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Abstract

Background: Outlining lesion contours in Ultra Sound (US) breast images is an important step in breast cancer
diagnosis. Malignant lesions infiltrate the surrounding tissue, generating irregular contours, with spiculation and
angulated margins, whereas benign lesions produce contours with a smooth outline and elliptical shape. In breast
imaging, the majority of the existing publications in the literature focus on using Convolutional Neural Networks
(CNNs) for segmentation and classification of lesions in mammographic images. In this study our main objective is
to assess the ability of CNNs in detecting contour irregularities in breast lesions in US images.

Methods: In this study we compare the performance of two CNNs with Direct Acyclic Graph (DAG) architecture
and one CNN with a series architecture for breast lesion segmentation in US images. DAG and series architectures
are both feedforward networks. The difference is that a DAG architecture could have more than one path between
the first layer and end layer, whereas a series architecture has only one path from the beginning layer to the end
layer. The CNN architectures were evaluated with two datasets.

Results: With the more complex DAG architecture, the following mean values were obtained for the metrics used
to evaluate the segmented contours: global accuracy: 0.956; IOU: 0.876; F measure: 68.77%; Dice coefficient: 0.892.

Conclusion: The CNN DAG architecture shows the best metric values used for quantitatively evaluating the
segmented contours compared with the gold-standard contours. The segmented contours obtained with this
architecture also have more details and irregularities, like the gold-standard contours.
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Background
Breast cancer is one of the leading causes of death
among women under 40 years old [1]. According to the
World Cancer Report, 2018, lung and female breast
cancers are the leading types worldwide in terms of the
number of new cases of cancers among women [2].
Studies have shown that detection of early-stage breast
cancers, followed by appropriate treatment, was

responsible for a 38% drop in the mortality rate from
1989 to 2014 [1]. Digital mammography (DM) and
Ultrasound (US) are two commonly used techniques for
breast lesion detection [3]. Although DM is considered
the most effective technique [3], US imaging has the
advantage of being safer, more versatile and sensitive to
lesions located in dense areas, normally found in young
women, and where lesions have an attenuation similar
to the dense tissue. Therefore, they can be hidden by the
surrounding tissue [4]. US imaging is heavily dependent
on radiologist experience, compared to DM.
Outlining lesion contours in US breast images is an

important step in breast cancer diagnosis. Malignant
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lesions infiltrate the surrounding tissue, generating irregu-
lar contours, with spiculation and angulated margins,
while benign lesions produce contours with a smooth out-
line and elliptical shape [4]. On the other hand, low-
contrast images associated with speckle noise generate
spurious borders hampering lesion outline and hinder
accurate diagnosis.
Spurred on by the success of machine learning and

image processing in computer vision applications, many
attempts have been made to build Computer-Aided Diag-
nosis (CAD) systems for breast lesion segmentation [5–9].
Daoud et al. [5] used support vector machines with

texture input variables, for segmenting breast lesions in
US images. The dataset consists of 50 breast US images
with sizes of 418 × 566 pixels. The authors obtained the
following results: True Positive Fraction = 91.13% ±
4.06%, False Positive Fraction = 8.87% ± 4.06% and False
Negative Fraction = 15.58% ± 7.13%. In [6], a different
approach was taken, using graph cuts and level set.
However, the authors do not present quantitative results.
In Jiang et al. [7], the authors used the algorithm of ran-
dom walks to breast lesion segmentation in a dataset
with 112 US images segmented by medical specialists.
The authors obtained the following results: Accuracy =
87.5%, Sensitivity = 88.8% and Specificity = 84.4%. In [8],
the dataset consists of only of 30 images and the authors
used self-organized maps associated with finite impulse
response filters for breast US images segmentation. The
authors obtained the following results: True Positives
(TP) = 93.24%, False Positives (FP) = 8.41% and Intersec-
tion over Union (IoU) = 86.95%. In [9], the authors used
fuzzy histogram equalization for improving the US
image contrast and the random forest classifier for
breast lesion segmentation. The authors do not present
quantitative results.
Considering the huge popularity of Deep Learning

and, in particular, of CNNs in segmenting and classify-
ing objects, the following question naturally arises: Can
a CNN, using a relatively small dataset, such as those
available in medical datasets, outperform traditional
machine learning techniques in segmentation of breast
tumors in US imaging?
According to Yap et al. [10], in breast imaging, a large

number of recent publications concentrate on using
CNNs for mammography. Dhungel et al. [11] addresses
the problem of mass segmentation using deep learning;
Mordang et al. [12] used CNNs in microcalcification de-
tection. Recently, Ahn et al. [13] address the problem of
breast density estimation using CNNs. Only the study of
Yap et al. [10] focuses on CNNs for automatic segmen-
tation of breast lesions in US images. The authors
compared the performance of three CNN architectures,
Le-Net [14], U-Net [15] and Fully Convolutional Net-
work (FCN) Alex-Net [16] with three machine learning

techniques, Rule-Based Region Ranking, Multifractal Fil-
tering and Radial Gradient Index filtering. Two datasets,
dataset A with 306 breast US images and dataset B with
163 breast US images were used in this comparison. Ac-
cording to the authors, considering the parameters false
positives/image and F-measure, FCN-AlexNet obtained
the best performance for dataset A and the Patch-based
LeNet achieved the best performance for Dataset B. The
authors conclude that the CNN architectures evaluated
outperform traditional machine learning techniques in
breast lesion segmentation in US imaging.
In this study our main objective is to assess the ability

of CNNs in detecting contour irregularities in breast le-
sions in US images. With this aim, we propose two
CNNs with DAG architectures and compare the per-
formance of these proposed architectures with a pro-
posed series architecture. DAG and series architectures
are both feedforward networks. The difference is that a
DAG architecture could have more than one path from
the first layer and end layer, while a series architecture
has only one path from first layer to end layer. When ap-
plied to image processing, DAG architectures aggregate
information of pixel localization contained in initial
layers into final layers. In semantic tasks, it is expected
that this procedure enhances fine image details. There-
fore, it is expected that DAG architectures will improve
breast lesion segmentation in US images.

Methods
Work environment
Experiments were performed in Matlab 2017b
(9.3.0.713579). The computer used was equipped with
a DELL® motherboard with 128 GB RAM, a Intel®
Core™ i5-7200U CPU @ 2.50GHz. The graphics pro-
cessing unit used was a Nvidia GeForce 940MX, with
4GB RAM and 384 CUDA cores. The computer oper-
ating system was Windows 10.

Input dataset
Two datasets were used in this work, dataset A and
dataset B. Dataset A is composed of Breast Ultrasound
Images (BUS) provided by Researchers from the Bio-
medical Engineering Graduate Program of Federal Uni-
versity of Rio de Janeiro – Brazil. The BUS images were
acquired during routine breast diagnosis procedures, by
several radiologists, at the Cancer National Institute (Rio
de Janeiro, Brazil) from different patients using different
old ultrasound equipment. The patient information,
contained in the images, was excluded by an image crop-
ping step, resulting in different image sizes. For each
image, one experienced radiologist manually delineated
all lesions. According to histopathological analysis there
are 179 malignant lesions and 208 benign lesions. Each
image is from a different patient.
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Dataset B was collected in 2012 from the UDIAT Diag-
nostic Centre of the Parc Taulí Corporation, Sabadell
(Spain) with a Siemens ACUSON Sequoia C512 system 17
L5 HD linear array transducer (8.5MHz). The dataset con-
sists of 163 images from different women with different
image sizes. Within the 163 lesion images, 53 were images
with cancerous masses and 110 with benign lesions [10].
Due to hardware limitations, all images of both data-

bases were resized to 160 × 160 pixels or to 320 × 320
pixels. We evaluated the following sets: Dataset A:
cropped image resized to 160 × 160; Dataset B: cropped
image resized to 160 × 160, original image resized to
160 × 160, original image resized to 320 × 320.
Figure 1a shows an original image from dataset A,

while Fig. 1b shows an original image from dataset B. As
can be seen in Fig. 1, the image from dataset A is noisy.
Due to cropping, the lesion looks larger. On the other
hand, the image of dataset B is high quality.
A subset of Dataset A, composed of 200 images, was

also used by Infantosi et al. [16] for lesion segmentation.
The authors made the lesion segmentation with mor-
phologic operators and a Gaussian Function Constraint.
A subset of Dataset A, composed of 50 images, was

also used by Gomez et al. [17]. The authors made the le-
sion segmentation using a marker-controlled watershed
transformation.
Dataset B was used for lesion detection (not lesion

segmentation) by Yap et al. [10].

Semantic segmentation
Semantic segmentation is formulated as a discrete label-
ling problem that assigns each pixel xi of an image to a
label li from a fixed set ϕ. Given a set of pixels X = {x1,
x2…xn} the task is to predict the set of labels L = {l1, l2…
ln}, taking values from ϕ. In the segmentation problem
solved in this work, the set ϕ is comprised of two values,
ϕ = {0, 1}. The label 0 must be assigned to pixels that be-
long to the background and the label 1 must be assigned
to pixels that belong to a lesion. The Convolutional

Neural Networks used in this work make a semantic
segmentation. Binary images are generated in their out-
put with the same size as those presented in the input
and with pixels labeled with values belonging to the ϕ
set.

Convolutional neural network architectures
The first CNN architecture proposed in this study for
breast lesion semantic segmentation in US image, CNN1, is
a series architecture. In this architecture, the input of each
layer is the output of the previous layer. A series architec-
ture is always used in the studies of Roth et al. [18], the
Pure CNN architecture, used for pancreas segmentation in
CT images, and Shelhamer et al. [19], the FCN architecture,
used for semantic segmentation in general. Figure 2 shows
the proposed CNN1 architecture, obtained empirically
through several experiments. We tried smaller architec-
tures, but noticed the presence of some noise in the final
image. The proposed architecture minimized the presence
of noise in the final image. The following layer names are
used to describe the network architecture: Convolutional
(Conv), Batch Normalization (BatchNorm), Rectifier Linear
Unit (ReLU), Maximum Pooling (MaxPooling), Deconvolu-
tion (Deconv). The overall net is formed by: (Conv64-
BatchNorm-ReLU (2x) – MaxPooling) (3x) – Conv64-
BatchNorm-ReLU(2x)–Deconv64-BatchNorm-ReLU-
Conv64-BatchNorm-ReLU-Dropout-(Deconv64-Batch-
Norm-ReLU-Conv64-BatchNorm-ReLU) (2x)- MaxPool-
ing- Conv2-BatchNorm-ReLU-Softmax–PixelClassification.
Layers play two important roles with respect to the network
operation as a whole: a forward pass that takes the inputs
and calculates the outputs, and a backward pass that
computes the gradients and adjusts the layer parameters in
accordance with them. In the adopted deep learning frame-
work, data input is regarded as a layer. In our case, the data
type of input layer was the Matlab Image Datastore object,
which manages a collection of image files, where each indi-
vidual image fits in the memory, but the entire collection of
images does not necessarily fit. The network contains

Fig. 1 a Example of a cropped image from Dataset A and b Example of original image from Dataset B
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eleven convolutional layers. The receptive fields of the first
ten equal to 3 × 3 pixels and of the last one is 1 × 1 pixel;
both padding and stride hyper-parameters are equal to one.
All convolutional layers, except the last one, have 64 feature
maps. The last convolutional layer produces two feature
maps, since pixels will be classified in two classes: (0) back-
ground, (1) lesion. All weights of the convolution layers
were initialized according to a Gaussian distribution with
mean 0 and standard deviation of 0.01. The biases were ini-
tialized as constants, with zero as default value. During
training, the weights of these convolutional layers are ad-
justed to identify visual features, such as edges, orientations
or certain patterns in the images. Each convolutional layer
is followed by a ReLU layer, which applies an activation
function to neurons defined as f(x) =max (0, x), where x is
a single neuron input. According to Krizhevsky et al. [20],
the ReLU units accelerate network convergence. MaxPool-
ing layers progressively reduce the input spatial size to re-
duce the number of parameters and computation in the
network. All these MaxPooling layers have 2 × 2-sized fil-
ters applied with a stride of 2 and padding of 0, down
sampling every depth slice in the input by 2 along both
width and height, discarding 75% of the activations. The
MAX operations take the maximum value from a 2 × 2-

pixel region. The depth dimension remains unchanged.
The Dropout layer reduces overfitting by preventing com-
plex co-adaptations in training data. A Dropout ratio par-
ameter sets the probability that any given unit is dropped.
In this work, the dropout ratio parameter was set to 0.5.
To speed up training of convolutional neural networks
and reduce the sensitivity to network initialization, a Batch
Normalization layer is used between convolutional layers
and nonlinearities, such as ReLU layers. It normalizes each
input channel across a mini-batch. The Deconvolution
layers perform an up-sampling to obtain a predictive map
of pixel classification with the same size as the input; in
other words, it predicts the class to which each pixel
belongs. All the Deconvolution layers use filters with
receptive fields of 4 × 4 pixels. It works inversely to the
convolutional layer. It reuses the convolution layer param-
eters, but in the opposite direction, that is, the padding is
removed from the output rather than added to the input,
and the stride results in an up-sampling rather than a sub-
sampling.
The Softmax layer calculates both the softmax and the

multinomial logistic loss operations, which saves time and
improves numerical stability. It takes two inputs, the first
one being the prediction of the prior layer (Conv2) and

Fig. 2 Series CNN architecture proposed for CNN segmentation
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the second one being the label layer. It computes the loss
function value, which is used by a backpropagation algo-
rithm to calculate the gradients with respect to all weights
in the network.
The second and third CNN architectures proposed in

this study for breast lesion segmentation in US image,
CNN2 and CNN3, are DAG architectures. A DAG archi-
tecture has layers arranged as a directed acyclic graph. A
DAG architecture is more complex than a series architec-
ture, in which layers have inputs from multiple layers and
outputs to multiple layers. When applied to image pro-
cessing, these architectures aggregate information of pixel
localization contained in initial layers into final layers. In
semantic tasks, it is expected that this procedure enhances
fine image details. The study of Chen et al. [21] used a
DAG architecture to segment neuronal structures in Elec-
tron Microscope Images. Figures 3 and 4 show the two
proposed DAG architectures. In both, the main network
path is like CNN1.
In CNN2, information from the first sub-sampling mod-

ule, after the second convolution operation, is aggregated
before the convolution operation of the first up-sampling
module. To implement aggregation, it is necessary that
the data representation in both inputs be of the same size.

Since the data dimension after the two convolution opera-
tions of the first sub-sampling module is 160 × 160, and
after the deconvolution of the first up-sampling module is
40 × 40, a dimension reduction of the first one is neces-
sary. This is accomplished with two MaxPooling opera-
tions with 2 × 2-sized filters.
In CNN3, information from the three sub-sampling

modules, after the second convolution layer of each one,
is aggregated before the last convolution layer, Conv2.
The number of layers of CNN1, CNN2 and CNN3 is 52,
61 and 68, respectively.
We evaluated the performance of the proposed architec-

tures applying various hyper parameter adjustments. For
CNN training, the algorithm Stochastic Gradient Descent
with Momentum (SGDM) was used. The SGDM algorithm
might oscillate along the path of the steepest descent to-
wards the optimum. Adding a momentum term to the par-
ameter update is one way to reduce this oscillation [22].
The stochastic gradient descent with momentum update is.

θlþ1 ¼ θl−∇E θlð Þ þ γ θl−θl−1ð Þ ð1Þ

The momentum γ determines the contribution of the
previous gradient step to the current iteration. θ is the

Fig. 3 CNN2 architecture: first DAG architecture proposed for breast lesion segmentation in US image
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learning rate and ∇E its gradient. The initial learning
rate was set in 0.001 and the momentum in 0.9. Due to
limitations in the Graphical Processor Unit memory,
batch size was set to 5. Stop condition was set in 150
epochs. This maximum was selected observing the con-
vergence of the CNN training.
A quantitative analysis of the performance of the three

architectures is made using the following metrics: accur-
acy, global accuracy, IoU, Boundary F1 (BF) score and
Dice Similarity Coefficient. The accuracy refers to pro-
portion of pixels corrected classified per class, lesion or
background, while the global accuracy refers to propor-
tion of pixels corrected classified, regardless their class,
lesion or background.

Training, validation and testing
Both databases were divided into three subsets: training,
validation and testing. In each database, 60% of the data

was used for training, 20% for validation, and 20% for
testing. For dataset A, this corresponds to 233, 77, and 77
images. For dataset B, this corresponds to 97, 33, and 33
images. The proportion of malignant and benign lesions
in each subset reflected this same proportion. The valid-
ation step was used for selecting the CNN architecture
with best performance. After choosing the architecture
with the best performance in the validation set, the train-
ing and test set were merged, and a 5 cross-validation
strategy was applied to evaluate it.

Evaluation metrics
The following evaluation metrics were used: global accur-
acy, IoU, Dice coefficient and BF score. In the description
of these evaluation metrics, we will use the following defi-
nitions: False Positives: pixels that belong to the back-
ground that were misclassified as belonging to lesions;
False Negatives (FN): pixels that belong to lesions that

Fig. 4 CNN3 architecture: second DAG architecture proposed for breast lesion segmentation in US images
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were misclassified as belonging to the background; True
Positive: pixels that belong to lesions that were correctly
classified as belonging to lesions; True Negative (TN):
pixels that belong to the background that were correctly
classified as belonging to the background.
The global accuracy is the ratio between the pixels

correctly classified, regardless of class, and the total
number of pixels and is given in Eq. (2):

global accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð2Þ

The accuracy gives the proportion of corrected classi-
fied pixels in each class and is given in Eq. (3):

accuracy ¼ TP=TP þ FNð Þ þ TN=TN þ FPð Þ
2

ð3Þ

The IoU is a metric that penalizes the incorrect classifica-
tion of pixels as lesions (FP) or as background (FN), and is
given in Eq. (4):

IoU ¼ Lesionþ Background
2

ð4Þ

Where:

Lesion ¼ TP
TP þ FN þ FP

ð5Þ

Fig. 5 Mini-batch loss versus iteration: a CNN1; b CNN2; c CNN3; d comparison between CNN1, CNN2 and CNN3
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Background ¼ TN
TN þ FN þ FP

ð6Þ

The Weighted IoU is used when there is a dispropor-
tionate relation between the class sizes in the images,
minimizing the penalty of wrong classifications in
smaller classes. It is given in Eq. (7).

Weighted IoU ¼ Lesion weight x lesion
þ Background weight x background

ð7Þ
Where:

Lesion weight ¼ number of pixels belonging to lesion
total number of pixels

ð8Þ

Brakground weight ¼ number of pixels belonging to lesion
total number of pixels

ð9Þ
The Dice coefficient measures the proportion of pixels

correctly classified as lesion, penalizing the incorrect
classification (FP or FN), and is given in Eq. (10).

Dice ¼ 2TP
2TP þ FN þ FP

ð10Þ

The BF Score measures the alignment between the
predicted borders and the gold standard one. It is given

by a weighted harmonic mean of precision and recall, as
shown in Eq. (11):

BF score ¼ 2x precisionþ recallð Þ
precisionþ recall

ð11Þ

Results
Figure 5 shows the graphs of network convergence,
using dataset A, with the SGDM optimization algorithm.
In the x and y axes are the iterations and mini-batch loss
values, respectively. During the training, the network
weights are adjusted in order to decrease the mini-batch
loss value, forcing the algorithm convergence to the
minimum. As this is a stochastic process and the weight
are randomly initialized, successive trainings on the
same dataset do not result in equal weights at the end.
As shown in Fig. 5d, the speed convergences of CNN1,
CNN2 and CNN3 are almost the same. In these net-
works, a plateau is reached after 7000 iterations. With
dataset A, the training times of CNN1, CNN2, CNN3
were 95′14″, 112′4″, 183′ 35″, respectively. These
training times maintain a strong relationship with the
CNN architecture sizes.
Aiming at a qualitative analysis, Fig. 6 shows examples

of segmentations performed by the three architectures in
3 breast lesions of dataset A. As observed, the contours
obtained by CNN1 are smoother than the contours ob-
tained by the DAG architectures. The architecture

Fig. 6 Examples of contours obtained by the three CNN architectures
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CNN1 sub-samples the input image with dimension of
160 × 160 pixels to 20 × 20 pixels and then up-samples
to 160 × 160 in the final layers. In this process details of
the lesion contours are lost, generating smooth contours
such as those shown in Fig. 6. The contours obtained
with the DAG architectures, CNN2 and CNN3 have
more details and irregularities, like the gold-standard
contours. The reason is that these architectures aggre-
gate to the last layers information from initial layers,
thus preserving pixel localization in the original image.
Figure 7a and b show a quantitative analysis of a be-

nign and a malignant lesion, respectively, obtained from
dataset A. The pink color shows false positive pixels

(pixels outside the ground truth contour considered as
inside, in the obtained contour), while green color shows
false negative pixels. The contour with lower number of
false positives and false negatives pixels is the one ob-
tained with CNN3. Below each image the metrics of
each contour are shown. As can be seen, the best met-
rics values are also obtained with CNN3.
Tables 1 and 2 show the results of the validation step,

for datasets A and B. The best values are shown in
boldface.
Comparing Tables 1 and 2, we notice that CNN3

presents the best values for all metrics and for both da-
tabases. The best values of global accuracy, mean

Fig. 7 Quantitative analysis of two segmentations obtained with the three CNN architectures. a benign lesion; b malignant lesion. Pink color
represents false positive pixels, while green color represents false negative pixels. Metric values for each contour are shown below each image
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accuracy, weighted IoU and mean BF score were ob-
tained with dataset A, while the best values for mean
IoU and Dice coefficient were obtained with dataset B.
The differences between the global accuracies in each

dataset were evaluated using t-student hypothesis test.
The calculated value of t-student test is compared with a
critical value tc. The null hypothesis is rejected if or t ≥
tc or t ≤ − tc. In the first case, the mean value is consid-
ered significantly higher, and, in the second case, signifi-
cantly lower. In this study, a confidence level of 95%,
152 degrees of freedom were used for dataset A, corre-
sponding to a critical value of tc = 1.982. For dataset B
we have 64 degrees of freedom, corresponding to a crit-
ical value of tc = 2.000.
Comparing the results of CNN3 with CNN2 in dataset

A, we obtained a t-value =5.062. This value is statisti-
cally significant. Comparing the results of CNN2 with
CNN1 in dataset A, we obtained a t-value = − 1.026, not
statistically significant. Comparing the results of CNN3
with CNN1 in dataset A, we obtained a t-value =5.062.
This result is statistically significant. Comparing the re-
sults of CNN3 with CNN2 in dataset B, we obtained a t-
value =1.078. This result is not statistically significant.

Comparing the results of CNN2 with CNN1 in dataset
A we obtained a t-value = − 0.605. This result is not sta-
tistically significant. Comparing the results of CNN3
with CNN1 in dataset A, we obtained a t-value =0.381.
This result is not statistically significant.
Therefore, although the best metrics values are ob-

tained with CNN3, the differences in Global Accuracies
obtained with this network and with CNN2 and CNN1
are statistically significant only for dataset A.
Tables 3 and 4 shows results using CNN3 and cross-

validation with 5 folders, for datasets A and B, respectively.
The networks were trained and tested with cropped images
resized to 160 × 160 pixels. Comparing Tables 3 and 4, we
notice that the best values of all metrics were obtained with
dataset A. The differences between the global accuracies
were evaluated using t-student hypothesis test. The calcu-
lated value of t-student test is compared with a critical value
tc. In this study, a confidence level of 99% and 5 degrees of
freedom were used (5 folders), corresponding to a critical
value of tc = 4.032. We obtained a t-value =4.183. This value
is statistically significant.
Tables 5 and 6 shows the results obtained using

CNN3 and cross validation with 5 folders, for dataset

Table 2 Mean values of the metrics for the dataset B, using the validation set and cropped images resized to 160 × 160 pixels

CNN Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

CNN1

Mean 0.917 0.904 0.836 0.850 0.510 0.920

Standard Deviation 0.048 0.068 0.090 0.079 0.083 0.032

CNN2

Mean 0.911 0.895 0.823 0.838 0.515 0.915

Standard Deviation 0.047 0.074 0.095 0.080 0.092 0.034

CNN3

Mean 0.921 0.914 0.845 0.857 0.516 0.918

Standard Deviation 0.035 0.046 0.067 0.059 0.086 0.031

Table 1 Mean values of the metrics for the dataset A, using the validation set and cropped images resized to 160 × 160 pixels

CNN Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

CNN1

Mean 0.904 0.916 0.766 0.843 0.472 0.776

Standard Deviation 0.045 0.047 0.095 0.063 0.085 0.119

CNN2

Mean 0.895 0.917 0.759 0.835 0.479 0.770

Standard Deviation 0.063 0.046 0.117 0.081 0.112 0.141

CNN3

Mean 0.935 0.919 0.819 0.886 0.553 0.829

Standard Deviation 0.030 0.050 0.076 0.050 0.103 0.009
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B, with original images resized to 160 × 160 pixels
and 320 × 320 pixels.
Comparing Tables 4 and 5, we notice that the best

values of mean accuracy, mean IoU and Dice coeffi-
cient were obtained with dataset B with cropped im-
ages resized to 160 × 160 pixels, while the best values
for global accuracy, weighted IoU and mean BF score
were obtained with dataset B, with original images
resized to 160 × 160 pixels. The differences between
the global accuracies were evaluated using t-student
hypothesis test. The calculated value of t-student test
is compared with a critical value tc. In this study, a
confidence level of 95% and 8 degrees of freedom
were used, corresponding to a critical value of tc =
3.355. We obtained a t-value = − 7.938. This value is
statistically significant.
Comparing Tables 5 and 6, we notice that the best

values of global accuracy, mean IoU, weighted IoU and
mean BF score were obtained with dataset B, with ori-
ginal images resized to 160 × 160 pixels, whereas the best
values for Mean Accuracy and Dice Coefficient were ob-
tained with dataset B, with original images resized to
320 × 320 pixels. The differences between the global ac-
curacies were evaluated using t-student hypothesis test.
The calculated value of t-student test is compared with a
critical value tc. In this study, a confidence level of 95%
and 8 degrees of freedom were used, corresponding to a
critical value of tc = 3.355. We obtained a t-value =
10.000. This value is statistically significant.

Discussion
The main advantage of CNNs compared with trad-
itional machine learning techniques in segmentation
and classification tasks, is that the former are fully
automated, requiring no pre-processing for character-
istic extraction.
The performance of CNNs is strongly dependent on

the existence of large databases. This is a challenge for
medical applications, since we have relatively small
datasets in this research area. In previous studies pub-
lished in the literature for breast lesion segmentation,
it was shown (digital mammography [11–13] and US
[10]) that, even with small datasets, CNN outperforms
the traditional machine learning techniques in breast
lesion segmentation and classification. Dataset A used
in this study comprises 387 US images: 208 are benign
lesions and 179 are malignant lesions. Compared with
other datasets previously cited and used for breast le-
sion segmentation, 50 images [5], 112 images [6] and
30 images [8], dataset A is the larger one.
In deep learning, there is a plenty of CNN architec-

tures that have been proposed for image segmentation
and classification. It is impossible to evaluate all these
architectures in each application. From previous
knowledge of the characteristics of each architecture,
it is possible to select an appropriate one, with tailored
characteristics to solve a given problem.
In this study, the main task was to evaluate if CNN

architectures could outline irregular contours, with

Table 4 Metrics values for cross-validation with 5 folders for dataset B, using cropped images resized for 160 × 160 pixels

Folder Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

1 0.917 0.916 0.846 0.846 0.550 0.910

2 0.930 0.930 0.865 0.867 0.556 0.914

3 0.889 0.890 0.800 0.800 0.496 0.892

4 0.924 0.926 0.858 0.859 0.541 0.917

5 0.926 0.925 0.860 0.863 0.542 0.946

Mean 0.917 0.917 0.846 0.847 0.537 0.916

Standard Deviation 0.016 0.016 0.027 0.027 0.024 0.019

Table 3 Metrics values for cross-validation with 5 folders for dataset A, using cropped images resized for 160 × 160 pixels

Folder Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

1 0.952 0.944 0.864 0.913 0.679 0.877

2 0.969 0.961 0.904 0.942 0.754 0.916

3 0.936 0.944 0.834 0.887 0.603 0.850

4 0.961 0.947 0.884 0.923 0.704 0.904

5 0.964 0.954 0.894 0.932 0.724 0.915

Mean 0.956 0.950 0.876 0.920 0.693 0.918

Standard Deviation 0.011 0.006 0.025 0.019 0.051 0.025
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spiculation and angulated margins, such as those
found in US breast lesions images. Our choice was to
use DAG architectures. From a previous knowledge of
the performance of the DAG architecture in image
segmentation applications, we knew that these archi-
tectures aggregate information of pixel localization
contained in initial layers into final layers, preserving
fine image details. In this study, the performance of
the DAG architectures, compared with a series archi-
tecture, is superior, both qualitatively as quantitatively.
The comparison of the performance of CNN3, CNN2

and CNN1 in Tables 1 and 2 shows that CNN3 present
best performance for all metrics in both datasets. How-
ever, the differences between global accuracies are only
statistically significant in dataset A.
The comparison of the metrics in Tables 3 and 4,

where cropped images resized to 160 × 160 are used,
shows that all the best metrics values are obtained with
dataset A. The differences between the obtained global
accuracies are statistically significant. As stated by Yap
et al. [10], we believe that high quality images (dataset B)
may include other structures such as ribs, pectoral
muscle or air in the lungs, making the lesion segmenta-
tion more difficult.
In Tables 4, 5, and 6 we also compared three varia-

tions of database B: one with cropped images resized to
160 × 160, another with original images resized to 160 ×
160 pixels and another with original images resized to
320 × 320 pixels. The comparison showed that some
metrics were higher in some than others. However, the

global accuracy obtained with original images resized to
160 × 160 pixels is better than those obtained with the
other two image sets, and the differences are statistically
significant.
Comparing this study with other studies using conven-

tional machine learning techniques we noticed that:
Infantosi et al. [16], using a subset of dataset A, com-
posed of 200 images, doing the lesion segmentation with
morphologic operators and a gaussian function con-
straint, observed that 91% of the images presented an
IoU better than 0.5. Gomez et al. [17] using a subset of
dataset A, composed of 50 images, doing the lesion seg-
mentation using marker-controlled watershed trans-
formation, obtained an IoU value of 0.86 ± 0.05. In this
study, with CNN3 and dataset A, we obtained a mean
IoU of 0.876 and a weighted IoU of 0.920; Jiang et al.
[7], as previously cited, obtained an Accuracy of 87.5%
using a different dataset. In this study, with CNN3 and
dataset A, we obtained an accuracy of 0.950 ± 0.006 and
a global accuracy of 0.956 ± 0.011. Torbati et al. [8], as
previously cited, obtained an IoU of 86.95% using a data-
set with 30 images.

Conclusion
In this study we evaluated the performance of CNN ar-
chitectures in the task of breast lesion segmentation in
US images. Our main concern was to assess the ability
of CNNs to detect contour irregularities in breast lesions
in US images.

Table 6 Metrics values for cross-validation with 5 folders for dataset B, using original images resized for 320 × 320 pixels

Folder Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

1 0.918 0.903 0.811 0.853 0.501 0.820

2 0.887 0.875 0.756 0.806 0.443 0.799

3 0.921 0.909 0.811 0.811 0.490 0.838

4 0.900 0.867 0.772 0.773 0.476 0.789

5 0.918 0.911 0.805 0.773 0.507 0.871

Mean 0.909 0.893 0.791 0.803 0.483 0.823

Standard Deviation 0.014 0.020 0.025 0.033 0.025 0.032

Table 5 Metrics values for cross-validation with 5 folders, for dataset B, using original images resized for 160 × 160 pixels

Folder Global Accuracy Accuracy IoU Weighted IoU BF Score Dice Coefficient

1 0.982 0.915 0.806 0.969 0.669 0.692

2 0.987 0.900 0.844 0.976 0.730 0.758

3 0.977 0.833 0.744 0.960 0.597 0.574

4 0.970 0.820 0.738 0.947 0.630 0.608

5 0.983 0.933 0.837 0.969 0.693 0.714

Mean 0.979 0.880 0.794 0.964 0.664 0.669

Standard Deviation 0.007 0.051 0.050 0.011 0.052 0.076
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A qualitative analysis showed that DAG architec-
tures better represent the irregularities present in the
gold-standard contours traced by a specialist. The best
results were obtained with the more complex DAG
architecture.
As future work, we propose evaluating DAG architec-

tures in a large database, which would enable a better
network generalization.
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