U-Net [9] were proposed and achieved good results.
Since then, various methods based on U-Net architec-
ture have sprung up. M—Net added a multi—scale input
image and deep supervision [10]. New modules have been
proposed to replace some blocks in the U-Net architec-
ture to enhance the feature learning ability. Gibson et al.,
proposed a dense connection in the encoder block [11].
Zhao et al., introduced a modified U-Net by adding a
spatial pyramid pooling [12]. Gu et al., inserted a dense
atrous convolution (DAC) block and a residual multi—
kernel pooling (RMP) block into the bottle—neck part,
to extract and preserve more spatial context, and this it
the state—of—the—art model, the CE-Net [13]. Zhang et
al. introduced an attention-guided network to improve
the performance of retina vessel segmentation [14]. A
dual encoding U-Net was proposed to replace the skip—
connections with attention modules to further promote of
retinal vessel segmentation [15].

Nevertheless, some essential problems are associated
with the blood vessel segmentation tasks in cardiovascular
angiographic images. First, the shape of the cardiac blood
vessels is complex and easily deformed. Coronary arter-
ies have a tubular curved structure, and some can block,
cover or entangle with one another, making the semantic
information confusing in the images. Second, the angio-
graphic images contain not only blood vessels, but also
other organs and tissues which have similar shape and
grayscale values, making it even more difficult to correctly
extract the object [16]. Third, in order to minimize the
damage to the health of the patients and physicians during
the surgery, it is inevitable to reduce the dose of X-rays
[17, 18], which results in low illumination and insufficient
signal—to-noise ratio of the images [19], making the seg-
mentation tasks even more challenging. Considering that
the angiographic video is composed of a series of time—
continuous image sequences, combining and processing
several consecutive frames of images may provide a good
insight for solving these problems. Intuitively, the blood
vessels inter-blocking each other in one frame may be
separated in another one. The problem of low signal-to—
noise ratio caused by low illumination may be eliminated
by the accumulation of multiple images. Therefore, the
temporal dimension of the video also contains rich con-
textual information. Utilizing the time domain informa-
tion to segment blood vessels from angiographic videos
becomes a topic worthy of study.

In the mean time, since 2D CNN has achieved
good results in image processing tasks, researchers have
extended their interests to the video classification and seg-
mentation field. The temporal information in the video is
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regarded as the third dimension, and 3D CNN is intro-
duced as an important tool. The Inception 3D (I3D) archi-
tecture proposed by Carreira et al. is one of the pioneer 3D
models [20], which inflates all the 2D convolutional ker-
nels in the Inception V1 architecture [21] into 3D kernels,
and is trained on the large—scale Kinetics dataset of videos
[22]. However, the computational cost of 3D convolution
is extremely high, so a variety of mixed convolutional
models based on ResNet architecture have been proposed
to resolve this dilemma. Another way to reduce the com-
putational cost is to replace the 3D convolution with
separable convolutions. In order to effectively make use of
the temporal dimension, [23] proposed a R(2+1)D convo-
lutional neural network, and [24] proposed a model called
the pseudo 3D network.

In this article, we consider combining the advantages of
3D and 2D convolution to accomplish the task of blood
vessel segmentation from coronary angiographic videos.
Based on the architecture of 2D U-Net and its derivative
CE-Net, we propose a 3D-2D network. The 3D convolu-
tional layer mainly serves to extract and process temporal
information in the video, and the 2D network extracts
the spatial information. Our main contributions are as
follows:

¢ A novel deep learning architecture combining 3D
and 2D convolution to extract both temporal and
spatial information from videos.

e A new application of deep learning—based video
segmentation algorithm in the medical imaging field.

Methods

In this section, the role of 3D convolution in volumetric
image segmentation, and in video processing is investi-
gated briefly. Then we give a detailed elaboration of the 3D
layer and the 2D network design, and the determination
of an important hyper—parameter in the end.

Volumetric images and image sequence
3D convolution has been widely used in the volumetric
medical image processing, such as tumor segmentation
from layered scanned organic computerized tomography
(CT) [25, 26]. The CT renders a series of layered 2D
images, and the layers are stacked into a 3D volumetric
image. The physical meaning of the spatial dimensions
(width, height, depth) of this volumetric image is very
clear, and the correlation between the layers constitutes
the spatial context information of the image data. There-
fore, it is a natural approach to apply 3D convolutional
networks to volumetric image segmentation tasks.
However, coronary angiography is fundamentally dif-
ferent from CT scan imaging. Coronary angiography
obtains a two—dimensional image whose spatial depth
information has been squeezed. There are only two spatial
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dimensions, ie., width and height. The traditional coro-
nary artery segmentation task is to process an indepen-
dent contrast image, and a 2D convolutional neural net-
work is used to extract the spatial details and context
information from the image. We cannot directly apply 3D
convolutional networks to such image segmentation tasks.
It should be noted that coronary angiography is a continu-
ous imaging process, and the sequence of moving contrast
images forms a video. Thus the video contains informa-
tion in three dimensions, ie., two spatial dimensions, and
one temporal dimension. Previous work proved that the
temporal dimension in the videos contains rich image
semantic representations [23]. Making full use of the
temporal information can greatly benefit image seman-
tic segmentation, and enhance the performance of tasks
such as scene understanding and target recognition. 3D
convolutional networks have been widely applied in these
tasks.

3D-2D network

This article is inspired by the work of deep learn-
ing based video processing and 2D medical image
segmentation methods. The sequential frames of the
coronary angiographic video are stacked to form 3D
data. We use a combination of 3D convolutional lay-
ers and a 2D network for the blood vessel segmenta-
tion task. The 3D and 2D convolutions are not sim-
ply combined applications, but each has its own pur-
pose, and the order of the two operations cannot be
reversed.

3D input layer

In our design, the network accepts several consecutive
frames of image as input, and then outputs the segmen-
tation mask corresponding to the middle frame. This is
a task where multiple inputs correspond to one output,
and the transformation of the number of images is imple-
mented by the 3D input layer. We define the image to
be segmented as the target image, and the temporally
adjacent 2N images are referred to as auxiliary images,
which contain N images before and after the target image,
respectively. The 2N + 1 input images form 3D data with
a resolution of (2N + 1) x W x H. The spatial dimensions
of the 3D data is annotated as x and y, and the temporal
dimension as z. The 3D input data are extracted and fused
by the 3D convolution layer to obtain several channels of
2D feature maps, with a resolution of W x H, whereas the
depth of z reduced to 1. Dimension reduction is achieved
by a special design of the 3D convolutional kernel, that is,
the size of the 3D kernel is (2N + 1) x 3 x 3, the paddings
in the x—, y— and z— axes are 1, 1, 0, respectively, and the
strides are all 1 in the three axes. A brief illustration of the
3D convolution operated on image sequences is given in
Fig. 1 and Eq. 1.
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where the i-th image in the sequence is the target image,
and the neighboring 2N images are taken into account for
the convolution in the z—axis.

Because the 3D convolutional layer has a small kernel
size in the spatial dimensions x and y, the receptive field
in the spatial dimensions is limited. As a consequence,
the 3D convolutional operation is mainly used to extract
and fuse the time domain information and the tempo-
ral correlations between successive frames in the video.
Weighted combinations of the pixel values of the multi—
frame images are then merged into 2D feature maps.
Another 2D convolutional layer followed by a 2D max
pooling layer is inserted right after the input 3D layer, to
adjust the channel number as well as reducing the resolu-
tion of the feature maps to 1/2, to fit the dimensions of the
first encoder module of the subsequent 2D network.

2D network

The 2D CE-Net [13], which is composed of down—
sampling encoder modules, up—sampling decoder mod-
ules, bottle—neck (DAC and RMP modules), and skip—
connections, is used as the backbone network in our
architecture. It is intended to extract several levels of spa-
tial correlation in different scales in the fused 2D feature
maps, and identify the foreground and the background
pixels in the target image.

Network architecture

The network architecture, as well as the input image
sequence and the output mask are illustrated in Fig. 2.
The detailed structures of the encoder and decoder are
illustrated in Fig. 3. The main innovation and contribu-
tion of this article lie in the use of 3D and 2D convolutions
to process different domains of information, as explained
earlier, as well as the limitation of the computational com-
plexity to an acceptable range by this 3D and 2D hybrid
network design, which is going to be elaborated in the
“Results” section.

Choice of N

As the heart beats cyclically, the cardiovascular vessels
expand and contract in cycles accordingly. In the process
of vessel motion, mutual blocking between blood vessels
and deformations will inevitably occur. The value of N is
an important hyperparameter. The smaller N is, the fewer
input neighboring images are captured, and the extracted
temporal context information is confined to a small range,
but more accurate spatial details are retained. The larger
the value of N is, the more adjacent images are input into
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Fig. 1 3D convolution for image sequences. With zero paddings in the z—axis, the 3D convolution transforms the 3D input image data into several
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the network, and the broader the temporal context infor-
mation extraction and fusion is. The larger value of N
keeps a long—term trend of motion and has a positive sig-
nificance for eliminating the occlusion of vessels due to
vascular motion. Considering that the imaging frame rate
of existing coronary angiography equipments is relatively
low, generally ranging from 10 to 15 frames per second
(fps), and the cardiac cycle is generally smaller than one
second, a large value of N will introduce a lot of problems.
For instance, if we set N to 3, a total number of seven adja-
cent images will be input into the network, which cover
more than a half cardiac cycle. This will undermine the
significance of the target image in the image sequence,
and increase the computational complexity. So we set the
value of N to 1 or 2, that is, the network accepts 3 or 5
adjacent frames as input.

Results
Dataset
In collaboration with hospitals, we collected 170 coronary
artery angiography video clips of cardiac interventional

surgeries. The length of each video clip ranges from 3 to
10 seconds, recording the process from the injection of
the contrast agent to the flow, diffusion and gradual disap-
pearance of the contrast agent in the blood vessels. These
videos are desensitized to hide the patient’s personal infor-
mation and protect the patient’s right to privacy. The
acquisition equipments of these video clips are products
of many different manufacturers, so the image resolution
ranges from 512 x 512 to 769 x 718, the frame rate ranges
from 10fps to 15fps, and the original video format is wmv,
MP4, etc. We use ffmpeg software toolkit to extract each
frame of the videos and save it as a losslessly encoded red—
green—blue (RGB) image file with a color depth of 8 bits in
each chromatic channel. The total number of the source
images is 8,835. We invite students from several medical
colleges to manually segment and label the coronary arter-
ies in these source images to generate a label image with an
identical resolution of each image. Thus we have obtained
a dataset containing 8,835 source images and 8,835 label
images, which is named the CadVidSet.
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Fig. 2 Network architecture. The input layer of the network is a 3D convolutional layer which has a kernel size of (2N + 1) x 3 x 3, and it accepts
2N + 1 adjacent frames and outputs 2D feature maps of 16 channels, which are further fused by a 2D convolutional layer. The subsequent part of
the network is analogous to 2D CE-Net. The network outputs a single mask image corresponding to the central frame of the input. In practice, N is

Partition of the training and test sets

The CadVidSet dataset is comprised of 170 sub—paths,
each containing an average of 52 source images and 52
label images, and the images are stored in the chrono-
logical order of each video clip. We divide the images of
each sub-path into a training set and a test set, where the
training set accounts for 5/6 of the total images and the
test set accounts for the other 1/6. As the input layer of
the network accepts several time—continuous images, the
division method is no longer a random selection of a sin-
gle image, but the first 1/6 of each subpath is used as the

test set, and the last 5/6 is used as the training set, or
in the reverse order. The two division methods are ran-
domly determined when the training process begins. This
hard-cutting partitioning method avoids the error that an
image appears in both the training and test sets. In order
to ensure that each image is used in training or test, we
have padded the training and test sets according to the
value of N in the network input layer. The first image
and the last image in each subset are copied N times to
achieve a similar effect as the padding in the convolutional
operations.
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Fig. 3 Structures of the encoder and decoder modules

Performance metrics

In training the model, we use the combined loss of dice
loss and regularization loss as the objective function. We
also calculate the IOU (intersection over union) to evalu-
ate the performance in both training and test stages. Dice
coefficient and IOU are both metrics on the similarity
between two sets, with slight differences,

XY
ou = 'm7|, (2)
IXUYI
21X\ Y
dice_coe = |7m|, (3)
|X] + Y]
L_dice =1 — dice_coe, (4)
L =L dice+p ||, (5)

where |X| denotes calculation of the number of elements
in a set X, and w denotes the parameters of the net-
work. We also calculate the sensitivity (true positive rate,
TPR), specificity (true negative rate, TNR), and accuracy
of the model on the test set, as important metrics of the
performance,

. P

sensitivity = TPR = ——, (6)
TP + FN

ificity = TNR = — @)
specificity = =—
peciaty TN + FP

TP+ TN
accuracy = (8)

TP+ TN + FP + FN’

where TP denotes the number of true positive samples
(pixels), TN that of true negative samples, FP that of false
positive samples, and FN that of false negative samples.

Experimental results

All the source and label images are resized to the reso-
lution of 448 x 448 before being fed into the network.
The four encoder modules are initiated with a Resnet—
34 model pre—trained on the public ImageNet dataset.
Minor modifications are made, for instance, we replace
the batch normalization by instance normalization in both
the encoder and decoder parts, and use stochastic gra-
dient descend (SGD) as the optimization method. The
learning rate is fixed to 2 x 1074, and the batch size is
4. We set the parameter N to 1 or 2, ie., the number of
input neighbor frames to 3 or 5, and train the model in
100 epochs. The output mask images are post—processed
to remove the small connected components in each image
and save the major parts of the mask as the segmen-
tation result. As a comparison, we also train and test
some state—of—the—art techniques, including the U-Net
[9], DeepVessel [27], AG—Net [14], and 2D CE—Net [13]
on our dataset. Results are illustrated in Fig. 4.

Compared with the segmentation results of the U-Net
(column C), AG-Net (col. D), and CE—Net (col. E), our
3D-2D models with three and five neighboring input
images (col. F and G) demonstrate better preservation
capability of both the vascular details and global struc-
tures. In the third row of Fig. 4, we mark a vascular
stenosis area with a red rectangle box. The contrast of
this area in the source image is very low. As a result of
the paucity of spatial information, U-Net, AG—Net, and
2D CE-Net fails to segment the vessel in this area. With
the assistance of temporal information, our 3D-2D model
using five adjacent images input successfully segments the
blood vessel. Another impressive result is illustrated in
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Source image Ground truth

A B C

Fig. 4 Examples of blood vessel segmentation results. Row 1~5 correspond to five target images captured in five video clips, respectively. Column
A: target images containing coronary arteries; col. B: ground truths, manually labeled blood vessels; col. C: segmentation results of U-Net; col.D:
results of AG-Net; col. E: results of 2D CE-Net; col. F: results of our 3D-2D model, where N is 1; col. G: result of 3D-2D model, where N is 2

3D-2D Net, N=1 3D-2D Net, N=2

the fourth row, where red rectangle boxes also annotate
the difficult area. U-Net, AG-Net, and CE-Net miss a
lot of fine vessels, whereas our 3D-2D network can cap-
ture some details. The more temporal information is input
to the network, the higher accuracy it achieves. Similar
results are observed in other images.

The performances of the models are listed in Table 1.
Our 3D-2D models outperform the state-of-art tech-
niques in almost all the five metrics. With the increasing
number of the time—continuous images input into the 3D
convolutional layer, the performance of the segmentation
improves in a noticeable margin.

Implementation details

We use Pytorch to implement the proposed 3D-2D net-
work. Using a computer equipped with an Intel i7 eighth—
generation processor, NVidia RTX 2080 graphics card,
and 32GB memory, the 3D-2D network proposed in this
article is trained on a training set of 7363 images. The time

consumed for training 100 epochs is 60 hours (N = 1),
or 68 hours (N = 2). As a comparison, the training time
of the 2D network is 50 hours. There is only 20% ~ 30%
increase in the training time consumed. The inference
time of an image is 54 milliseconds (N = 1), 61 millisec-
onds (N = 2). As the frame rate of coronary angiography
video typically ranges between 10fps and 15fps, the infer-
ence speed of the proposed model fulfills the needs of
real-time applications.

Discussion

This research breaks through the barriers of traditional
medical image segmentation, re—evaluates the signifi-
cance of the temporal information in videos, and extends
image segmentation tasks from two—dimensional config-
uration to spatial-temporal dimensions.

Analysis of the results
We owe the performance enhanced by the 3D-2D net-
work to the fact that, a 2D network is in the subspace
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Table 1 Comparison of the performances of the state—of-the—art models, and the proposed 3D-2D CE-Net with N = 1and N = 2 on

the CadVidSet

Model N sensitivity specificity accuracy 10U (vessel) 10U (background)
U-Net (2015) [9] 0.7031 0.9798 0.9704 0.6594 0.9685

DeepVessel (2016) [27] 0.7102 0.9813 09722 0.6665 09717

AG-Net (2019) [14] 0.7256 0.9862 0.9776 0.6837 0.9765

CE-Net (2019) [13] 0.7606 0.9943 09813 0.6983 0.9845

3D-2D CE-Net (ours) 1 0.7921 0.9935 0.9854 0.7109 0.9846

3D-2D CE-Net (ours) 2 0.7993 0.9939 0.9855 0.7137 0.9847

of the 3D-2D network parametric space. Consider an
extreme case: suppose that the 3D-2D network cannot
learn the correlation in the time domain at all, or the
image sequence has no temporal correlations between
successive images at all, so the 3D convolutional kernel
of the input layer has a special weight distribution — only
the layer corresponding to the target image has non-zero
value weights, whereas the layers corresponding to other
images in the time domain have zero value weights. In this
peculiar situation, a 3D convolutional kernel degenerates
into a 2D kernel, and the 3D-2D network degenerates into
a 2D network. This demonstrates that the 2D network is
a subspace of the 3D-2D network parametric space. This
implies that, theoretically speaking, the performance of
the 2D network is the lower bound of the performance
of the 3D-2D network for image segmentation tasks. In
the absence of temporal correlations between successive
images, a 3D-2D network is expected to perform as well
as a 2D network, and to outperform the latter with the
assistance of time—domain correlations. The experiments
have confirmed that the performance of the proposed 3D—
2D network is better than the 2D models. This further
justifies the temporal correlations in image sequences or
videos make a great contribution to the understanding of
image semantic contents.

Limitations of the method
There are still two major limitations of the 3D-2D
method. The first one is the choice of N. N should not

be too small that it discards sufficient time domain infor-
mation, nor too large to shadow the significance of the
target image and introduce time domain artifacts, as well
as increase the computational complexity. As the frame
rates of angiographic videos range from 10 ~ 15fps, N > 3
is a bad choice since it means seven images are input to
the model, and it covers more than half a heartbeat cycle.
In the worst case this will exponentially increase the dif-
ficulty of parameter optimization, and make the network
impossible to reach the optimal. One example is illus-
trated in Fig. 5, where N = 2 leads to the best result,
whereas N = 3 degenerates the result.

The second limitation is that most currently avail-
able medical image segmentation datasets are not in
the form of videos, but are independent images, so this
method cannot be directly applied to the widely existing
datasets for the time being, for example the well stud-
ied DRIVE dataset [28]. We believe that as the value
of the temporal information in videos is recognized in
more and more researches, video segmentation tech-
niques will be well developed in the field of medical image
analysis.

Conclusions

By adding a 3D convolutional layer to the input layer of
the 2D CE-Net to extract and fuse the temporal informa-
tion in the coronary artery angiographic videos, we obtain
a better performance in the segmentation tasks of the
blood vessels, at a cost of a slight increment in the training

the target image ground truth

A B
Fig. 5 Example of a failed case with too large N. The best segmentation result is obtained with N = 2 (column D), whereas the model with N = 3
fails to extract some fine vessels (col. E)

3D-2D Net, N=1 N=2 N=3

D E
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and inference time. Experiments demonstrate that for the
frame rate of the angiographic video, feeding five suc-
cessive images into the 3D-2D network renders the best
segmentation results. This work justifies that the time—
domain information of videos has practical significance
for image segmentation and interpretation, and is worthy
of further study.
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