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Background: This study aimed to evaluate the significance of MRI-based radiomics model derived from high-
resolution T2-weighted images (T2WiIs) in predicting tumor pathological features of rectal cancer.

Methods: A total of 152 patients with rectal cancer who underwent surgery without any neoadjuvant therapy
between March 2017 and September 2018 were included retrospectively. The patients were scanned using a 3-T
magnetic resonance imaging, and high-resolution T2Wls were obtained. Lesions were delineated, and 1029
radiomics features were extracted. Least absolute shrinkage and selection operator was used to select features, and
multilayer perceptron (MLP), logistic regression (LR), support vector machine (SVM), decision tree (DT), random
forest (RF), and K-nearest neighbor (KNN) were trained using fivefold cross-validation to build a prediction model.
The diagnostic performance of the prediction models was assessed using the receiver operating characteristic

Results: A total of 1029 features were extracted, and 15, 11, and 11 features were selected to predict the degree of
differentiation, T stage, and N stage, respectively. The best performance of the radiomics model for the degree of
differentiation, T stage, and N stage was obtained by SVM [area under the curve (AUCQ), 0.862; 95% confidence
interval (Cl), 0.750-0.967; sensitivity, 83.3%; specificity, 85.0%], MLP (AUC, 0.809; 95% Cl, 0.690-0.905; sensitivity,
76.2%; specificity, 74.1%), and RF (AUC, 0.746; 95% Cl, 0.622-0.872; sensitivity, 79.3%; specificity, 72.2%).

Conclusion: This study demonstrated that the high-resolution T2WI-based radiomics model could serve as
pretreatment biomarkers in predicting pathological features of rectal cancer.
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Background

Colorectal cancer (CRC) is the third most common ma-
lignant tumor worldwide [1]. According to the latest
data, reported by the Cancer Statistics of China in 2015,
CRC ranks fifth in morbidity and mortality [2]. Among
all the patients with CRC, rectal cancer accounts for 30—
35%, which are generally adenocarcinomas. The optimal
therapy program selection is a multifarious course for
patients with rectal cancer [3, 4], and an accurate pre-
operative stage is an essential step for guiding treatment
decisions, including surgery or neoadjuvant chemoradio-
therapy (nCRT). Surgical excision is regarded as the
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standard treatment strategy for early rectal cancer (T1-2
and NO), and the treatment for locally advanced (T3-4
and/or N1) rectal cancer is nCRT followed by total
mesorectal excision surgery [3]. Generally, the patho-
logical type, degree of differentiation, depth of infiltra-
tion, and presence or absence of regional lymph node
metastasis reflect the degree of tumor invasiveness and
predict the prognosis of a tumor [3]. Therefore, a deeper
understanding of tumor pathological features has a critical
value in formulating the clinical treatment plan and pre-
dicting the prognosis. Moreover, high-resolution magnetic
resonance imaging (MRI) has a pivotal role in the
pretreatment assessment of rectal cancer because the
high-resolution T2-weighted images (T2WIs) offer better
diagnostic performance in the staging of rectal cancer [3].
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Recently, radiomics analysis was developed and validated
as an advanced tool in assessing tumor heterogeneity.
Radiomics is a noninvasive method that involves high-
quality image acquisition, VOIs segmentation, high-
throughput quantitative feature extraction, high-dimension
feature reduction, and diagnostic, prognostic, or predictive
model establishment. The radiomics model, which makes
use of the medical images and clinical data, has a potential
in clinical decision-making [5]. Radiomics has been used to
evaluate several kinds of tumors in previous studies and is
being increasingly implemented [5-9]. MRI-based radio-
mics model has been employed in distinguishing cancer
from benign tissue and reflecting the histological character-
istics of rectal cancer [10-13]. Therefore, the purpose of
the present study was to investigate the significance of an
MRI-based radiomics model derived from high-resolution
T2WTI in identifying specific pathological features of rectal
cancer and build a set of prediction radiomics models.

Methods

Participants

This retrospective study was approved by the local insti-
tutional (Committee on Ethics of Biomedicine, Second
Military Medical University) review board, and written
informed consent was waived for each patient. Between
March 2017 and September 2018, 182 consecutive pa-
tients with rectal lesions identified by colonoscopy with
no previous treatment were involved in this study. All
patients underwent rectal MRI examination and postop-
erative pathological test. The exclusion criteria were as
follows: chemotherapy or radiotherapy before and after
MRI (n =20), poor image quality (n =6), and distant
metastases (n = 4). Therefore, 152 patients were included
in the final analysis.

Magnetic resonance imaging

All patients were scanned on a 3T MRI (MAGNETOM
Skyra, Siemens Healthcare, Erlangen, Germany) using an
18-channel pelvic phased-array coil. Every patient fasted
for 4 h prior to the scan. Transversal high-resolution T2-
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weighted turbo spin echo images were acquired with the
following parameters: TR/TE =4000/108 ms, FOV =
180 x 180 mm?, matrix = 320 x 320, slice thickness =3
mm, gap=0mm, acceleration factor=3, echo train
length = 16, and acquisition time= 4min 10s. All pa-
tients underwent surgery at a time interval of 8.9 +5.8
(range, 2—28) days after the MRI examination.

Pathological evaluation

The tissue sections were subjected to hematoxylin and
eosin staining. All lymph nodes in the mesorectum were
retrieved from the surgical specimens to ensure that at
least 12 lymph nodes per patient were collected. The
final histopathological reports detailed the tumor TN
staging, histological grade, and circumferential resection
margin (CRM). All TN statuses were determined accord-
ing to the American Joint Committee on Cancer staging
system, eighth edition [14, 15]. The patients were di-
vided into two groups according to different pathological
criteria. Histological grade: high-to-moderate and poor
differentiation; T stage: T1-2 and T3-4 stages; and N
stage: NO and N1-2 stages.

Feature selection

The radiomics features were extracted from the VOIs as
confirmed by a radiologist (with 8 years of experience in
radiology) on high-resolution T2WI using a radiomics
analysis platform [Radcloud, Huiying Medical Technology
(Beijing, China) Co., Ltd.] (Fig. 1). 1029 high-throughput
data features based on feature classes and filter classes
were automatically extracted from the platform. The plat-
form feature extraction is based on the “pyradiomics”
package in Python (version 2.1.2, https://pyradiomics.
readthedocs.io/).

To minimize the MRI intensity variations, we normal-
ized the intensity of the image using the following for-
mula (where x indicates the original intensity; flx)
indicates the normalized intensity; y refers to the mean
value; o indicates the variance; s is an optional scaling,
by default, it is set to 1).

Coronal reconstruction. d Volume rendering

Fig. 1 Example image for rectal cancer contouring. a The outline of ROl on one slice of axial T2-weighted MR image. b Sagittal reconstruction. ¢



https://pyradiomics.readthedocs.io/
https://pyradiomics.readthedocs.io/

Ma et al. BMIC Medical Imaging (2019) 19:86

First, to guarantee image feature robustness, the basis
of an intraclass correlation of 0.6 was set for test—retest
analysis. Then, the robust features were selected by the
least absolute shrinkage and selection operator (LASSO)
method to best predict the classification performance. In
the LASSO method, leave-one-out cross-validation was
used to select the optimal regularization parameter
alpha, as the average of mean square error of each pa-
tient was the smallest. With the optimal alpha, features
having nonzero coefficient in LASSO were reserved.

Prediction model analysis

The machine learning is based on the “scikit-learn”
package in Python (version 0.21.3, https://scikit-learn.
org/stable/). The original collection was divided into a
training set (70%) and a test set (30%) randomly. More-
over, to lower the imbalance impact of samples distribu-
tion of the degree of histological grade and N stage, the
synthetic minority oversampling technique algorithm
was used in the training set. The multilayer perceptron
(MLP), logistic regression (LR), support vector machine
(SVM), decision tree (DT), random forest (RF), and K-
nearest neighbor (KNN) classifiers were trained (the
parameters of the six classifiers are shown in Table 1)
using fivefold cross-validation to build a prediction
model. Moreover, the independent test set was used to
test the performance of the model. The experiment used
the mean model as the final model for the test set. The
performance of models for the statistically significant
pathological features was assessed using sensitivity, spe-
cificity, and area under the receiver operating character-
istic (ROC) curve (AUC). P value < 0.05 was considered
statistically significant.

Results

Patient demographics

Among the 152 patients with rectal cancer, 94 were
male and 58 were female, with a mean age of 58.9 +
8.3 years (range 24-78). The pathological features of
rectal cancer are presented in Table 2. None of them
had positive CRM.

Table 1 Supplemental data (parameters)
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Diagnostic performance of radiomics
A total of 1029 features were extracted from preopera-
tive high-resolution T2WI, can be classified into three
categories as follows: I. The characteristics of intensity
statistics, such as peak value, mean value, and variance,
which are used to quantitatively describe the distribution
of voxel intensity in MR images; II. Shape features, such as
volume, surface area, and spherical value, which reflect the
three-dimensional characteristics of the shape and size of
the outlined area; and III texture features, including the
gray-level co-occurrence matrix, gray-level run length
matrix, and gray-level size zone matrix, which can quantify
the heterogeneity of the selected region. Additionally,
Laplace-Gauss filtering, exponential, logarithmic, square,
square root, and wavelet filters can be used to calculate
image intensity and texture features. Wavelet filters used in-
cluded wavelet-LHL, wavelet-LHH, wavelet-HLL, wavelet-
LLH, wavelet-HLH, wavelet-HHHH, wavelet-HHL, and
wavelet-LLL. Then 15, 11, and 11 characteristic features re-
lated to the degree of differentiation, T stage, and N stage,
respectively, were obtained (Table 3). Radiomics features
were selected for subsequent prediction model building, the
cutoff value was selected according to the Youden index to
determine the corresponding sensitivity and specificity. The
AUC was used to assess the predictive ability of the model,
and the selection results are presented in Tables 4 and 5.
For the degree of differentiation, the SVM classifier
provided the best discrimination capability for the pre-
diction model with an AUC of 0.862 (95% CI, 0.750—
0.967; sensitivity, 83.3%; specificity, 85.0%). As for the T
stage, the MLP classifier provided the best discrimin-
ation capability with an AUC of 0.809 (95% CI, 0.690—
0.905; sensitivity, 76.2%; specificity, 74.1%). Moreover,
the RF classifier showed a good diagnostic performance
for the N stage with an AUC of 0.746 (95% CI, 0.622—
0.872; sensitivity, 79.3%; specificity, 72.2%) (Fig. 2).

Discussion

This study indicated that the high-resolution T2WI-

based radiomics machine learning model could not only

differentiate pathological differentiation and T stage but

also exhibited good diagnostic performance for N stage.
Recent studies have shown that radiomics is important

in identifying tumor heterogeneity in several kinds of

Model Degree of Differentiation T stage N stage

MLP hidden_layer_sizes = (30) hidden_layer_sizes = (30) hidden_layer_sizes = (30)

LR penalty ='12', solver = liblinear’ penalty =12, solver =liblinear’ penalty =12, solver =liblinear’
SYM kernel = 'rbf’, probability = True kernel = ‘Poly’, probability = True kernel = 'rbf’, probability = True
DT criterion ='gini’ criterion ='gini’ criterion ='gini’

RF n_estimators =15 n_estimators =15 n_estimators =15

KNN n_neighbors =5 n_neighbors =5 n_neighbors =5
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Table 2 Pathological characteristics of the patients
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pathological characteristics

Total

n percentile (%)

Training data (70%)

n percentile (%)

Test data (30%)

n percentile (%)

Gender
Male
Female
Age (years)
Mean
Range
Histological type
Adenocarcinoma
Mucinous adenocarcinoma
Signet ring cell carcinoma
Pathologic differentiation
High
Moderate
Poor
T stage
T1
T2
T3
T4
N stage
NO

T2

94 (61.8)
58 (382)

589+83
24-78

131 (86.2)
15 (99)
6 (3.9)

63 (594)
43 (40.6)

523 +10.
24-77

91 (85.8)
11 (104)

4(3.8)

14 (13.2)

31 (674)
15 (32.6)

589+80
25-78

40 (87.0)
4(87)
2 (43)

6 (13.0)
34 (739)
6 (13.0)

7(152)
16 (34.8)
21 (45.7)
2 (43)

27 (58.7)
10 (21.7)
9 (19.6)

Table 3 Radiomics features

No Degree of differentiation T stage N stage

1 original_firstorder_Minimum original_shape_Size WaveletHLH_firstorder_Medianvalue
2 original_firstorder_Entropy WaveletLLH_firstorder_Medianvalue WaveletHLL_glrim_SRLGE

3 original_shape_Compactness WaveletLHH_firstorder_Meanvalue WaveletHHL _firstorder_Energy

4 original_glrim_RLV WaveletLHH_firstorder_Uniformity WaveletLLH_firstorder_Medianvalue
5 WaveletLLH_firstorder_Skewness WaveletHHL_firstorder_Medianvalue WaveletHHH_glszm_LGZE

6 WaveletlLLH_firstorder_Uniformity WaveletLLL_glszm_SZE WaveletLLL_glrlm_LRHGE

7 WaveletHLH_firstorder_Kurtosis WaveletLLL_glszm_ZSN WaveletHHL_firstorder_Skewness

8 WaveletLHL_glszm_LGZE WaveletLLL_ngtdm_Coarseness WaveletLLL_glcm_cshad

9 WaveletLLL_glrlm_LRHGE WaveletHLH_glcm_infTh WaveletLLL_glrlm_HGRE

10 WaveletHHH_glrim_RLV WaveletHHL_glcm_senth WaveletHLL_ngtdm_Coarseness

" WaveletHHH_glszm_LGZE WaveletHHL_glrim_LRHGE WaveletHLL_glcm_inf1h

12 WaveletHHL_glcm_inf2h

13 WaveletHHH_glcm_cprom

14 WaveletHHH_glcm_corrm

15 WaveletLHH_glrim_GLV
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Table 4 Training set
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pathological features model mean AUC std sensitivity specificity Youden index
degree of differentiation MLP 0.942 0.041 0.871 0978 0.849
LR 0.874 0.052 0.806 0.903 0.709
SVM 0.871 0.037 0.806 0.892 0.698
DT 0.892 0.040 1.0 1.0 1.0
RF 0.983 0.020 1.0 1.0 1.0
KNN 0933 0.062 0978 0.860 0.838
T stage MLP 0.824 0.087 0.804 0.900 0.704
LR 0.792 0.083 0.826 0.733 0.559
SVM 0.764 0.083 0913 0.783 0.696
DT 0.722 0.060 1.0 1.0 1.0
RF 0.713 0.031 1.0 0.983 0.983
KNN 0.712 0.081 0.956 0.600 0.556
N stage MLP 0.694 0.122 0.861 0677 0538
LR 0651 0.089 0.831 0492 0323
SVM 0.684 0.143 0831 0.738 0.569
DT 0.713 0.060 1.0 1.0 1.0
RF 0.794 0.100 1.0 0.954 0.954
KNN 0663 0.060 1.0 1.0 1.0

tumors [5-9], which may serve as a complementary tool
for the preoperative tumor staging in rectal cancer [10-13].
The patients with rectal cancer required a comprehensive
staging evaluation for guiding decisions regarding choice of
treatment with an aim to avoid undertreatment and
minimize overtreatment. Therefore, high-resolution T2WIs

Table 5 Test set

were used to explore the significance of MRI-based radio-
mics model in the preoperative diagnosis of rectal cancer in
the present study.

Previous studies have shown by NCCN, degree of dif-
ferentiation, T stage, and N stage are powerful prognos-
tic factors for patients with rectal cancer [3]. Several

pathological features model AUC 95% Cl sensitivity specificity Youden index
degree of differentiation MLP 0.825 0.659-0.967 0.833 0.750 0.583
LR 0.808 0.649-0.946 0.833 0.725 0.558
SVM 0.862 0.750-0.967 0.833 0.850 0.683
DT 0.854 0.700-0.963 0.833 0.875 0.708
RF 0.858 0.735-0.964 0.833 0.750 0583
KNN 0.692 0.519-0.844 0.833 0450 0.283
T stage MLP 0.809 0.690-0.905 0.762 0.741 0.503
LR 0.762 0.633-0.873 0714 0.630 0344
SVM 0.753 0.623-0.857 0.667 0.630 0.297
DT 0.667 0.543-0.783 0.667 0.667 0334
RF 0.727 0.591-0.843 0.714 0.704 0418
KNN 0.720 0.586-0.830 0.809 0407 0216
N stage MLP 0.667 0.531-0.799 0.690 0.722 0412
LR 0437 0.294-0.575 0448 0444 —-0.108
SVM 0.592 0435-0.736 0.552 0.500 0.052
DT 0.723 0.599-0.832 0.724 0.722 0446
RF 0.746 0.622-0.872 0.793 0.722 0515
KNN 0.560 0.428-0.69 0.621 0.500 0.121
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Degree of differentiation

T stage

N stage
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Fig. 2 Receiver operating characteristic (ROC) curves of the prediction model for the statistically significant prognostic factors. ROC curves of SYM
classifier for pathological differentiation: (a1) training set (AUC, 0.871; std., 0.037; sensitivity, 80.6%; specificity, 89.2%); (@2) test set (AUC, 0.862; 95%
Cl, 0.750-0.967; sensitivity, 83.3%; specificity, 85.0%). ROC curves of MLP classifier for T stage: (b1) training set (AUC, 0.824; std., 0.087; sensitivity,
80.4%; specificity, 90.0%); (b2) test set (AUC, 0.809; 95% Cl, 0.690-0.905; sensitivity, 76.2%; specificity, 74.1%). ROC curves of RF classifier for N stage:
(1) training set (AUC, 0.794; std., 0.100; sensitivity, 100.0%; specificity, 95.4%); (c2) test set (AUC, 0.746; 95% Cl, 0.622-0.872; sensitivity, 79.3%;
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studies showed a statistically significant correlation between
the apparent diffusion coefficient value, derived from
diffusion-weighted images, and tumor differentiation grade
[16, 17]; however, some studies showed a contradictory re-
sult [18, 19]. In this study, radiomics and tumor differenti-
ation grade showed a statistically significant correlation.
The ROC curves of SVM classifier showed an AUC of
0.862 (test set), suggesting that the SVM model can be used
to distinguish poorly differentiated lesions from highly/
moderately differentiated lesions.

Although high-resolution MRI is recommended for the
T staging of patients with rectal cancer, the accuracy of sta-
ging is still unsatisfactory. Some studies demonstrated dif-
ferences in results that ranged from 44 to 100% [20, 21].
Stage T2 lesions could be differentiated from T3 lesions by
identifying a smooth outer tumor border within the rectal
wall, with no invasion into the fat surrounding the rectum.
The difficulty in differentiating tumor infiltration from fi-
brosis, which is due to inflammation and blood vessel inva-
sion, limited the ability to distinguish stage T2 tumors
from early-stage T3 tumors [15]. In this study, the ROC
curves of MLP classifier showed an AUC of 0.809 (test set),
suggesting that the MRI-based radiomics model can be
used to distinguish T3—4 lesions from T1-2 lesions. These
results could be explained by the fact that higher T-stage
tumors showed greater heterogeneity of cell morphology
and histology, higher cell density, and smaller interstitium.

Accurate preoperative diagnosis of lymph node metas-
tasis is another important factor for treatment selection.
Although the accuracy of T staging is considerably high,
the prediction of N staging remains difficult [22]. Using
morphological criteria only does not improve the predic-
tion accuracy of lymph node metastasis in rectal cancer
[10]. This limitation is aggravated by the lack of consen-
sus on appropriate criteria to assess lymph node involve-
ment [20]. The reported accuracy of routine MRI for
lymph node staging varied widely, ranging from 43 to
85% [23], suggesting that the MRI criteria for detecting
lymph node metastasis are not reliable. However, the
ROC curves of RF classifier showed an AUC of 0.746
(test set), which was partially consistent with the results
of Huang’s study [24]. The study found radiomics signa-
tures and other risk factors could conveniently facilitate
the individualized preoperative prediction of lymph node
metastasis in patients with CRC. Therefore, the RF
model might reflect the aggressiveness of particular
tumor tissue.

This study had several limitations. First, it was a retro-
spective study prone to selection bias, and the exclusion
of patients with distant metastases limited its applica-
tion. Hence, more patients should be included to
validate the results. Second, due to the relatively small
sample size, some lesions were nonuniformly distributed.
Further studies are needed to broaden the application of
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radiomics for these lesions. Finally, radiomics is a recent
imaging modality; the MRI scanning parameters and
machine learning models are not yet standardized. Large
prospective multicenter trials are necessary to fully
evaluate the role of radiomics in the pathological fea-
tures of rectal cancer.

Conclusions

In conclusion, this study demonstrated that the high-
resolution T2WI-based radiomics showed good classifi-
cation performance related to tumor pathological fea-
tures in patients with rectal cancer. Thus, radiomics may
serve as a good alternative for evaluating the patho-
logical features of rectal cancer and can add a further di-
mension to the predictive power of imaging.
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