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Radiomic features from MRI distinguish
myxomas from myxofibrosarcomas
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Abstract

Background: Myxoid tumors pose diagnostic challenges for radiologists and pathologists. All myxoid tumors can
be differentiated from each other using fluorescent in-situ hybridization (FISH) or immunohistochemical markers,
except for myxomas and myxofibrosarcomas. Myxomas and myxofibrosarcomas are rare tumors. Myxomas are
benign and histologically bland, whereas myxofibrosarcomas are malignant and histologically heterogenous.
Because of the histological heterogeneity, low grade myxofibrosarcomas may be mistaken for myxomas on core
needle biopsies. We evaluated the performance of T1-weighted signal intensity (T1SI), tumor volume, and radiomic
features extracted from magnetic resonance imaging (MRI) to differentiate myxomas from myxofibrosarcomas.

Methods: The MRIs of 56 patients (29 with myxomas, 27 with myxofibrosarcomas) were analyzed. We extracted 89
radiomic features. Random forests based classifiers using the T1SI, volume features, and radiomic features were used
to differentiate myxomas from myxofibrosarcomas. The classifiers were validated using a leave-one-out
cross-validation. The performances of the classifiers were then compared.

Results: Myxomas had lower normalized T1SI than myxofibrosaromas (p = 0.006) and the AUC using the T1SI was
0.713. However, the classification model using radiomic features had an AUC of 0.885 (accuracy = 0.839,
sensitivity = 0.852, specificity = 0.828), and outperformed the classification models using T1SI (AUC = 0.713) and
tumor volume (AUC = 0.838). The classification model using radiomic features was significantly better than the
classifier using T1SI values (p = 0.039).

Conclusions: Myxofibrosarcomas are on average higher in T1-weighted signal intensity than myxomas.
Myxofibrosarcomas are larger and have shape differences compared to myxomas. Radiomic features performed
best for differentiating myxomas from myxofibrosarcomas compared to T1-weighted signal intensity and tumor
volume features.

Keywords: Myxomas, Myxofibrosarcomas, Magnetic resonance imaging, Radiomics, Random forest

Background
There are several benign and malignant myxoid soft
tissue tumors. Benign myxoid tumors include myxomas
and angiomyxomas; and malignant myxoid tumors
include fibromyxoid sarcomas, extraskeletal myxoid
chondrosarcomas, ossifying fibromyxoid tumors, myxoid
liposarcomas, myxoinflammatory fibroblastic tumors
and myxofibrosarcomas [1]. Each myxoid neoplasms has
key chromosomal translocations or immunohistochemi-
cal markers that are pathognomic for its diagnosis
except for myxomas and myxofibrosarcomas [1–8].

Myxofibrosarcomas and myxomas are not associated
with any particular translocation or gene expression
product, and their diagnoses are based on their histo-
logical appearances [1, 8–10]. Therefore, one of the
greatest diagnostic dilemmas for a pathologist lies in
differentiating a myxoma from a myxofibrosarcoma, and
particularly differentiating a cellular myxoma from some
low-grade myxofibrosarcomas [1, 8–10]. Differentiation
between these two entities is based on morphologic and
histologic criteria [1, 8–10]. The challenge for patholo-
gists to differentiate these two entities increases with
core needle biopsies because of the heterogeneity of
myxofibrosarcomas and because the core biopsy is sub-
ject to sampling error [11–13].
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Differentiating myxomas from myxofibrosarcomas is
also challenging for radiologists because these lesions
have overlapping imaging features - namely they are
both hyperintense on T2-weighted magnetic reson-
ance imaging (MRI) sequences, have variable signal
intensity on T1-weighted sequences, and both have
heterogeneous enhancement patterns [14–18]. Myx-
omas have been reported to be isointense or hypoin-
tense to skeletal muscle using T1-weighted sequences
[15]. Myxofibrosarcomas have been reported to be
isointense to skeletal muscle on T1-weighted se-
quences [18, 19]. The difference is clinically signifi-
cant because the surgical approach and treatment is
different for these two entities. MRIs provide global
assessment of the tumor whereas biopsies are limited
to certain areas of the tumor; therefore, imaging is
likely to be less subject to sampling error.
We hypothesized that quantitative analysis using

radiomic feature extraction and classifier model ana-
lysis from preoperative MRI studies could predict
whether a myxoid tumor is likely to be a myxoma or
myxofibrosarcoma over volume-based and MRI signal
intensity (SI) value analysis. The purpose of this study
was to assess the performance of image intensity in-
formation, tumor volume, and radiomic features ex-
tracted from MRI for distinguishing myxomas from
myxofibrosarcomas.

Methods
Patients
This single-center, retrospective case-control study was
performed after institutional review board approval, with
waiver of the informed consent requirement. The study
was performed in compliance with the Health Insurance
Portability and Accountability Act (HIPAA). A total of 56
patients who satisfied the inclusion criteria were retrospect-
ively identified. To qualify, patients treated at our institu-
tion had to have pre-treatment MRI, and a histologically
confirmed (from surgical excision and not from core needle
biopsy) diagnosis of myxoma or myxofibrosarcoma be-
tween 01/01/2006 and 12/31/2017. Patients were excluded
from the study if there was no pre-treatment MRI available,
if the pre-treatment MRI was motion degraded or did not
include a non-contrast enhanced T1-weighted MR imaging
sequence, and a fluid-sensitive MR imaging sequence (STIR
or T2-weighted sequence). Age and sex was recorded at the
time of the histological diagnosis. The maximum size and
location of the tumor was determined from evaluation of
the pre-treatment MR study.

MRI sequences
Because these tumors are extremely rare (less than
1/100,000), patients were sometimes referred to our
tertiary center after initial imaging was obtained. The
pre-treatment MRIs obtained on these patients were

Fig. 1 Extraction of radiomic features from T1 MRI
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usually obtained on a variety of MRI scanners, using
several different MR sequences and parameters. We
focused on T1 sequences because this was the most
available sequence (all tumor imaging MRI protocols
had T1 sequences without fat saturation).
Pre-treatment MRIs were performed using either 0.6 T

(Fonar Corp), 1.2 T (Hitachi Oasis), 1.5 T (Siemens Mag-
netom Espree; Siemens Avanto; General Electric Medical
Systems Optima; General Electric Medical Systems Signa
Excite) or 3 T (Siemens Verio; Siemens Symphony) sys-
tems. T1-weighted sequences were as follows: 0.6 T
(repetition time (TR) 414 ms, echo time (TE) 20ms, slice
thickness 5 mm, interslice gap 0 mm, acquisition matrix
1024 × 200); 1.2 T (TR 545, TE 12, slice thickness 4 mm,
interslice gap 1 mm, acquisition matrix 256 × 192); 1.5 T
(TR 400–600 ms, TE 10–20ms, slice thickness 3–5mm,
interslice gap 0.5–1 mm) and 3 T (TR 560–700 ms, TE
9–23 ms, slice thickness 4–6 mm, interslice gap 1–1.5
mm, and acquisition matrix 256–320 × 204–224).

Tissue segmentation
ITK-SNAP software (open source, http://www.itksnap.
org/) was used for manual segmentation of MR images.
In all cases, the tumor was segmented on the unen-
hanced T1-weighted sequences. A reference region-of-
interest (ROI) was drawn in the adjacent normal muscle
on unenhanced T1-weighted MR images for image in-
tensity normalization purposes. Adjacent normal muscle
had to have no signal abnormality on fluid-sensitive

sequences (T2-weighted with fat saturation (T2w FS)/
short tau inversion recovery (STIR)) because tumor cells
have been found in the peritumoral edema and these
tumor cells may affect the T1 signal intensity
measured [18]. Reference ROIs in the muscle were
drawn to avoid tendons. This reference ROI had to
be greater than 35 mm2. Segmentations were done by
radiology resident and verified/corrected by a senior
musculoskeletal radiologist.

Image intensity normalization
To adjust for differences in MRI protocols and field
strengths the T1-weighted SI was normalized. The nor-
malized intensity map was calculated as In = I/Iref× 255,
where I was the original T1 intensity, and Iref was the
mean intensity value within the reference ROI. The
normalized intensity map was resampled at a spatial
resolution of 1 × 1 × 1 mm3 before radiomic feature
extraction.

Table 1 Study demographics

Myxomas
(N = 29)

Myxofibrosarcomas
(N = 27)

P-value

Age in years (SD) 57.0 (12.1) 60.7 (15.6) 0.330

No. of women (%) 22 (75.9%) 15 (55.6%) 0.186

Maximum size (cm) 3.61 (1.3) 10.01 (8.0) < 0.001

Location 0.012*

Shoulder 6 2

Arm 0 2

Forearm 0 3

Chin 1 0

Buttock 5 0

Thigh 10 12

Leg 1 4

Foot 2 0

Pelvis 3 0

Elbow 1 1

Knee 0 3

Clinicodemographic characteristics of patients with myxomas
and myxofibrosarcomas
*P-value based on Fisher’s exact test

Fig. 2 Boxplots of normalized T1-weighted signal intensity for
myxoma (red) and myxofibrosarcoma (green) tumors
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Radiomic feature extraction
Radiomic features of the tumors were extracted from the
normalized intensity map of the T1 sequence for each
patient. In particular, 10 morphologic/volumetric
features (volume features) were extracted from each
tumor region. Moreover, 79 texture features of the
tumor region were extracted from the normalized
intensity map, including the first order features, gray
level co-occurrence matrix (GLCM) features, gray level
size zone matrix (GLSZM) features, and gray level run
length matrix (GLRLM) features. All of the features used
and their definitions are provided in the Additional file 1:
Table S1. In total, 89 radiomic features of the tumor
were extracted for each subject. We adopted the fixed
bin size strategy for the grey-level discretization with the
bin size set to 5. The feature extraction was carried out
in the 3D space and 26-connected neighborhood was
adopted. The flowchart for radiomic feature extraction is
illustrated in Fig. 1.

Classification
A random forests based classifier was built upon the
radiomic features for distinguishing myxoma from myx-
ofibrosarcomas. The classifiers built upon radiomic fea-
tures were compared with those based on intensity and
volume features in terms of their performance. The

number of trees and the minimum leaf size of the ran-
dom forests classifiers were set to 500 and 3, respect-
ively. The classifiers were validated using a leave-one-
out cross-validation. Classification accuracy, sensitivity,
specificity, and area under the receiver operating charac-
teristic curve (AUC) were used to evaluate the classifica-
tion performance. Moreover, the importance for each
radiomic feature regarding the prediction was estimated
using the out-of-bag permuted predictor delta error. We
adopted the implementation for random forests (Tree-
Bagger) in Matlab (R2013a) to train the classifier.

Histopathology
Histological analysis on the excisional sample was
performed by a pathologist. There were 29 patients
with myxomas, 5 (18.5%) patients with grade 1
myxofibrosarcomas, 6 (22.2%) patients with grade 2
myxofibrosarcomas and 16 (59.3%) patients with
grade 3 myxofibrosarcomas.

Statistics
Statistical computing was performed using R (version
3.4.0) [20]. Variables were compared using Wilcoxon-
Rank sum tests for quantitative variables and chi-
squared tests for qualitative variables. Receiver operating
characteristics (ROC) curves and area under the curve

Fig. 3 Receiver-operative characteristic (ROC) curves of classifiers built upon image intensity, volume features, imaging intensity + volume
features, and radiomic features
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(AUC) analyses were obtained using the plotROC pack-
age. DeLong test (included in the Daim package) was
used to compare AUCs of the classifiers built upon
different sets of features. All tests were two-sided, and a
P value less than 0.05 was considered statistically
significant.

Results
There were a total of 56 patients identified: 29 with
myxomas, 27 with myxofibrosarcomas. Subject demo-
graphic and clinical variables are shown in Table 1.
There was a higher proportion of female patients with
myxomas than myxofibrosarcomas, but the difference
was not significantly different (p = 0.186 by Pearson’s
Chi-squared test). None of the patients had a diagnosis
of fibrous dysplasia.
As shown in Fig. 2, myxomas had lower normalized

T1-weighted signal intensity values than myxofibrosaro-
mas (p = 0.006, Wilcoxon rank sum test), and AUC was
0.713 as shown in Fig. 3. Figure 4 shows the T1 SI of the
myxofibrosarcomas by tumor grade. There was no sub-
stantial difference in the T1 SI between the myxofibro-
sarcomas by tumor grade (Kruskal-Wallis p = 0.88). The
radiomics features for all the subjects were demonstrated
in Fig. 5. The classification model built upon radiomic
features obtained an AUC of 0.885 (accuracy = 0.839,
sensitivity = 0.852, specificity = 0.828), which outper-
formed the classification model built upon the T1SI
values (p = 0.039, DeLong test), and the classification
model built upon volume features (AUC = 0.838, p =
0.285 by DeLong test) as shown in Fig. 3.
To investigate how different features contributed the

classification, the top 15 features with high importance
regarding classification are demonstrated in Fig. 6. Seven
of them were shape-based measures, indicating high as-
sociation between tumor type and their morphologic
properties. This also supported the result that the vol-
ume features based classifier had better performance
than that based on intensity. The remaining 8 were tex-
ture features, and the feature GLSZM_SizeZoneNonUni-
formity had the highest importance, indicating that
texture features were more discriminative, and could
provide complementary information to the shape-based
features. This suggests that myxofibrosarcomas were
more heterogeneous on T1-weighted sequences than
myxomas.

Discussion
The results show that the T1SI of myxofibrosarcomas
are on average higher than that of myxomas, however,
there was significant T1SI overlap for both lesions. We
hypothesize that a more cellular tumor has higher pro-
tein content, and would therefore result in increased T1
shortening (higher T1 signal) as our results have shown.

An alternative explanation is that these malignant le-
sions may contain small foci of hemorrhage. Myxofibro-
sarcomas also tended to have volumetric features that
were slightly different than myxomas. Myxofibrosarco-
mas have been noted to have a “tail sign” and have a
known propensity for spreading along the myofascial
planes [18, 21]. This feature may have been detected as
part of the volumetric features.
Radiomic (texture) features were the best for differen-

tiating myxofibrosarcomas from myxomas. Quantitative
analysis using a classification model based on radiomic
features outperformed the classification models using
volume-based and T1SI value analysis. Myxomas tend to
be more paucicellular and bland (unless a cellular myx-
oma), and therefore have less T1 signal heterogeneity.
T1-weighted signal heterogeneity of myxofibrosarcomas
was greater than that for myxomas, and we speculate that
the T1-weighted signal intensity heterogeneity mirrors

Fig. 4 Boxplots of normalized T1-weighted signal intensity for
grade1 (red), grade 2 (green) and grade 3 (blue) myxofibrosarcomas
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Fig. 5 Radiomics heat map. The x axis refers to radiomic features, and y axis refers to different subjects. Dendrograms regarding radiomics and
subjects were displayed to facilitate the visualization of the radiomic patterns. The type of tumor for each subject was indicated by different
colors (magenta/cyan)

Fig. 6 Top 15 radiomic features with high importance in the random forests based classifier
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the intrinsic histologic tumor heterogeneity seen in myx-
ofibrosarcomas and possibly intratumoral hemorrhage.
Prior reports support our findings. Myxomas have

been shown to be hypointense to skeletal muscle on T1-
weighted sequences [15, 16], whereas myxofibrosarco-
mas have been shown to be more isointense to skeletal
muscle on T1-weighted sequences [19]. However, no re-
ports have shown that volumetric and radiomic texture
features can be utilized to differentiate myxomas from
myxofibrosarcomas from preoperative MRIs.
The results have potential significant clinical implica-

tions. Core biopsies are limited by the fact that these le-
sions are heterogeneous, and the sample cannot entirely
represent the lesion’s functional and histologic proper-
ties [22]. Image-guided core biopsies targeting areas of
necrosis in one of the samples may even add to the cor-
rect grade specifically in myxofibrosarcoma [23]. Radio-
mics offers a non-invasive, cost-effective method for
assessment of a lesion’s entire tumor spatial and tem-
poral heterogeneity [22].
We have shown that MRI image-derived radiomic fea-

tures can quite accurately differentiate two extremely
rare tumor types (myxomas and myxofibrosarcomas)
which are challenging for pathologists and radiologists.
This is particularly exciting because these tumors are so
rare, most radiologists rarely encounter these tumors in
daily practice, so most radiologists have limited experi-
ence in differentiating these two entities.
Radiomic feature extraction and analysis has been ap-

plied broadly to other subspecialties in radiology with
successful applications in discerning molecular alter-
ations in tumors, predicting and stratifying tumor re-
sponse to therapy, and to determine patient prognosis
[24–29]. However, literature on musculoskeletal applica-
tions of radiomics is scarce. To our knowledge, this is
the first study to use radiomic feature extraction and
classifier prediction models for this purpose.
The study had some limitations. First, it was retro-

spective in nature, and subject to ascertainment bias.
Myxomas and myxofibrosarcomas are rare tumors (1–4
cases per million people) and this analysis represents
one of the largest analyses in the published literature of
myxomas and myxofibrosarcomas. Another limitation is
that pre-treatment MRIs were obtained using variable
parameters and field strengths; however, this was ad-
justed for by using image intensity normalization. We
found that all tumor MRI sequences typically included a
T1-weighted sequence, which was why the analysis was
restricted to T1-weighted sequences. This makes our
findings more broadly applicable to clinical practices
which use T1-weighted sequences in their tumor proto-
cols. It is conceivable that there would be additional dis-
criminative information contained in T2 or STIR and
post-contrast sequences. We did not analyze the T2/

STIR sequences because these were not always available
(some patients had T2-weighted sequences, others had
proton density-weighted sequences and others had STIR
sequences), which would have left us with a much
smaller sample size with limited power due to missing
data. Myxofibrosarcomas often have perilesional edema
and often have a tail-sign on T2-weighted sequences,
which would likely add to the discriminatory ability of
the model. Additional research is required to assess
whether additional information can be obtained from
the T2/STIR sequences to differentiate myxomas from
myxofibrosarcomas. We did not analyze the contrast-en-
hanced T1-weighted sequences because not all patients
had contrast enhanced studies and because the time
from injection of contrast to imaging was not uniform
across patients and we thought this would introduce
more noise into the analysis and not be definitive.

Conclusion
In summary, we have demonstrated that radiomic
features from T1-weighted sequences can provide better
discriminative information in distinguishing myxoma
from myxofibrosarcomas compared to T1-weighted
signal intensity values and tumor volume.

Additional file

Additional file 1: Radiomic features adopted in this study. This file
shows how all of the radiomic features used in this study were
calculated. (DOCX 28 kb)
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