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A potential field segmentation based
method for tumor segmentation on multi-
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Abstract

Background: Accurate segmentation of brain tumors is vital for the gross tumor volume (GTV) definition in
radiotherapy. Functional MR images like apparent diffusion constant (ADC) and fractional anisotropy (FA) images
can provide more comprehensive information for sensitive detection of the GTV. We synthesize anatomical and
functional MRI for accurate and semi-automatic segmentation of GTVs and improvement of clinical efficiency.

Methods: Four MR image sets including T1-weighted contrast-enhanced (T1C), T2-weighted (T2), apparent diffusion
constant (ADC) and fractional anisotropy (FA) images of 5 glioma patients were acquired and registered. A new
potential field segmentation (PFS) method was proposed based on the concept of potential field in physics. For
T1C, T2 and ADC images, global potential field segmentation (global-PFS) was used on user defined region of
interest (ROI) for rough segmentation and then morphologically processed for accurate delineation of the GTV. For
FA images, white matter (WM) was removed using local potential field segmentation (local-PFS), and then tumor
extent was delineated with region growing and morphological methods. The individual segmentations of multi-
parametric images were ensembled into a fused segmentation, considered as final GTV. GTVs were compared with
manually delineated ground truth and evaluated with segmentation quality measure (Q), Dice’s similarity coefficient
(DSC) and Sensitivity and Specificity.

Results: Experimental study with the five patients’ data and new method showed that, the mean values of Q, DSC,
Sensitivity and Specificity were 0.80 (±0.07), 0.88 (±0.04), 0.92 (±0.01) and 0.88 (±0.05) respectively. The global-PFS
used on ROIs of T1C, T2 and ADC images can avoid interferences from skull and other non-tumor areas. Similarity
to local-PFS on FA images, it can also reduce the time complexity as compared with the global-PFS on whole
image sets.

Conclusions: Efficient and semi-automatic segmentation of the GTV can be achieved with the new method.
Combination of anatomical and functional MR images has the potential to provide new methods and ideas for
target definition in radiotherapy.
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Background
Gliomas are the most common primary brain tumors in
adults which account for 70% of all adult malignant pri-
mary brain tumors [1]. The prognosis of therapy is often
poor because the tumor preferentially infiltrates into
surrounding normal tissue rapidly [2, 3]. Therefore, ac-
curate definition of gross tumor volume (GTV) in radio-
therapy is crucial for better prognosis. According to
International Commission on Radiation Units & Mea-
surements (ICRU) report No.83, the GTV is the gross
demonstrable extent and location of the tumor, may
consist of a primary tumor, metastatic regional node(s),
or distant metastasis [4]. Magnetic resonance imaging
(MRI) has recently become the imaging modality of
choice for evaluating tumor progression. In clinical rou-
tine, the diagnosis of gliomas relies predominantly on
MRI such as T1-weighted contrast-enhanced and T2/
fluid attenuated inversion recovery (FLAIR) sequences
[5]. Usually, the tumor mass is determined by the en-
hanced region on contrast-enhanced T1 images, and the
peri-tumoral edema is determined by the hyperintensity
portion on T2 or FLAIR images, where the possibility of
tumor invasion resides [6]. Especially on T2 images, the
edema region can appear brighter than those on other
MRI sequences [1].
However, the tumor may extend beyond the imageable

component in conventional MRI, such as T1C, T2,
FLAIR, etc. For instance, high grade gliomas appear to
be infiltrating and invading the surrounding tissue along
white matter [7]. If these areas can be identified during
radiotherapy, it will play a positive role in improving the
efficacy of treatment. Therefore, functional MRI tech-
niques which may provide deeper insight about the
physiological process of tumors have been investigated
to improve the definition of the tumor extent.
It has been proven that apparent diffusion constant

(ADC) values, generated from diffusion weighted im-
aging (DWI), are sensitive to the random water displace-
ment which is related to the cellularity of brain tumors
[8]. Also, the necrosis and edema can be identified by
higher ADC values compared to the normal tissue [6].
Moreover, diffusion tensor imaging (DTI) is able to
model the water diffusion process three-dimensionally,
providing better assessment of brain tissue and tumor
extent. Based on the fact that tumor leads to a decrease
in the directionality of the white matter fiber bundles,
fractional anisotropy (FA) values, generated from DTI,
could be used to evaluate the tumor infiltration into nor-
mal white matter [8]. It has been shown that those func-
tional MRI images are advantageous in providing
specific physiological information about tumor progres-
sion and could be used to get better definition of the
GTV in gliomas than the conventional MRI images [9,
10]. However, images acquired with single parameter

alone, either functional or conventional, is not capable
of defining the tumor accurately. Integration of both
anatomical and functional images seems to be the opti-
mal solution for accurate segmentation of tumor extent.
Cai et al. first integrated conventional structural and dif-
fusion tensor MR imaging to distinguish brain tumor tis-
sue types and identified regions of probable abnormality
[11]. Kazerooni et al. proposed a multi-parametric brain
tumor segmentation approach based on fusion of ana-
tomical and functional images and differentiated various
tumorous regions with sensitivity, specificity and dice
score all above 80% [6].
Currently, manual segmentation by radiation oncolo-

gist is still the routine practice in clinic and used as the
ground truth in comparative studies or evaluating algo-
rithms [12, 13]. But it is a tedious and time-consuming
task which makes an automated brain tumor segmenta-
tion method more desirable [14]. Techniques for auto-
matic segmentation can be roughly divided into
conventional methods, classification and clustering
methods based on machine learning or deep learning,
and deformable model methods. Conventional methods,
including threshold-based and region-based methods,
are usually hard to achieve satisfactory segmentation re-
sults and merely used as a preprocessing step in most
situations [15]. Classification and clustering methods are
mostly based on machine learning techniques, such as
Support Vector Machines [16], Bayesian Classifier [17],
Markov Random Fields [18] and Random Forests [19].
Deep learning algorithms also show good application
prospects, such as the convolutional neural networks
(CNNs) [20]. At the 7th Brain Tumor Segmentation
(BraST) challenge organized by Medical Image Comput-
ing and Computer Assisted Interventions (MICCAI) in
2018, some new algorithms based on deep learning per-
formed very well on both glioma segmentation and pre-
diction of patient overall survival [21–24]. These
methods can model complex relationships or patterns
from empirical data and make accurate decisions [15]
but usually require a training phase prior to segmenting
a set of images [14]. The deformable model methods are
usually implemented with other algorithms in most
cases due to the requirement of initial contours [15].
There have been publications on study of auto-

segmentation of functional images in recent years. For
example, Timothy L. Jones et al. applied the K-means
method to segment DTI images and the results were
considered as biomarkers for tumor classification [25].
However, it is still difficult to accurately segment tumor
targets from functional images of poor resolution and
lack of sharper edges. Based on the research and analysis
of existing algorithms, we proposed a new method
analogous to the concept of potential field [26], combin-
ing with other algorithms, to segment the GTV on T1C,
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T2, ADC, FA images separately and obtain final fusion
segmentation for glioma cancer patients.
The paper is organized as follows. The detailed seg-

mentations for individual images and ensemble method
are described in Section 2. The results and discussion
are presented in Section 3 and Section 4. And the con-
clusions are summarized in Section 5.

Methods
Imaging and pre-processing
In this retrospective study, images from 5 patients with
gliomas, including 3 high-grade and 2 low-grade were
used. T1C images were acquired using fast spin echo se-
quence with TR/TE = 500/14 ms, image matrix = 512 ×
512, field of view = 240x240mm2 and slice thickness = 5
mm. T2 images were acquired using fast spin echo se-
quence with TR/TE = 3900/92 ms, image matrix = 512 ×
512, field of view = 240x240mm2 and slice thickness = 5
mm. DWI images were acquired using spin-echo echo-
planar sequence with TR/TE = 4900/85 ms, image
matrix = 256 × 256, field of view = 240x240mm2, slice
thickness = 6 mm, b-values of 0 and 1000s/mm2 in three
orthogonal directions. DTI images were acquired using
spin-echo echo-planar sequence with TR/TE = 6000/85
ms, image matrix = 256 × 256, field of view =
240x240mm2, slice thickness = 6mm, number of slices =
19, diffusion-sensitizing gradient encoding applied in 25
directions with b value of 1000s/mm2, and one image set
acquired without diffusion-sensitizing gradients. All im-
ages were acquired on a 1.5 T MR scanner (GE Signa
Excite) and generated on a GE medical imaging worksta-
tion by analyzing the original image sets.
The acquired images of the four parameters differ in

resolution and spatial coordinates. Considering the rigid
bone of skull confines the brain tissue and leads to little
significant non-rigid transformation, three-dimensional
(3D) rigid-body registration was used to correct the differ-
ences. T2, ADC and FA image sets were adjusted to the
same size as the primary image set of T1C with cubic
spline interpolation and then mapped to T1C based on

mutual information measures. The registration was com-
pleted using the Assisted Alignment Method which is an
automatic image registration tool of MIM 5.2 (MIM Soft-
ware Inc., Cleveland, OH) with 6 degrees of freedom and
was only intra-patient based on the image grayscale in-
stead of the registration against a template atlas. The
Assisted Alignment Method optimized mutual informa-
tion measures using partial voxel translations and angular
rotations which resulted in less than one voxel alignment.

Segmentation and fusion
Potential field segmentation (PFS), proposed by Cabria
et al. to segment brain tumor from FLAIR image, is
based on an analogy to the concept of potential field in
physics and views the intensity of a pixel in an MRI as a
“mass” that creates a potential field. An image is defined
as a set of pixels L = {p1, p2, .. …, pn}, the potential field
at pixel pi (Φ(pi)) is given analogically to Newton’s law
of universal gravitation:

Φ pið Þ ¼
Xn

j¼1

Φ j pið Þ ¼
Xn

j¼1

−w2
i

pi−pj

���
���
2 ð1Þ

where pj is all other pixels of the image, wi is the inten-
sity of pixel pi, ‖pi − pj‖ is the Euclidean distance be-
tween pi and pj , and n is the total number of image
pixels. The potential field calculation is a significant en-
hancement of the contrast (Fig. 1(b)). And an adaptive
potential threshold tϕ is calculated consequently:

tϕ ¼ ϕmin þ β � ϕmax−ϕminð Þ ð2Þ

where ϕmax is the maximum of n potential fields of the
image and ϕmin is the minimum. Then every pixel of the
image meeting ϕ(pi) ≤ tϕ is associated with the tumor.
Potential field segmentation (PFS) with a complete

image set (global-PFS) is a quadratic-time algorithm
with the time complexity expressed as O(n2) since the
potential field at pi is defined as the sum of the individ-
ual potentials created by all other pixels. In practice,

Fig. 1 The potential fields of one image calculated with two methods. (a) original FA image, (b) potential field of FA image calculated with Eq.
(2), (c) potential field of FA image calculated with Eq. (3)
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global-PFS is time-consuming which has disadvantages
for clinical use. It can be seen from Eq. (1) that the indi-
vidual potential field of pi, generated by pj, is signifi-
cantly reduced with increasing distance between them,
so it is reasonable to ignore the potential field generated
by pixels farther away. In order to improve the computa-
tional efficiency as well as to ensure satisfactory en-
hancement of image, the local potential field of pixel pi
is calculated instead of the global (Fig. 1 (c)):

ϕlocal pið Þ ¼
X

p j∈Ni

ϕ j pið Þ ð3Þ

where Ni is a M ×M neighborhood of pi. In the calcula-
tion of potential field, the efficiency reduces as M grows,
but the enhancement of image increases. To achieve a
balance between these two factors, M is set as 5 accord-
ing to our experimental studies and the verified neigh-
borhood can approximately represent local features. The
new segmentation is named as local potential field seg-
mentation (local-PFS). For FA images, local-PFS was
used to remove white matter (WM). For T1C, T2 and
ADC images, global-PFS was used on partial image in-
cluding complete tumor.

Segmentation for T1C/T2/ADC images
The tumorous regions in T1C, T2 and ADC images ap-
pear hyperintense generally, which are similar to those
found in FLAIR image (Fig. 2). In T1C, T2, and ADC
images, comparing with the contralateral healthy tissue,
the abnormal hyperintense region as well as the non-
hyperintense regions surrounded by it are both defined
as tumors. However, the segmented hyperintense regions
include not only brain tumor but also non-cancerous re-
gion, such as skull. Therefore, as the first step to extract a
hyperintense region, global-PFS was used on a user de-
fined region of interest (ROI) which is a rectangular area
that encloses the tumor completely. The segmentation al-
gorithm was coded and implemented with MATLAB, the
regional extraction function named as “imcrop” of

MATLAB was used. The ROIs were defined slice by slice
on the 2D images in a scanned 3D dataset, the same way
as radiation oncologists contour ROIs manually. The 3D
GTVs were obtained through inter-slices trilinear
interpolation after the segmentation. Artifacts produced
by this interpolation method were not taken into account.
In order to contain unsegmented lesions due to obscure
hyperintense and remove non-cancerous regions (Fig. 3
(b), (e) and (h)), a series of sequential morphological
image processing was applied on the segmented binary re-
sults. Firstly, holes were filled and largest connected area
of the results was extracted to remove non-cancerous re-
gion. Then morphological opening and closing with a flat
disk-shaped structural element of 3 pixels in diameter
were successively employed to achieve more smooth
boundaries. The results are shown in Fig. 3 (c), (f) and (i).

Segmentation of FA images
When the white matter (WM) in brain is displaced or
destroyed by tumor infiltrates, the FA value at the original
position decreases. Therefore, compared with the contralat-
eral healthy brain tissue, the area with a decreased FA value is
identified as tumorous region. With the advantage of segmen-
tation on hyperintense regions, local-PFS was implemented
to extract WM in FA images (Fig. 4 (b)). We employed the
negation operation to remove WM from FA images and the
remaining hypointense region were defined into two parts, a)
R: the normal area without WM distribution, roughly sym-
metrical about the midline of brain, and b) the lesion area
with tumor or infiltration. The presence of lesions disrupts
the symmetry of hypointense region, biasing the center to it-
self as shown in Fig. 4 (c). Thus, the physical center is calcu-
lated to locate tumor and the center (m, n) is given by:

m; nð Þ ¼ arg min
X

i; jð Þ∈R
m−ij j þ n− jj j ð4Þ

where (m, n) and (i, j) are both pixels belonging to R.
With the center m,n as seed (Fig. 4 (d)), region growing
was then performed to segment tumorous region.

Fig. 2 Multimodal images of a patient with astrocytoma. (a) T1-weighted contrast-enhanced image, (b) T2-weighted image, (c) apparent diffusion
coefficient (ADC) image, (d) fluid attenuated inversion recovery (FLAIR) image
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The region growing is the simplest and most com-
monly region-based segmentation method to extract a
connected region from an image by selecting initial seed
points and utilizing the similarity of seed and adjacent
pixels [27]. The initial seed can be chosen manually or
automatically [28], and the similarity criteria is deter-
mined by a range of pixel intensity values or other fea-
tures [1]. The procedure terminates when no more
pixels agree with the criteria. In this paper, the initial
seed is automatically calculated (pixel(m,n)), and the
similarity criteria is determined by gradient:

Gg ≤α � Gs; 0:5≤α≤2 ð5Þ

where Gg is the gradient of pixels to be grown, Gs is the gra-
dient of seed point, and α is the coefficient controlling the
growth range. The sum of horizontal and vertical gradients
of a pixel is defined as the actual gradient. Due to the poor
resolution and noise of FA images, the gradients of both seed
and growth pixels are represented by the average gradient of
3 × 3 neighbors around them to eliminate the obstacles.

Finally, a group of same morphological post-
processing steps as performed on T2 and ADC images
were added to optimize the grown region and the final
result is shown in Fig. 4 (e).

Fusion of multiple parametric images
An ensemble approach is proposed to generate a fused
segmentation that combines pixel-level information
from the segmented results of T1C, T2, ADC and FA
images. The segmented images from T1C, T2, ADC and
FA images were denoted as ST1C, ST2, SADC and SFA sep-
arately. The fusion result (denoted as Smulti) was pro-
duced by the union of individual results:

Smulti ¼ ST1C∪ST2∪SADC∪SFA ð6Þ

Evaluation
Calculating the overlap with the ground truth is the
most common way to quantitatively evaluate segmenta-
tion results [1]. For the segmentation task in 2018 BraTS

Fig. 3 Segmentation of T1C, T2 and ADC images. (a) T1C image, (b) segmentation of T1C image by the potential field segmentation, (c) final
segmentation of T1C, (d) T2 image, (e) segmentation of T2 image by the potential field segmentation, (f) final segmentation of T2, (g) ADC
image, (h) segmentation of ADC image by the potential field segmentation, (i) final segmentation of ADC
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challenge, manual segmentation labels were used as ref-
erence standards [21, 24]. Similarly, referring to the
evaluation of most current tumor segmentation algo-
rithms [12, 13, 15], the manual delineation of GTV on
the same MR images is considered the ground truth for
validation [27]. In this study, the GTV was defined by
the radiation oncologists on the image sets slice by slice
through visual inspection for each patient. It was per-
formed by one experienced radiation oncologist blinded
to the auto-segmented results and was reviewed and val-
idated by another experienced radiation oncologist. On
T1C, T2 and ADC images for each patient, GTVs are
the whole regions bounded by abnormal hyperintense
areas comparing with contralateral normal brain tissues.
The GTVs on FA images are the hypointense regions
with lower FA values comparing with contralateral nor-
mal white matter. Finally, the GTV was generated by the
union of each on T1C, T2, ADC and FA.
The segmentation quality measure Q was used for

quantitative comparisons between manually delineated
GTV (denoted as G) and semi-automatically segmented
GTV (denoted as S) of each patient. The parameter Q is
defined as:

Q ¼ S∩Gj j
G

� S∩Gj j
S

ð7Þ

where 0 ≤Q ≤ 1 presents the percentage of pixels in
agreement with the ground truth [26]. To evaluate the
agreement between the semi-auto segmented and

ground truth, Dice’s similarity coefficient (DSC) was
used [29]:

DSC ¼ 2 G∩Sð Þ
G þ S

ð8Þ

DSC Values range from 0 to 1, in which 0 means total
disunity of semi-auto and manual segmentation and 1
means equal and total unity in shape of the two. The
Sensitivity and Specificity were calculated as:

Sensitivity ¼ STruePositive
STruePositive þ SFalseNegative

ð9Þ

Specificy ¼ STrueNegative
STrueNegative þ SFalsePositive

ð10Þ

where the STruePositive is the intersection of semi-auto
and manual segmentation, SFalseNegative is the area in the
manual but not in the semi-auto segmentation, STrueNega-
tive is the area not included in either semi-auto or man-
ual segmentation, and SFalsePositive is the over-segmented
area in semi-auto but not included in manual
segmentation.

Results
The new potential field segmentation based algorithm
was implemented for segmentation on multi-parametric
MRI data of T1C, T2, ADC and FA from five patients.
Total number of the images used is 164, which is a rea-
sonable and valid amount of sample images verified with
power analysis. The segmented GTVs were compared

Fig. 4 Segmentation on FA image. (a) original FA image, (b) segmentation by the potential field segmentation, (c) rest of image removing WM,
(d) locating seeds tumor, (e) final segmentation by region growing
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with manually delineated regions and evaluated with Q,
DSC and other parameters. Figure 5 illustrates the visual
comparison results on multi-parametric images from
one of the cases. Figure 6 shows the comparisons of fu-
sion segmentations and GTVs registered on T2 images
of five patients. Table 1 lists the corresponding evalu-
ation results of Q, DSC, Sensitivity and Specificity. The
Q values of all patients are larger than 0.70, ranging
from 0.71 to 0.89, comparable or even outperforming
the average value (0.612) of FLAIR segmentation ob-
tained with global potential field segmentation (global-
PFS) [26]. The DSC values are larger than 0.80, ranging
from 0.81 to 0.92. The mean DSC is 0.88 (±0.04), reveal-
ing a high agreement between the semi-auto and the
manual segmentation. The mean values of Sensitivity
and Specificity are 0.92 (±0.01) and 0.88 (±0.05), which
demonstrate that the GTVs segmented with the new
method shows good performance as compared with the
manually defined ground truth.
In addition, the improved local-PFS reduced the time

complexity from O(n2) to O(25 × n) and segmentation
time from 47 s to less than 1 s for a 512 × 512 FA image,
which significantly improves the operational efficiency.

Discussion
Anatomical and functional MR images could be com-
bined to detect the GTVs for gliomas radiotherapy. Each
parameter image has advantages in providing specific in-
formation and different image features. However, it is
difficult to perform automatic segmentation on multi-
parametric images with single method. In this study, a

new potential field segmentation based algorithm was
developed and applied with other post-processing ap-
proaches on multi-parametric MRI data including T1C,
T2, ADC and FA to evaluate the feasibility. The results
were satisfactory as compared to the ground truth.
Application of the new local-PFS method on FA images

reduced the time complexity from O(n2) to O(25 × n) and
ensured the comparable segmentation of image with original
calculation of potential field. The combination with other
post-processing approaches performed well on segmentation
for multi-parametric images. For T1C, T2 and ADC, a series
of morphological post-processing steps were added to make
up for deficiencies. For FA images, local-PFS was employed
to set the initial seed, and then region growing was used to
complete the segmentation. In comparison with the current
auto segmentation methods, most of which are based on
machine learning technique, no training process is needed.
The condition of tuning fewer parameters also improves the
efficiency and robustness of the segmentation.
Segmentation quality measure with Q, DSC, Sensitivity

and Specificity demonstrated that satisfactory results
could be obtained with the new potential field segmenta-
tion based method. The standard deviation of the pa-
rameters (< 0.1) showed the robustness of the algorithm.
However, the lowest four value of the five parameters
appear in the evaluation of low-grade glioma segmenta-
tion, probably due to the lower contrast of image com-
pared with high-grade glioma.
In this study, the synthesis of multi-parametric images

provides a more accurate and comprehensive reference
for GTV definition in radiotherapy. Single parametric

Fig. 5 The segmentation results. (a) the segmentation of T1C image, (b) the segmentation of T2 image, (c) the segmentation of ADC image, (d)
the segmentation of FA image, (e) the fusion segmentation presented on T2 image
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image cannot show tumor sufficiently, fusion of multi-
parametric images provides more useful information for
accurate definition of GTV boundary in radiotherapy
which helps in achieving the disease control and better
protection of normal tissues at the same time.
It should also be pointed out that for the potential

field segmentation algorithm, we only performed experi-
ments on images of glioma patients, and no other body
sites or tumor types have been studied. Moreover, the
potential field segmentation has not been able to differ-
entiate among neoplasm and edema [30, 31]. Identifica-
tion of tissues that are likely to progress to neoplasm is
also a potential subject for future studies.

Conclusions
Efficient and automatic segmentation of the GTVs for
glioma tumors can be achieved with the new potential

field segmentation based multi-parametric MRI segmen-
tation approach which has the potential to accurately
segment the tumor regions for target definition in radio-
therapy. Further evaluation is needed with more data
from glioma patients before clinical application.
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