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Abstract

Background: To investigate the value of predictive nomogram in optimizing computed tomography (CT)-based
differential diagnosis of primary progressive pulmonary tuberculosis (TB) from community-acquired pneumonia
(CAP) in children.

Methods: This retrospective study included 53 patients with clinically confirmed pulmonary TB and 62 patients
with CAP. Patients were grouped at random according to a 3:1 ratio (primary cohort n = 86, validation cohort n =
29). A total of 970 radiomic features were extracted from CT images and key features were screened out to build
radiomic signatures using the least absolute shrinkage and selection operator algorithm. A predictive nomogram
was developed based on the signatures and clinical factors, and its performance was assessed by the receiver
operating characteristic curve, calibration curve, and decision curve analysis.

Results: Initially, 5 and 6 key features were selected to establish a radiomic signature from the pulmonary
consolidation region (RS1) and a signature from lymph node region (RS2), respectively. A predictive nomogram was
built combining RS1, RS2, and a clinical factor (duration of fever). Its classification performance (AUC = 0.971, 95%
confidence interval [CI]: 0.912–1) was better than the senior radiologist’s clinical judgment (AUC = 0.791, 95% CI:
0.636-0.946), the clinical factor (AUC = 0.832, 95% CI: 0.677–0.987), and the combination of RS1 and RS2 (AUC =
0.957, 95% CI: 0.889–1). The calibration curves indicated a good consistency of the nomogram. Decision curve
analysis demonstrated that the nomogram was useful in clinical settings.

Conclusions: A CT-based predictive nomogram was proposed and could be conveniently used to differentiate
pulmonary TB from CAP in children.
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Background
Pulmonary tuberculosis (TB) is one of the most wide-
spread infections throughout the world and has a high
incidence in developing countries. Pulmonary TB has a
high morbidity and mortality [1], mostly in HIV-infected
children [2]; however, it often occurs in children without
HIV in endemic areas. It is essential for children with
TB to be early diagnosed and appropriately treated with
anti-TB drugs.
The positivity rate for pulmonary TB in children is less

than 50% [2, 3] due to sampling challenges and its low bac-
terial load. The main challenge we experienced when diag-
nosing pulmonary TB in children relates to a lack of
bacteriological confirmation. Currently, the diagnosis
merely relies on an examination of clinical symptoms and
radiological findings, which is not accurate enough. Sreera-
mareddy et al. [4] reported that the delayed time for TB
diagnosis in China was 25–71 days. What is more, primary
progressive pulmonary TB can present with more severe
forms such as segmental or lobar consolidation (tubercu-
lous pneumonia or caseous pneumonia) [5]. They are more
common in children than in adults [6] and are accompan-
ied with acute symptoms that are very difficult to distin-
guish from the respiratory infection in children. Zaro et al.
[7] reported that hospitalized children with confirmed pul-
monary TB presented acute/subacute symptoms, similar to
the acute pneumonia in children. The nonspecific symp-
toms and signs of the pulmonary TB often overlap with the
common pediatric pulmonary infections and especially with
those of community-acquired pneumonia (CAP). The main
pathogens that cause CAP in children include Streptococ-
cus and Mycoplasma spp., of which Streptococcus spp. is
the most common, accounting for 40% of CAP cases [8]. In
Asian countries, 1–7% of cases presenting with CAP are re-
diagnosed with pulmonary TB [9]. Therefore, it is essential
to develop an effective tool for early differentiating pulmon-
ary TB from CAP in children.
Radiomics is a novel tool adopting advanced image

analysis algorithms that employ a large number of quan-
titative image features [10]. The integration of these fea-
tures may generate powerful models to assist the disease
diagnosis and prognosis [11, 12]. A number of articles
have reported applications of radiomics in tumors, but
few studies have reported on such applications in non-
neoplastic disease.
In this study, we aimed to develop a computed tomog-

raphy (CT)-based predictive nomogram for helping dis-
tinguish primary progressive pulmonary TB from CAP
in children. We would also like to investigate the value
of radiomics in non-neoplastic diseases.

Methods
This retrospective study was approved by the Ethics
Committees of Beijing Children’s Hospital for using the

data, and patient consent was waived. The workflow of
our study is shown in Fig. 1.

Patients
Records for pulmonary TB and CAP patients attending
our institution from January 2011 to January 2018 were
obtained. The patient recruitment procedure is shown in
Fig. 2. A total of 53 patients with pulmonary TB and 62
patients with CAP satisfied the inclusion criteria (Fig. 3)
and were included in the study. We used two symptoms
(pulmonary consolidation and mediastinal lymph nodes)
to build a final predictive nomogram. Patients were
grouped at random according to a 3:1 ratio: 86 patients
in the primary cohort and 29 patients in the validation
cohort. There were 51 male patients and 35 female pa-
tients in the primary cohort, the mean age was 4.01 ±
3.58 years, and an age range of 1-13 years. The validation
cohort included 19 male patients and 10 female patients
with a mean age of 2.28 ± 2.58 years and an age range of
0–10 years.

CT examinations
All patients underwent an unenhanced low-dose CT
examination of the chest on a 64-slice Discover
CT750HD scanner (GE Healthcare, Waukesha, WI,
USA). The area of coverage extended from the thoracic
inlet to the diaphragm. Following institutional guidelines
of the low-dose CT scan protocol, all low-dose thoracic
CT studies were performed using specified parameters
(5 mm section thickness, 100 kVp tube voltage, auto-
matic tube current modulation technique, and a helical
pitch of 1.375) to achieve an image noise index of 11-
13HU. The radiation dose for the patients was 1.67 ±
0.83 mGy in CT dose index volum (CTDIvol) and
41.54 ± 22.78 mGy*cm in dose length product (DLP).

CT image segmentation
For CT image segmentation, we used an axial mediasti-
num window archived under the Picture Archiving and
Communication System (PACS, Carestream, Vaughan,
ON, Canada) for digital imaging without preprocessing
or normalization.
CT images were exported to ITK-SNAP software (Ver-

sion 2.2.0; http://www.itksnap.org) for manual segmenta-
tion. A radiologist with 10 years of experience performed
manual segmentation in an axial mediastinal window of
unenhanced CT image using a three-dimensional region
of interest (ROI) to delineate the margins of pulmonary
consolidation (ROI1) and mediastinal lymph nodes
(ROI2). For each patient, we examined lymph nodes po-
sitioned behind the superior vena cava for delineation of
ROI2. Segmentation was verified by a senior radiologist
with 15 years of experience.
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Data analysis
Radiomic feature extraction and Radiomic signature
construction
Three-dimensional radiomic features were extracted
from ROIs of the pulmonary consolidations and medias-
tinal lymph nodes, and each group included 485 fea-
tures. These 485 features were divided into 4 categories:
(a) shape and size features, (b) gray intensity features, (c)
texture features, and (d) wavelet features [13]. Shape and
size features reflect the phenotype of the ROIs, including
the shape, area, volume, and level of compactness. Gray
intensity features show differences in gray histograms
and gray distributions of the ROIs. Texture features re-
veal the regularity of voxel relationships within the ROIs.
Wavelet features reflect the transformation of gray in-
tensity of texture features. The feature extraction
method is described in detail in Additional file 1 (Ap-
pendix A1: CT feature extraction). Feature extraction
was executed using MATLAB software (version 2014a;
Mathworks, Natick, MA). The least absolute shrinkage
and selection operator (LASSO) method is suitable for
dimensionality reduction of high-dimensional data and
is often used to extract the most useful features in previ-
ous studies [14].
We used the LASSO method to select key features

from the radiomic features on primary cohort and built
two radiomic signatures (RS1 and RS2) from ROI1 and

ROI2, respectively. Then we validated the performances
of the two signatures on the validation cohort. We also
constructed a radiomic model by combining the two
radiomic signatures.

Establishment of the predictive nomogram
Univariate analysis was used to select significant clinical
factors with p-values < 0.05. Then, linear support vector
machine (SVM) was used to build a predictive nomo-
gram based on the radiomic signatures and significant
clinical factors on the primary cohort. The SVM
method is a generalized linear classifier for the binary
classification of data in supervised learning that is
widely used for pattern recognition purposes (e.g.,
face recognition and text categorization). In this
study, The SVM is modeled using a linear kernel
[15].

Performance evaluation of predictive nomogram
The performance of the predictive nomogram was evalu-
ated on both the primary and validation cohorts. The re-
ceiver operating characteristic (ROC) curve was plotted
to validate the classification ability, and calibration
curves along with Hosmer-Lemeshow tests were per-
formed to assess the goodness-of-fit of the nomogram.
For comparison, a senior radiologist (Y.W. with 6 years

of experience) and a junior radiologist (T.Y. with 15

Fig. 1 The workflow of this study. The pipeline of radiomics analysis includes CT image segmentation, radiomic feature extraction, radiomic
signature construction, and predictive nomogram construction
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Fig. 3 Examples of CT images from two patients with tuberculosis and pneumonia. (a) and (b) show the lung window and mediastinal window
of the axial CT image of a 7-year-old girl with pulmonary TB in the left upper lobe. (c) and (d) show the lung window and mediastinal window of
the axial CT image of a 10-year-old girl with CAP in the left upper lobe

Fig. 2 Patient recruitment in this study. Note: Confirmed TB* refers to Mycobacterium tuberculosis to be confirmed (culture or Xpert MTB/RIF
assay) from at least one respiratory specimen (e.g., sputum, nasopharyngeal/gastric aspirate, and pleural fluid). Lymph nodes** refers to uniformity
with no calcification and necrosis in the lymph nodes. Streptococcus and mycoplasma pneumonia# are diagnosed via the detection of
Streptococcus in pleural effusion or blood culture and positive IgM antibodies against Mycoplasma in the serum, respectively
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years of experience) independently reviewed the CT im-
ages with clinical information and reached final diagno-
sis. The clinical judgments by radiologists were also
evaluated using the area under the ROC curve (AUC)
value.

Clinical use
By quantifying the net benefit to the patient under dif-
ferent threshold probabilities, the clinical application
value of the nomogram was determined through the de-
cision curve analysis.

Statistical analysis
Statistical analysis was performed using R software (ver-
sion3.3.4; http://www.Rproject.org). A two-sided p-value
< 0.05 was used to indicate statistical significance. The
glmnet package was used to implement the LASSO re-
gression analysis. The pROC package was used to con-
struct the ROC curve.
Univariate analysis was used to estimate the relation-

ship between each patient’s clinical factors and the iden-
tification of the two diseases. Independent t-tests or
Mann-Whitney U continuous variable tests were used to
assess the differences in patient variables across the

Table 1 Characteristics of patients in the primary and validation cohorts

Characteristic Primary cohort Validation cohort

CAP Pulmonary TB p value CAP Pulmonary TB p-value

Gender, No. (%) 0.151 0.047*

Male 25 (54.35) 26 (65.00) 8 (50.00) 11 (84.62)

Female 21 (45.65) 14 (35.00) 8 (50.00) 2 (15.38)

Age, mean ± SD, years 4.51 ± 3.44 3.41 ± 3.66 0.181 2.69 ± 3.10 1.77 ± 1.62 0.332

Hemoptysis, No. (%) 0.083 –

+ 0 (0.0) 3 (7.50) 0 (0.00) 0 (0.00)

- 46 (100.0) 37 (92.50) 16 (100.00) 13 (100.00)

Cough, No. (%) 0.324 0.82

- 2 (4.35) 4 (10.00) 0 (0.00) 3 (23.08)

+ 44 (95.65) 36 (90.00) 16 (100.00) 10 (76.92)

fever, No. (%) 0.143 –

- 1 (2.17) 4 (10.00) 9 (56.25) 5 (38.46)

+ 45 (97.83) 36 (90.00) 7 (43.75) 8 (61.54)

Expectoration, No. (%) 0.129 0.358

- 20 (43.48) 24 (60.00) 6 (37.50) 6 (46.15)

+ 26 (56.52) 16 (40.00) 10 (62.50) 7 (53.85)

duration of fever (days) <0.001*** <0.001

<10 43 (93.48) 15 (37.50) 15 (93.75) 3 (23.08)

≥10 3 (6.52) 25 (62.50) 1 (6.25) 10 (76.92)

WBC (*10^9/L), No. (%) 0.247 0.264

Median(IQR) 8.42 (6.70-10.16) 8.40 (7.10-11.41) 14.98 (14.18-17.26) 16.89 (16.30-19.77)

Normal 27 (58.70) 20 (50.00) 5 (31.25) 5 (38.46)

Abnormal 19 (41.30) 20 (50.00) 11 (68.75) 8 (61.54)

CRP (mg/L), No. (%) 0.365 0.381

Median (IQR) 23.30 (11.53-56.25) 15.70 (9.44-33.88) 28.25 (16.00-71.75) 29.00 (14.00-53.60)

Normal 7 (15.22) 8 (20.00) 1 (6.25) 3 (23.08)

Abnormal 39 (84.78) 32 (80.00) 15 (93.75) 10 (76.92)

Radiomic signature1 median 0.53 (0.32 to 0.86) <0.001*** 0.53 (0.33 to 0.74) 0.018*

Radiomic signature2 median 0.54 (0.12 to 0.98) <0.001*** 0.54 (0.20 to 1.26) <0.001***

NOTE. The p-value was derived from univariable association analyses of each characteristic and of the two diseases. * denotes p-value< 0.05; ** denotes p-value<
0.01; *** denotes p-value<0.001
Abbreviations: WBC white blood cell, CRP C-reaction protein

Wang et al. BMC Medical Imaging           (2019) 19:63 Page 5 of 11

http://www.rproject.org


groups, and Fisher’s exact tests or chi-square tests were
applied for categorical variables.
All methods were assessed using the ROC curves and

compared by the AUCs along with the DeLong test. The
point corresponding to the maximal Youden's index on
the ROC curve of the primary cohort was used as the
optimal threshold value and was also applied to the val-
idation cohort. Sensitivity and specificity were calculated
to assess the model performance.
Parts of the codes used in the study are shown in the

Additional file 1: Appendix code.

Results
Clinical factors
Clinical factors (gender, age, hemoptysis, cough, fever,
expectoration, white blood cell (WBC) count, and C-cre-
ative protein (CRP)) were found not significantly differ-
ent between the two diseases, while the duration of fever
was found significantly associated with the two diseases
according to the univariate analysis (p < 0.05, Table 1) on
the primary and validation cohorts. The probability of a
patient suffering from pulmonary TB and CAP was not
significantly different between the two groups (p = 0.962)
.

Construction of the Radiomic signature
A total of 970 radiomic features were extracted from the
CT images (485 features from pulmonary consolidation re-
gions and 485 from lymph node regions). The LASSO re-
gression graph of these radiomic features is shown in
Additional file 1 (Appendix Figure S1: The process of radio-
mic features selection using LASSO regression for RS1 and
RS2) where key features for building the radiomic signa-
tures are presented. Eleven key features highly related with
the identification of the two diseases in the primary cohort
were selected (p < 0.05, Table 2). Shape features such as
“Surface_to_volume_ratio” calculates the surface area to

volume ratio of the ROI, which describes the sphericity of
the lesion, with lower values indicating a more compact
spherical shape. First-order statistical feature “fos_max-
imum” and “fos_minimum” calculates the maximum and
minimum grayscale intensities of the image, and describes
the brightest and darkest image information of the image.
Texture features such as “LRE” are calculated by the distri-
bution of the image grayscale run matrix. The larger value of
the LRE, the coarser of the texture in the ROI. Five features
were extracted from the consolidation region (ROI1) and
merged as a radiomic signature RS1. The other 6 features
were extracted from the lymph node region (ROI2) and
merged as a radiomic signature RS2. Significant differences
of the radiomic signatures between pulmonary TB and
CAP groups were found in both the primary cohort and
the validation cohorts (p < 0.01, Table 1). A radiomic model
was also built merging RS1 and RS2. The calculation for-
mula of RS1 and RS2 are shown in Additional file 1 (Ap-
pendix A2: Radiomic signatures calculation formula).

Predictive nomogram construction and validation
Two radiomic signatures (RS1 and RS2) and the dur-
ation of fever were identified as independent predictors
of pulmonary TB and CAP. As shown in Fig. 4(a), a pre-
dictive nomogram was built by combining RS1, RS2, and
duration of fever. The performances of RS1, RS2, radio-
mic model, clinical factor, and predictive nomogram are
shown in Table 3. The predictive nomogram had the
best differentiation ability of the two diseases with an
AUC of 0.977 (95% CI, 0.953–1) on the primary cohort
and an AUC of 0.971 (95% CI, 0.912–1) on the valid-
ation cohort, as shown in Fig. 5(a, b). In the primary co-
hort, the AUC value diagnosed by the senior radiologist
was 0.799 (95% CI, 0.716-0.884), with an accuracy of
0.802 (95% CI, 0.711–0.872); and the AUC value diag-
nosed by the junior radiologist was 0.700 (95% CI,
0.602-0.797), with an accuracy of 0.698 (95% CI, 0.608–

Table 2 Radiomic feature selection results based on LASSO

Region Features Group Filters p-value

X7_fos_maximum Intensity XHHL <0.001***

X0_GLCM_maximum_probability GLCM XLLL 0.008**

consolidation X6_GLCM_IMC1 GLCM XHLH <0.001***

X1_GLRLM_LRLGLE GLRLM XLLH 0.002**

X1_GLRLM_LRE GLRLM XLLH 0.002**

lymph node Max3D Shape NA <0.001***

Sph_dis Shape NA <0.001***

Compactness1 Shape NA <0.001***

Surface_to_volume_ratio Shape NA <0.001***

X2_fos_minimum Intensity XHLH <0.001***

X0_GLRLM_LRHGLE GLRLM XHHL <0.001***

NOTE. * denotes p-value< 0.05; ** denotes p-value< 0.01; *** denotes p-value< 0.001
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0.790). In the validation cohort, the AUC value diag-
nosed by the senior radiologist was 0.791 (95% CI,
0.636-0.946), with an accuracy of 0.793 (95% CI, 0.603-
0.920); and the AUC value diagnosed by the junior radi-
ologist was 0.721 (95% CI, 0.551-0.892), with an accur-
acy of 0.724 (95% CI, 0.528-0.873).
The calibration curves of the nomogram in Fig. 4(b, c)

showed that the predictions agreed well with the observa-
tions. The Hosmer-Lemeshow test results were not signifi-
cant (p > 0.05), indicating no deviation from a perfect fit.

Clinical use
Figure 6 illustrates the decision curve analysis of the pre-
dictive nomogram. The threshold probability level is the
point at which the expected benefit of treatment is equal
to the expected benefit of avoiding treatment. Our
nomogram showed better treatment benefit than both
“treating all patients as CAP” and “treating all patients
as pulmonary TB” strategies.

Discussion
To our knowledge, no previous study has analyzed cases
of primary progressive pulmonary TB and CAP using
radiomics. In our study, the predictive nomogram was
found to be more effective than radiomic signatures of
pulmonary consolidation/lymph nodes or clinical factors
alone. Moreover, the diagnostic accuracy of the predict-
ive nomogram was better than the radiologists’ subject-
ive judgments. The predictive nomogram was based on
routine CT scan and clinical factor, which was easy to
use in the clinical practice. Therefore, this predictive
nomogram may serve as a potential tool for distinguish-
ing these two major pulmonary diseases in children.
Nambu [16] demonstrated that pulmonary TB could

manifest as CAP. In the early diagnostic stage, it is
difficult to distinguish the pulmonary TB from CAP.
In our study, only roughly 75.47% of pulmonary TB
cases were correctly diagnosed in the entire cohort by
senior radiologist, echoing the results of previous
studies conducted in Iran [17], Hong Kong [18], and

Fig. 4 Construction and validation of predictive nomogram. (a) Predictive nomogram. (b) Calibration curve of the nomogram on primary cohort. (c)
Calibration curve of the nomogram on validation cohort. The calibration curve demonstrates the agreement between the predicted risk by the nomogram
and real outcomes. The 45-degree blue line represents a perfect prediction, and the red lines represent the predictive performance of the nomogram
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Fig. 5 Receiver operating characteristic curve analysis of the models and radiologists’ diagnoses on the primary cohort (a) and validation cohort
(b). The red, green, dark, black, and light blue lines denote the results of radiomic nomogram, radiomic model, clinical factors, a senior radiologist,
and a junior radiologist, respectively

Fig. 6 Decision curve analysis of the predictive nomogram. The x-axis and y-axis represent the threshold probability value and the net benefit,
respectively. The red, blue, and black lines represent the treatment benefits using the nomogram, treating all patients as CAP, and treating all
patients as pulmonary TB
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Singapore [19]. Typical CT manifestations of pulmon-
ary TB [20] include centrilobular nodules, cavities,
lymph nodes containing calcification densities, and
caseous necrosis. However, in the present study, all
children with pulmonary TB only exhibited segmental
or lobar pulmonary consolidation and lymph nodes
on unenhanced CT images without any typical CT
features of pulmonary TB. These CT manifestations
are similar to those of common CAP with lung lobar
distribution. It is thus highly challenging to differenti-
ate the two diseases via visual assessment. Moreover,
the CRP values of patients with pulmonary TB were
found significantly higher than normal in this study;
these CRP values were similarly elevated in patients
with CAP [21]. The radiologists were also unable to
get more useful information through laboratory exam-
inations. Thus, the diagnostic rate achieved by the ra-
diologists was lower than that achieved by the
predictive nomogram.
The field of radiomics has demonstrated its potential

capacity to capture useful information using machine
learning methods and to enhance the accuracy of clinical
differential diagnosis. In our study, 970 candidate fea-
tures were extracted from CT images and were reduced
to only 11 potential predictors by using a LASSO regres-
sion model to develop the radiomic signatures. The 11
radiomic features derived from pulmonary consolidation
and lymph nodes were divided into four types (shape,
texture, gray intensity features, and wavelet features) and
varied significantly between cases of primary progressive
pulmonary TB and CAP. Lymph nodes are complex in
structure and contain microscopic textural features from
unenhanced CT images but imperceptible to the naked
eye. In this study, Max3D, Sph_dis, Compactness1, and
Surface_to_volume_ratio parameters were obtained from
shape features, which described the overall shapes and
sizes of lymph nodes or other properties of lymph node
outlines. These features were all associated with the
diagnosis of the two diseases.
In our study, texture (GLCM and GLRLM) and gray

intensity features extracted from the pulmonary consoli-
dation and lymph nodes were significant radiomic fea-
tures of the two diseases, but an exact clinical
explanation for this remains undetermined. According
to a previous study, the features often capture textural
variations to quantify the spatial relationships of voxels
within an image. For example, they can quantify voxels
when they present similar values (e.g., related to necro-
sis) or spatial variations (e.g., related to intratumor het-
erogeneity) [22]. In our study, the Long Run Emphasis
(LRE) of the texture feature was significantly greater in
cases of pulmonary TB, presumably reflecting the
coarser structural textures of pulmonary consolidation
when compared with lesions of CAP. In clinical cancer

research, the texture features were proven to reflect the
image heterogeneity of the tumor [23, 24], and thus indi-
cated the genetic heterogeneity and invasiveness of the
tumor. We speculate that the image heterogeneity of
pulmonary consolidation and lymph nodes varies be-
tween pulmonary TB and CAP.
However, this study still presents some limitations. As

a retrospective study, most cases of CAP were not sub-
jected to enhanced CT examination. Therefore, the
manual delineation of lymph node ROIs was subject to
the experience of the radiologists, which may have af-
fected the accuracy of the results. Given the patients’
strict inclusion criteria, the sample size was small, which
may have affected the model’s reliability, and future
studies should utilize larger sample size. In addition, we
only examined cases involving pulmonary consolidation
and lymph nodes. Other common pulmonary TB, for ex-
ample with “tree bud” sign [25], should be further
studied.

Conclusion
In conclusion, we proposed a CT-based predictive nomo-
gram to differentiate primary progressive pulmonary TB
and CAP. The CT-based predictive nomogram could
serve as a new differential diagnostic tool for pulmonary
infection diseases for pediatricians and radiologists.
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