
RESEARCH ARTICLE Open Access

Automatic glioma segmentation based on
adaptive superpixel
Yaping Wu1, Zhe Zhao2, Weiguo Wu1*, Yusong Lin2 and Meiyun Wang3

Abstract

Background: The automatic glioma segmentation is of great significance for clinical practice. This study aims to
propose an automatic method based on superpixel for glioma segmentation from the T2 weighted Magnetic
Resonance Imaging.

Methods: The proposed method mainly includes three steps. First, we propose an adaptive superpixel generation
algorithm based on simple linear iterative clustering version with 0 parameter (ASLIC0). This algorithm can acquire a
superpixel image with fewer superpixels and better fit the boundary of region of interest (ROI) by automatically
selecting the optimal number of superpixels. Second, we compose a training set by calculating the statistical,
texture, curvature and fractal features for each superpixel. Third, Support Vector Machine (SVM) is used to train
classification model based on the features of the second step.

Results: The experimental results on Multimodal Brain Tumor Image Segmentation Benchmark 2017 (BraTS2017)
show that the proposed method has good segmentation performance. The average Dice, Hausdorff distance,
sensitivity, and specificity for the segmented tumor against the ground truth are 0.8492, 3.4697 pixels, 81.47, and
99.64%, respectively. The proposed method shows good stability on high- and low-grade glioma samples.
Comparative experimental results show that the proposed method has superior performance.

Conclusions: This provides a close match to expert delineation across all grades of glioma, leading to a fast and
reproducible method of glioma segmentation.

Keywords: Glioma segmentation, Superpixel, MRI, Medical image processing, Machine learning

Background
Glioma is a prevalent brain disease with high malig-
nancy, mortality, and disability [1, 2]. Magnetic reson-
ance imaging (MRI) is widely used in the clinical
diagnosis of glioma, can clearly reflect the anatomical
structure of human soft tissue, and can accurately dis-
play the location, size and histological characteristics of
lesions. The segmentation of glioma lesions are the key
steps for computer-aided diagnosis, surgery, radiother-
apy, and chemotherapy planning of brain glioma.
Gliomas show infiltrative growth with lack of clear

boundary and fixed growth pattern. Complex pathological
changes, such as hemorrhage, necrosis, and edema, are
found inside tumors. Gliomas show complex changes in
brightness and texture on MRI images because of the

complex pathological changes. Different tissues may have
similar gray values, which present challenges to the accur-
ate, repeatable, and stable segmentation of gliomas.
In clinical application, radiologists mainly perform

manual segmentation, which is subjective, has heavy
workload, and difficult to achieve repetitive segmenta-
tion. Some semi-automatic segmentation algorithms can
segment ROI with minimal human interaction, integrate
the advantages of manual and automatic segmentation,
and improve segmentation efficiency. However, applying
the scene that needs automated processing is difficult
because of the necessity to set initial seed points, thresh-
olds, and iteration termination conditions, among others.
Automatic segmentation is completely controlled by an
algorithm without human interaction. The segmentation
speed is high and the results are repeatable. Automatic
segmentation is conducive to the end-to-end application
development of glioma [3]. Automatic segmentation is
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the main research direction of glioma segmentation,
while improving the accuracy of segmentation is the key
challenge.
In clinical practice, radiologists make a comprehen-

sive diagnosis of glioma on the basis of the characteris-
tics of various MRIs. Commonly used sequences
generally include at least four types: T1-weighted im-
aging (T1), T2-weighted imaging (T2), fluid-attenuated
inversion recovery (FLAIR) imaging, and contrast-en-
hanced T1-weighted (CET1) imaging [4, 5]. CET1 can
reflect the blood flow information of a lesion, T1 pro-
vides anatomical information, FLAIR imaging can help
distinguish the cerebrospinal fluid of the edema area,
and T2 is sensitive to the edema area and can provide
such information as tumor boundary and edema degree
[6]. In these sequences, T2 images can considerably re-
flect the morphological information of tumors and are
often used in clinical segmentation of gliomas. More-
over, using the segmentation result of the edema area
as ROI of each sequence can provide information on all
types of regions of tumors because such an area often
contains the real and necrotic areas of tumors. There-
fore, the design of an automatic segmentation algo-
rithm for T2 sequence has superior clinical value.

Related studies
Glioma segmentation algorithms can be divided into re-
gion-based, edge-constrained, classification or clustering,
and some hybrid methods [7].
Region-based methods obtain the segmentation result

by iteratively adding adjacent to the seed points through
similarity evaluation. Region growth algorithms is a typ-
ical representation of the region-based methods, while
the key points are the design of similar metrics and
growth rules [8]. The disadvantage is that the seed
points should be specified manually. Ref. [9] implements
the initialization of algorithm by mapping a tumor with
multi-spectral histogram. Ref. [10] proposes the semi-
automatic segmentation algorithm LuTA for lung cancer
tumor using region growth algorithm. Ref. [11] extends
LuTA by developing an automatic seed point generation
algorithm, which automatically generates multi-seed
points in the core region of tumors to achieve automatic
segmentation.
The edge-constrained methods use the feature that the

target object’s gray level changes substantially in the edge
position to segment ROI. An active contour model can
maximize the related prior knowledge to constrain the
image segmentation process. Snake model is one of the
representative algorithms of the active contour model,
which considers image segmentation as an energy
minimization problem [12]. Brightness and texture fea-
tures in Ref. [13] are used to drive the active contour to
approach the tumor boundary in different MRI sequences.

The level set segmentation algorithm implicitly represents
the evolution curve as a zero-level set of high dimensional
level set functions, which has a good theoretical basis, can
be rapidly extended to three-dimensional segmentation
and is extensively used in the segmentation of gliomas
[14–16]. Chan and Vese construct external forces to guide
the evolution of curves by mean values of the inner and
outer regions, and proposed a level set method Chan-Vese
(CV) based on the global regional gray mean value [17].
However, the problem of edge overflow is prevalent using
the level set segmentation algorithm, which needs to be
further deepened and improved, owing to the heterogen-
eity of glioma and unclear boundary between tissues.
The classification or clustering methods divide a group

of objects into several categories on the basis of the sim-
ple and intuitive principle that intra- and inter-class dis-
tances are small and large, respectively. Ref. [18]
explores the user of K-means clustering for segmenta-
tion of different brain tissues. Ref. [19] uses SVM in the
segmentation of brain tumors. Deep neural networks are
also used for brain tumor segmentation [20–22]. In Ref.
[22], a customized convolutional neural network is used
to segment glioblastoma, thereby achieving automation.
However, deep learning remains difficult to apply in gli-
oma segmentation because of the difficulty of obtaining
high-quality glioma samples. Ref. [23] applies a random
forest with context-aware features to identify sub-re-
gions of tumors in MRI images. Given the characteristics
of the random forest algorithm, this algorithm’s
repeatability is not high, while difficulty is observed in
achieving the continuous improvement of the existing
model for the new sample. Ref. [24] extends the multi-
plicative inner composition optimization algorithm and
applies it to the semi-automatic segmentation of glioma.
Although good results were achieved, the interaction of
the radiologist remains necessary. However, additional
information may lead to other bias, which needs to be
carefully screened in model selection.
Superpixel-based glioma segmentation is a hybrid

method. This type of segmentation uses the clustering
method to segment superpixels and trains classifiers on
the basis of features calculated from each superpixel to
classify tumor regions. Ref. [25] calculates the first-order
intensity statistics features, Gabor textons, fractal ana-
lysis, and curvature features from each superpixel and
realizes the detection and segmentation of brain tumors
in the FLAIR images using the extremely randomized
trees (ERT) classifier. It proves that the combination of
superpixel segmentation and machine learning classifica-
tion is feasible for brain tumor segmentation. Ref. [26]
performed segmentation based on graphical models with
a probability maximization framework, which uses con-
ditional random field to model the spatial interactions
among image superpixel regions. ℓ1-regularization was
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performed with statistics features, texture features, curve
features and fractal features among objective function
optimization. Ref. [27] proposed a superpixel segmenta-
tion to generate approximately structural superpixels
with sharp boundary adherence and comprehensive
semantic information, and applied the method to brain
tissue segmentation to illustrate the superior perform-
ance. Ref. [28] presents an iterative spatial fuzzy cluster-
ing algorithm to generate 3D supervoxels for brain MRI
volume based on prior knowledge of generating reliable
seeds from a population-based brain template MRI
image. Ref. [29] extracted supervoxels by the SLIC
method and calculated intensity histogram, texture and
shape features from each supervoxels, training a multi-
nomial logistic regression by maximizing the mutual in-
formation between the data and their labels, and then
automatically assigns a supervoxel with a class label.
For the segmentation based on superpixel, the distribu-

tion of superpixels will directly affect the segmentation re-
sults. Two parameters, namely, number of superpixels and
compactness, are critical to the superpixel distribution. At
present, hyper-parameters are mainly searched using grid
or set default values, although obtaining the best param-
eter remains challenging. Ref. [25] set fixed parameters for
SLIC algorithm with 1600 superpixels and compactness
equals 0.2. Ref. [26] uses SLIC0 for superpixel segmenta-
tion, compactness is not needed, the search for the opti-
mal number of superpixels is performed through grid
search, the search range is from 40 to 260, step size is 20,
compactness is set to 40, and the number of iterations set
to 10. Since the new sample does not have ground truth,
it is impossible to determine the optimal number of super-
pixels, so it can’t be used directly.
Superpixel segmentation preprocesses a pixel-level

image into a block image by merging the homogeneous
regions, thereby obtaining a few regions and effective
spatial location information. This type of segmentation
can effectively reduce the difficulty of post-processing and
improve the robustness of the algorithm. After the glioma
image is segmented by superpixel, ROI is concentrated in
at least one adjacent superpixel block. The heterogeneity
of brightness and texture on the superpixel block reflects
the heterogeneity of tumors. The statistical, texture, curva-
ture, and fractal features of each superpixel block are well
distinguished. We can realize the segmentation of ROI by
classifying the superpixel blocks using machine learning
method. This study analyzes the automatic segmentation
method of glioma using superpixels. The main contribu-
tions of this research are as follows.

1. Given that the simple linear iterative clustering version
with 0 parameter (SLIC0) algorithm needs to set the
hyper-parameter of the number of superpixels, this
study proposes the adaptive SLIC0 (ASLIC0)

algorithm, which can automatically estimate the
optimal number of superpixels. The proposed
algorithm achieves a fully automatic and efficient
superpixel segmentation in the T2 images. Moreover,
ASLIC0 does not need human intervention and has
good stability and repeatability.

2. The current research aims to design a framework
for the segmentation of glioma using superpixel
features and machine learning. We compute the
statistical, texture, curvature, and fractal features for
each superpixel. Thereafter, the classifier is trained
using SVM.

Methods
Automatic glioma segmentation based on adaptive
superpixel adopts the following steps: (1) Perform
ASLIC0 to obtain superpixel images that fit well with
the tumor boundary and have only a few superpixels; (2)
Generate the training set by calculating the features and
label for each superpixel; and (3) Train the classifier
using the SVM model and classify the superpixel into
tumor or non-tumor regions. Figure 1 shows the flow-
chart of the proposed framework.

Adaptive superpixel partitioning
The simple linear iterative clustering (SLIC) [30] method
partitions images into superpixel patches using the k-
means clustering algorithm. The distance measure in
clustering algorithm includes the distance of the gray
space dc and Euclidean distance of pixels ds. The calcula-
tion formulas are (Eqs. 1 and 2), respectively. The
distance D of two pixels is calculated using Eq. (3).

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ii−I j
� �2q

ð1Þ

where Ii and Ij are the gray values of pixels i and j,
respectively.

ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x j
� �2 þ yi−y j

� �2
r

ð2Þ

where x and y are the coordinate values.

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dc

2 þ ds
.
S

� �2
C2

r
ð3Þ

In Eq. (3), parameter S is used to limit the range of

local clustering. In the SLIC algorithm, S ¼ ffiffiffiffiffiffiffiffiffiffi
N=K

p
,

where N is the total number of images and K is the
number of superpixels. Compactness C can be used as a
balance parameter to adjust the relationship between
color distance and spatial distance. Equation (3) shows
that the parameters that should be set manually in SLIC
include K and C. Accordingly, the selection of these two
parameters will directly affect the performance of
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segmentation. Parameter K determines the number
range of irregular regions; the larger K is, the smaller the
size of the superpixel block is. Compactness C deter-
mines the proportion of spatial distance. When C is
large, the proportion of spatial distance will increase,
while the superpixel will have a smooth boundary. When
C is small, the boundary of superpixel will be close to
the edge of the image but the shape and size will be con-
siderably irregular. Therefore, the key to the effective
implementation of the SLIC algorithm is to find the best
K and C.
The SLIC with 0 parameter (SLIC0) algorithm [31, 32]

improves the selection of the C value by changing the
fixed value of SLIC to an adaptive value for each super-
pixel in the first iteration, thereby solving the problem of
the C parameter selection. Experiments on the T2-
weighted MR images of gliomas show that the SLIC0 al-
gorithm can generate relatively regular superpixels in flat
and highly variable regions and bring the superpixel
close to the tumors or edema regions. Figure 2 shows
that for high-grade gliomas (HGG) and low-grade gli-
omas (LGG), the superpixel blocks obtained by the
SLIC0 algorithm can substantially fit the tumor bound-
ary. Therefore, the SLIC0 algorithm solves the problem
of hyper-parameter C selection, thereby resulting in the
key problem of superpixel segmentation becoming the
problem of the hyper-parameter K selection. This study

proposes an ASLIC0 algorithm, while the automatic se-
lection of the hyper-parameter K is realized.
Experiments show that the hyper-parameter K is dir-

ectly related to the segmentation effect. When K is con-
siderably small, the size of the superpixel blocks is
substantially large, thereby possibly leading to difficulty
in distinguishing ROI. If K is considerably large, then the
size of each superpixel will be substantially small,
thereby resulting in each superpixel block losing regional
features. This loss results in the lack of representative-
ness of the features that will be eventually calculated,
thereby leading to the reduction of segmentation accur-
acy. Given the increase in superpixel blocks, the demand
for computing resources will increase, while the advan-
tages of the superpixel segmentation will be reduced.
Figure 3 shows the segmentation effect under a various
number of superpixels. The blue line is the superpixel
boundary, while the pink line circles the ROI boundary.
Evidently, the increase in the number of superpixels re-
sults in the boundary between superpixels and ROI be-
coming increasingly consistent with the actual situation.
When the number of superpixels exceeds 150, the
change of superpixels in the ROI is not evident.
Numerous observations have shown that the best value

of the hyper-parametric K is directly related to the size
of the tumor and complexity of the tumor boundary. To
find the best value of the hyper-parameter K, which can

Fig. 1 Flowchart of glioma segmentation based on superpixel
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Fig. 3 Effects of different K on superpixels

Fig. 2 Comparison of SLIC and SLIC0
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segment the ROI well while the value is small, this study de-
signed two evaluation indices, namely, area ratio of tumors
(TAR) and boundary complexity of tumors (TC). Moreover,
TAR and TC are combined with the best K value labeled by
hand to form a training set. The K value of the new sample
is predicted by training the random forest model.

Evaluation index of tumor
This research used TAR to reflect the volume of tumors.
However, the method of calibrating the region of the tumor
becomes a key problem that should be solved because the
image does not know the location information of the tumor
before segmentation. The normal brain tissue is a symmet-
rical structure because of the particularity of the head, while
the appearance of a tumor tissue breaks this symmetry.
Therefore, we look for the asymmetrical region in the left
and right hemispheres as the tumor area. Figure 4 shows
the method of finding suspected tumor areas.
The following steps are performed on the original

image (Fig. 4 (A)).

(1) Image correction is performed, in which the majority
of the areas of the corrected image are symmetrical
with respect to the midline (Fig. 4 (B)) [33].

(2) The entire image is divided into an average of 256
grids by placing a grid on the image (Fig. 4 (C)).
The horizontal and vertical grids are divided into 16
equal parts (15 pixels each).

(3) Equation 4 is used to calculate the similarity of the
pixels in the corresponding grids of the left
hemispheres (A) and right hemispheres (B) of the
brain.

r ¼

X

m

X

n

Amn−A
� �

Bmn−B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m

X

n

Amn−A
� �2

Bmn−B
� �2r ð4Þ

Where m and n represent the size of the grid, all of
them were 15 in this study.

(4) When the similarity r is below the threshold
(threshold is 0.81), both regions in the left and right
hemispheres are considered suspected tumor areas
(Fig. 4 (C)). Lastly, the number of blocks in left
hemispheres is counted as n.

(5) TAR is calculated by TAR = n/256.
(6) The tumor boundary complexity index TC can be

measured using the ratio of the perimeter to the
area of the tumor. For the suspected tumor area
calculated in step 4, TC is calculated using Eq. 5.
To calculate conveniently, the number of pixels in
the boundary is used to replace the perimeter, while
the number of pixels in the suspected area is used
to replace the area.

TC ¼ Perimeter=Area ≈ N edgeð Þ=N areað Þ ð5Þ
The function N is used to calculate the number of

pixels.

Evaluation of the best value of K
For each image in BraTS2017, the optimal hyper-param-
eter K is searched through a grid search, in which the
search range is from 10 to 450, while the search step is
10.
For the superpixel image of each K in the grid search,

the proportion of each superpixel to the manual seg-
mentation (ground truth) is calculated. The superpixels
with a ratio of over 90% are merged into the superpixel
ROI, which is denoted as variable A. The result of the
ground truth is denoted as variable B. The Dice index is
calculated using Eq. 6 [34].

Dice A;Bð Þ ¼ 2S A∩Bð Þ
S Að Þ þ S Bð Þ ð6Þ

Function S denotes the area. The closer the value of
Dice is to 1, the better the effect of K is.
The Dice index indicates that the performance of the

different K in the grid search is evaluated. For the same
image, the experimental results show that good results

Fig. 4 Finding of suspected tumor areas
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can be obtained in a certain range of K. Figure 5 shows
that for image 1 (blue), the result of Dice is approxi-
mately the same when K is above 60 but below 130. For
image 2 (red), when K is above 150 but below 210, the
result of Dice is approximately the same. This observa-
tion indicates that to make K have better robustness, the
manual selection of K in the middle is a good choice.
For the two images in Fig. 5, 100 and 170 are selected.

Prediction model of K
The best choice of K is extremely different for the differ-
ent glioma images. Figure 6 lists several examples of
high-grade glioma (HGG) and low-grade glioma (LGG)
and shows no fixed pattern for the selection of K. Thus,
we need to determine the applicable rules through ma-
chine learning. For all BraTS2017 images containing tu-
mors, TAR and TC are calculated, while K is manually
selected as the target value. Thereafter, a regression
model is trained using random forest. We will use the
trained model to predict K.

Superpixel annotation and feature extraction
Image preprocessing
Numerous black backgrounds apart from the head are
observed in brain MRI images. Background does not
make sense for research but increases computation.
Therefore, the background should be removed before
the feature calculation to reduce the impact of the
background.
Overall, the brightness of the background is small, al-

though there may be some large values because of the
noise. The influence of noise can be eliminated by calcu-
lating the mean value of the superpixel. This study uses
the threshold method to remove background. When the
average brightness of pixels in the superpixel is below
the threshold value, the superpixel will be removed. The

threshold used in this study is that the average bright-
ness is below 5.

Superpixel annotation
To train the superpixel classification model, whether the
superpixel is a tumor area should be known to deter-
mine the performance of the classifier. This research
uses manual segmentation as ground truth, while the
Dice similarity coefficient is used to determine whether
a superpixel belongs to a tumor area. When the Dice
value is above the threshold value, it is determined as
the tumor area; otherwise, it is a non-tumor area. For
example, superpixel A in Fig. 7 does not belong to the
tumor region because of the small proportion of this
tumor region. By contrast, superpixel B belongs to the
tumor region because the proportion of this region is
above the threshold. Threshold vary slightly depending
on the image sequence.

Feature extraction
Feature extraction aims to quantify each superpixel. The
intensity distribution of the pixels inside the superpixel
should be transformed into comparable features. The
features in this study include intensity statistical, texture,
curvature, and fractal features, totaling 69.

Intensity statistical features Intensity statistical fea-
tures are based on the first-order statistics of histogram
and describes the distribution of values without consid-
ering their spatial relationship, including 17 statistical
features (e.g., energy, entropy, mean, maximum, and me-
dian). Standard deviation, variation, and mean absolute
deviation are used to evaluate the dispersion degree of
statistical histogram. Variation, kurtosis, and skewness
are commonly used central moments. In particular,
skewness reflects the asymmetry degree of the statis-
tical histogram deviating from the mean, while kur-
tosis reflects the steepness and slowness of the
histogram distribution. Uniformity and entropy are
calculated to measure the randomness degree of the
histogram.

Texture features The texture is an important visual
cue, which is ubiquitous and difficult to describe in im-
ages. Gray level co-occurrence matrix (GLCM) describes
the second-order joint probability function of an image. A
variety of GLCMs can be obtained from different direc-
tions and asynchronous lengths, while the corresponding
Haralick texture features can be calculated [35]. Ref. [36]
discusses that some texture information will be lost in the
original images because of the influence of noise. Multi-
level partial derivative mapping images can obtain images
with rich texture structure [36, 37]. This study calculates
GLCM from the original image, the gradient mapping

Fig. 5 Effect of the number of superpixel K on the Dice index
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map is calculated using the Roberts operator, and the gray
level gradient co-occurrence matrix (GLGCM) is calcu-
lated, the curvature mapping map is calculated using the
Prewitt operator, and the gray level curvature co-occur-
rence matrix (GLCCM) is calculated. The Haralick texture
features are calculated for the GLCM, GLGCM, and
GLCCM matrices.

Curvature feature Curvature feature is a shape-based
feature in image, and a measure of image irregularity.
This feature is widely used in computer vision.
For image I, if fx and fy represent the gradient of the

image along with the x and y directions respectively, fxx
and fyy are the second-order partial derivatives of image
I(x, y). Accordingly, the curvature of the image is calcu-
lated using Eq. 7.

Curv ¼ f xx f
2
y þ f yy f

2
x−2 f xx f x f y

f 2x þ f 2y
� �3�

2
ð7Þ

Fig. 7 Superpixel auto-annotation

Fig. 6 Selection of K for the different glioma images
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Given that the curvature is calculated for a single pixel,
the curvature feature in a superpixel is defined as the
average curvature of all the pixels in the superpixel.

Fractal features Given the heterogeneity of gliomas, the
tumor area shows complex structures and irregularities,
while the normal brain tissue is regular and smooth.
Moreover, the tumor area also shows similar structure
and roughness. By utilizing the characteristics of the
fractal features, the corresponding superpixels at a cer-
tain scale in the tumor area have self-similarity and good
distinction between the tumor lesion and normal tissue.
The current study uses the Otsu algorithm [38] to obtain
binary images with different thresholds, while the fractal
edge information of each binary image is obtained. we
choose 4 as the number of channels to obtain good re-
sults and reduce the computational complexity in the
implementation of the Otsu algorithm. Thereafter, the
fractal features corresponding to superpixels are calcu-
lated (D, E, F and G in Fig. 8). The fractal features in-
clude the area, average brightness (rows 1, 2 and 3 of
columns G, I, J and K in Fig. 8), and fractal distance,
which is obtained using the box algorithm [39]. The
process of extracting fractal features is shown in Fig. 8.

Machine learning tumor segmentation
For the feature set calculated from each superpixel, the
machine learning algorithm is used to train a classifica-
tion model to classify the tumors and non-tumors,
thereby achieving the segmentation of glioma. As a
classical classification algorithm, SVM is widely used in
machine learning, computer vision, and data mining.
The basic idea of SVM is to find the maximum separat-
ing hyperplane in the sample space of the training set
and separate the training samples. This research uses
SVM as a classifier because the final model is only re-
lated to the support vector and over-fitting is difficult
to produce.
This study uses the statistical and machine learning

toolkit of MATLAB to train the SVM classifier.
Bayesian optimization is used in the training process,
while radial basis function (RBF) is used as kernel
function. The training data are standardized among
the training processing. In all data, 80% of the sam-
ples were used as training set (228 cases) and 20%
samples were retained as test set (57 cases). During
the model training, 5-folds cross-validation is used to
select the final model.

Results
Data set
For convenience, this study uses the public data set
BraTS2017 [6, 40], the data sources of which include the
Cancer Genome Atlas and Cancer Imaging Archive. All

data include the T1, CET1, T2, and FLAIR sequences
and have been pre-processed with the same resolution
and registered with the same anatomical template. This
research is based on the 2D image of the T2 sequence.
BraTS2017 contains 285 preoperative glioma samples,
include 210 HGG samples and 75 LGG samples. Al-
though each sample contains 155 slices, these images are
obtained by head registration with fewer original slices.
To ensure the representativeness of the samples, the
slice of the median of the tumor pixels in each sample is
used as the training image.

Selection of parameters
To predict the value of K, a regression model is
trained by random forest using TAR and TC, while K
is manually selected as a training set. R-square is
used to evaluate the fit between the predicted K value
and manually selected K value. R-square is calculated
using Eq. 8.

R2 ¼ 1−

P
kbest−kpredict
� �2
P

kbest−kbest
� � ð8Þ

The denominator represents the dispersion of K,
while the numerator represents the error between the
predicted result and best K. R-square can substantially
evaluate the regression model. Accordingly, the closer
its value to 1, the better result will be obtained.
In the random forest training, the number of trees is 5,

while the maximum tree depth is not set. When the
maximum number of instances exceeds 4, the nodes are
stopped from splitting.
The experimental results show that the final training

model can fit K substantially, while R-square is 0.9719.
Figure 9 shows the scatter plot of the best K and pre-
dicted values, while the red line is the fitting line. The
closer the red line is to y = x, the better result will be
obtained. The fitting curve of this experiment is y =
0.92x + 6.7.
Statistical features are directly calculated from the

intensity of the pixel in each superpixel. Given that
the original image is stored by 12 bits, the texture
feature with such large gray value cannot considerably
express the texture characteristics. Before calculating
the texture features, gray resampling of the original
brightness is necessary. This study uses 8, 16, 32, and
64 Gy levels to calculate the texture features. The cal-
culation of GLCM is performed in the 0°, 45°, 90°,
and 135° directions, while the step is 1. Curvature fea-
ture is calculated from the intensity of the pixel,
while the mean value is used as the feature of the
corresponding superpixel. Fractal features are calcu-
lated using four channels.
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Segmentation results
During the test process, the test samples are processed
into superpixel images by ASLIC0 algorithm, and four
kinds of features are calculated for each superpixel.
Superpixels predicted as tumor regions constitute the
final segmentation. For all segmentation result of the
test set, the average value of Dice, and Hausdorff dis-
tance (HD) [28], sensitivity and specificity were calcu-
lated to evaluate the algorithm.
Table 1 shows the segmentation performance of our

method on BraTS2017. The method presented in this
study has a good performance for images with high
contrast between tumor areas and normal tissues in gli-
oma images. Moreover, good results can be obtained
on the HGG and LGG samples.

Figure 10 shows some segmentation results. Each
row from top to bottom represents samples with dif-
ferent positions, brightness contrast, and tumor ap-
pearance. The left three columns are HGG samples,
while the right three columns are LGG samples. Sub-
labels 1 and 2 in the three columns represent the ori-
ginal image and boundary of the ground truth,
respectively. Sublabel 3 shows the comparison be-
tween the boundary of the segmentation result and
ground truth. The blue and red lines represent the
segmentation result and ground truth, respectively.
Overall, the majority of the segmentation results have
good performance.
Observations also show that the segmentation bound-

aries are slightly closer to the inner pixels than the

Fig. 8 Process of extracting fractal features
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ground truth. This result is related to the tendency of
manual segmentation and characteristics of superpixel
segmentation. In the T2 sequence, the brightness of the
tumor area is often high, while the color of brain tissue
around the tumor is relatively dark. In manual segmen-
tation, the edge is often placed in the low-brightness re-
gion to ensure that the entire tumor area can be
included. In superpixel clustering, the brightness dis-
tance is dominant at the edge position. Thus, the edge
will be placed in the high-brightness region, thereby en-
abling the segmentation results to be closer to the actual
tumor area than the manual segmentation results. This
outcome will not affect the actual clinical application. If
necessary, the boundary can be expanded by 1 to 3
pixels through post-processing.

Comparative experimental results
To compare the performance of the methods, the au-
thors use classical segmentation algorithms and similar
algorithms for comparative experiments. These algo-
rithms include classical segmentation Snake [12], region
growth [11], the classical level set method Chan–Vese
(CV) [17], and two superpixel-based algorithms [25, 26].
All experiments use the same origin data. The seed of
the region growth is initiated at the mean coordinates of
ground truth, while the initiate level set function around
the same seed by a circle with a diameter of 2 pixels and

initiate the snake mask around the seed by 2 pixels. For
the experiments in Ref. [25], K and compactness are set
to 1600 and 0.2, respectively. For the experiments in Ref.
[26], the search for K is performed through grid search,
the search range is from 40 to 260, step size is 20, com-
pactness is set to 40, and the number of iterations set to
10. Table 2 shows the comparison results.
The experimental results show that the proposed

method is superior to traditional methods, such as
snake, region growth, and CV. Competence in auto-
mated scenarios is difficult to achieve because of the
heterogeneity of glioma and the need for the hyper-par-
ameter selection of the classical algorithms, its iterative
evolution mechanism is more suitable for better use in
semi-automated scenarios.
The performance of the proposed method is slightly

higher than the methods of Refs. [25, 26]. The reason
may be that the prediction algorithm of the optimal
hyper-parameter K improves the quality of the superpix-
els. Ref. [25] chooses the number of hyper-parameters
by grid search, in which the search step is 20. However,
the best hyper-parameter K may not be found because
the search step is considerably large. Using fixed K and
C in Ref. [26] is feasible, although achieving optimal re-
sults is difficult. Evidently, Fig. 5 shows that when the
number of K exceeds a certain value, the performance
decreases slightly but essentially remains unchanged.

Discussions
The proposed method works well for most of the time,
but the effect become worse when image comes to have
blurred edges, or tumor area presents a large number
of the cross with other normal tissues, or ROI’s gray
level contains much overlapping with neighboring
tissues. Figure 11 shows two examples of method inef-
fectiveness. In the first row, the contrast between the
core area and the edema area is large, and the contrast
between the edema area and normal brain tissue is not
obvious. Therefore, the edema area does not generate
superpixel, which makes the final classification model
unable to work well, and Dice equals 0.5505. Compare
to ground truth, our method succeeded in finding the
core area. In the second row, tumor areas have no dis-
tinct boundaries and are poorly differentiated from sur-
rounding tissues, similar to the first row, our method
also cannot produce good segmentation, the Dice
equals 0.4938. In these cases, improving the accuracy of
superpixel partitioning remains the main challenge.
Brats2017 contains four sequences: T1, T2, FLAIR and

CET1. Experiments show that our method works well
on T2, FLAIR. We made a preliminary analysis, which
may be due to the fact that on T2 and FLAIR, tumors
are usually highlighted and their borders are relatively
clear, while on T1, the area of the tumor is dark and

Table 1 Segmentation performance of the proposed method
on BraTS2017

Samples Dice HD (pixels) Sensitivity Specificity

LGG 0.8566 ± 0.07 3.4419 ± 0.75 82.58 ± 10.45% 99.61 ± 0.42%

HGG 0.8463 ± 0.08 3.4805 ± 0.68 81.04 ± 10.83% 99.64 ± 0.36%

ALL 0.8492 ± 0.07 3.4697 ± 0.69 81.47 ± 10.75% 99.64 ± 0.38%

Fig. 9 Scatter plot of the best K and predicted values
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have much overlap with brain tissue. The segmentation
of the T2 sequence in our method is actually the seg-
mentation of edema area. The original MR image of gli-
oma is 3D image, the adjacent information between
slices may promoting the effect of segmentation and re-
duce the overall segmentation time. This research is
based on the 2D image of the T2 sequence, but this
method can be easily extended to 3D images. Our next
research will focus on 3D images.

Conclusions
This study proposes an automatic segmentation
method for brain glioma on the basis of the T2 se-
quence of BraTS2017. For the segmentation of super-
pixel, an ASLIC0 algorithm based on SLIC0 is
proposed. In the ASLIC0 algorithm, the optimal hyper-
parameter K is predicted by training a random forest
through the design of two evaluation indicators,
namely, ratio of tumor area and complexity of tumor
boundary. The experimental results show that the ran-
dom forest model can considerably fit K, while R-
square is 0.9719. Superpixel images with only a few
superpixels and close to the tumor boundary can be ob-
tained using ASLIC0. The SVM prediction model is
trained by calculating the statistical, texture, curvature,
and fractal features of each superpixel. Meanwhile, the
automatic segmentation of glioma are realized by classi-
fying superpixels into tumor or non-tumor types. The
experimental results on BraTS2017 show that the pro-
posed method has good segmentation performance.
The average Dice was 0.8492, Hausdorff distance was
3.4697 pixels, and sensitivity and specificity were 81.47

Table 2 Comparison with other related methods using
BraTS2017

References Methods description Dice HD (pixels)

Proposed Methods Automatic SLIC0 + SVM 0.8492 3.47

Snake [12] Classical algorithm 0.6951 5.75

RegionGrow [11] Classical algorithm 0.3764 8.37

CV [17] Classical algorithm 0.4247 7.14

Soltaninejad et al. [25] ERT + SLIC 0.8263 3.62

Zhe Zhao et al. [26] SLIC + CRF 0.8052 3.83

Fig. 10 Segmentation results of the proposed method
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and 99.64%, respectively. The proposed method has good
performance on the HGG and LGG samples, thereby show-
ing that the proposed algorithm has good stability. Com-
parative experimental results also show that the proposed
algorithm has superior performance.
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