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Abstract

Background: One of the major limitations of MRI is its slow acquisition speed. To accelerate data acquisition,
partially parallel imaging (PPI) methods have been widely used in clinical applications such as sensitivity encoding
(SENSE) and generalized autocalibrating partially parallel acquisitions (GRAPPA). SENSE is a popular image-domain
partially parallel imaging method, which suffers from residual aliasing artifacts when the reduction factor goes
higher. Undersampling the k-space data and then reconstruct images with artificial sparsity is an efficient way to
accelerate data acquisition. By exploiting artificial sparsity with a high-pass filter, an improved SENSE method is
proposed in this work, termed high-pass filtered SENSE (HF-SENSE).

Methods: First, a high-pass filter was applied to the raw k-space data, the result of which was used as the inputs of
sensitivity estimation and undersampling process. Second, the adaptive array coil combination method was
adopted to calculate sensitivity maps on a block-by-block basis. Third, Tikhonov regularized SENSE was then used to
reconstruct magnetic resonance images. Fourth, the reconstructed images were transformed into k-space data,
which was filtered with the corresponding inverse filter.

Results: Both simulation and in vivo experiments demonstrate that HF-SENSE method significantly reduces noise
level of the reconstructed images compared with SENSE. Furthermore, it is found that HF-SENSE can achieve lower
normalized root-mean-square error value than SENSE.

Conclusions: The proposed method explores artificial sparsity with a high-pass filter. Experiments demonstrate that
the proposed HF-SENSE method can improve the image quality of SENSE reconstruction. The high-pass filter
parameters can be predefined. With this image reconstruction method, high acceleration factors can be achieved,
which will improve the clinical applicability of SENSE.

This retrospective study (HF-SENSE: an improved partially parallel imaging using a high-pass filter) was approved by
Institute Review Board of 2nd Affiliated Hospital of Zhejiang University (ethical approval number 2018-314).
Participant for all images have informed consent that he knew the risks and agreed to participate in the research.
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Background

Magnetic Resonance Imaging (MRI) is an important
technology in modern medical imaging. It is a routine
clinical examination method which provides superior
soft-tissue characterization with flexible image contrast
parameters [1]. One of the major limitations of MRI is
its slow acquisition speed [2]. To accelerate image acqui-
sition, partially parallel imaging (PPI) methods have been
widely used in clinical applications such as sensitivity en-
coding (SENSE) and generalized autocalibrating partially
parallel acquisitions (GRAPPA) [3, 4]. In addition, PPI
methods can reduce image blurring and distortion from
accelerated echo planar imaging (EPI) data [5]. SENSE is
the most widely used image-domain based PPI tech-
nique, which requires coil sensitivity information to
eliminate the effect of undersampling in the k-space [3,
6]. As the reduction factor R increases, errors exist in
the coil sensitivity estimation lead to higher noise level
and more residual aliasing artifacts. In theory, the
signal-to-noise ratio (SNR) of the SENSE reconstructed
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image is reduced by /R due to reduced Fourier aver-
aging [1].

According to Storey et al, the noise amplification
would be lower if the image content is sparse, because
fewer nonzero pixels are superimposed in the aliased im-
ages [7]. This has also been proved by Blaimer et al. in
ISMRM 2008 [8]. Over the last few years, it is found that
PPI performed better on to-be-restored images with
smaller image support, such as the observation in k-t
GRAPPA [9] and other works [10-16]. The phrase
“image support” can be defined as the “nonzero” regions
in an image. Refer to hp-GRAPPA [12], image support
reduction can be descriptively defined as the reduction
of “nonzero” regions in an image, which mainly consist
of low-frequency information. It is well known that the
low-frequency information of an image is located at the
center of its k-space. Hence, suppressing the central
k-space data will reduce the image support. The low
SNR and high g-factor caused by high reduction factor
can be improved by artificial sparsity [14—16]. It should

SENSE

Slaa+sui izaa&szbb

Reference
image

Overlapped images

Fig. 1 The basic flowchart of SENSE

\
f -4
S3,a+S5,b S4aat+S4b
|

Use sensitivities to determine a & b

11 Sla S]b

Lo | S Sa H ——)
1 S Ss LD Solve

I, S S

SENSE
reconstructed image

3,,




Zhang et al. BMC Medical Imaging (2019) 19:27

be noted that the phrase “artificial sparsity” is different
from the popular “sparse MRI”, which is related to com-
pressed sensing [17—19]. About artificial sparsity, Huang,
et al. proposed a method named hp-GRAPPA, which
used a high-pass filter f to efficiently reduce the image
support [12]. The high-pass filter fand its inverse 1/f are
applied before and after GRAPPA reconstruction
respectively, which significantly reduces the artifact level
in the final reconstructed image. This method was
verified with simulation data, in vivo cardiac and brain
data experiments. Chen, et al. proposed an artificial
sparsity-based method for non-Cartesian trajectory, both
simulation and in vivo imaging experiments demon-
strated that this approach can effectively improve the
SNR and reduce the g-factor values [14]. They further
extended this work to non-Cartesian dynamic
contrast-enhanced MRI by exploiting dynamic artificial
sparsity [15]. Wang, et al. also investigated artificial
sparsity in dynamic MRI using an improved k-t principal
component analysis algorithm with different reduction
factors [16].

So far, the above-mentioned artificial sparsity methods
are mostly based on GRAPPA-type algorithms. A
SENSE-like framework known as skipped phase encod-
ing and edge deghosting with array coil enhancement
(SPEED-ACE) applied a high-pass filter to the ghosted
images corresponding to undersampling, resulting in a
set of sparse ghosted edge maps, which were combined
into a deghosted edge map [20]. The deghosting process
was implemented through least-squares-error method
on a pixel-by-pixel basis, thus the SPEED-ACE method
exploit artificial sparsity in image space.

In this research, we have proposed an MRI reconstruc-
tion technique, which combines SENSE with artificial
sparsity, termed high-pass filtered SENSE (HF-SENSE).
The high-pass filter f and its inverse 1/f are applied be-
fore and after SENSE reconstruction respectively. Its ef-
fectiveness is validated by using both numerical
simulation and in vivo datasets with different coil num-
bers and different pulse sequences.

Methods
Brief review of SENSE
SENSE is an SNR-optimal reconstruction approach along
with a coil sensitivity map that ensures the accuracy of the
restoring procedure [3, 21]. According to Hoge et al,
SENSE is a combine-then-reconstruct method, the accuracy
of SENSE reconstruction mainly depends on the accuracy
of coil sensitivity information [22]. The completed pipeline
is explained in the following using a specific instance.
Consider a case of 4 receiver channels, and the reduc-
tion factor is set to 2, as shown in Fig. 1. First of all, the
folded images are obtained from subsampled k-space
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data coil-by-coil through Fourier transform operators.
And then, use the coil sensitivity information S to unfold
the aliased image. This procedure is implemented
through the concatenation of folded matrix, as displayed
in Fig. 1.

In the reduced FOV, assume I, is the pixel value of
aliased image, S represents the coil sensitivity map, I, is
un-aliased image, # represents for noise. I, can be writ-
ten as the following:

Iy=S-I,+n (1)

Suppose the expectation of # is 0, the covariance is ¥,
i.e., ¥ = cov(n), hence the un-aliased image can be repre-
sented as:

I, = (s"ws) sty (2)

Here H is the Hermite transpose, represents the conju-
gate transpose of complex number. Assume that U
= (STWS) 1Sy, and U is called the unfolding matrix.
Then the former equation can be rewritten as:

I, =Ul, (3)

SENSE is appropriate for almost all kinds of phased
array coils, and it is a flexible technique which is widely
used in many clinical applications [3, 23, 24]. However,
it suffers from noise amplification and residual aliasing
artifacts when the accelerating factor goes higher [3, 21].

Tikhonov regularization is used to solve the
ill-conditioned linear equations of Eq. (1):
I = arglmin{HS =Ly, + A (I-11)]], } (4)

where 1 is the regularization factor, I; denotes the prior
information about the solution I, and |||, represents the
L-2 norm. The regularization factor 1> quantifies the
trade-off between the error from noise amplification
from the unconditioned matrix inversion, and the error
from prior knowledge not describing the current image
[25, 26].

High-pass filter

The same high-pass filter as Filter 2 in hp-GRAPPA is
adopted in this process [12]:

F=1- (1 n e<\/mc)/w>
+ <1 + e(m+c)/w> i (5)

-1

where k, is the count of phase encoding lines, k, is the
count of frequency encoding lines, ¢ sets the cutoff fre-
quency and w determines the smoothness of the filter
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Fig. 2 a High-pass filter and b its inverse filter (c =24 and w = 8); ¢ simulated axial brain image after filtering, and d sagittal brain image after filtering
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boundary. An example of the high-pass filter and its cor-
responding inverse filter while ¢=24 and w=8 were
shown in Fig. 2. It was found that larger ¢ or smaller w
suppresses the image support more, these parameters
can be predefined in the experiment.

HF-SENSE
Figure 3 depicts the flowchart of the proposed
HF-SENSE method. Instead of the full k-space data, the
high-pass filtered k-space data is used to calculate coil
sensitivity information with Walsh’s adaptive array-com-
bination method [27, 28]. The signal array correlation
matrices and matched filter vector were computed on a
block-by-block basis. A unique filter vector was com-
puted and applied to each 4 x 4 block of pixels, using an
8 x 8 pixel estimation region for the local signal statis-
tics. The noise correlation matrix was assumed to be the
identity matrix. After undersampling the k-space data,
Tikhonov regularized SENSE was used to reconstruct
the image. To apply the corresponding inverse filter, the
SENSE reconstructed image was transformed to k-space
with two-dimensional (2D) Fourier transform. Final
HEF-SENSE reconstructed image was obtained with the
corresponding inverse 2D Fourier transform.

It is widely adopted that partially parallel imaging has
good performance when the to-be-restored image is

sparse [7—16]. For SENSE-like approach, the noise amp-
lification would be lower if the image content is sparse,
because fewer nonzero pixels are superimposed in the
aliased images [7, 8]. The condition of SENSE equation
will be improved when artificial sparsity is included. For
GRAPPA-like method, this kind of parallel imaging will
consider image content inherently [7]. The proposed
HF-SENSE wuses a high-pass filter to select the
high-frequency part of k-space, corresponding to sparse
image content.

Experiment design

One simulated axial brain dataset and two in vivo data-
sets were investigated in this study. The simulated data
was obtained from a noise-free 8-channel T1-weighted
brain image. Gaussian noise was added to the simulation
data. The acceleration factor of the simulated dataset
was 4. One brain dataset was acquired on a 1.5 Tesla
Area MR Scanner (Siemens AG, Erlangen, Germany)
with a 10-channel head coil. The acquisition parameters
of the T, sequence included: field of view 230 x 230mm?,
TR/TE = 3860/97 ms, oversampling ratio 2, slice thick-
ness 6 mm, and flip angle 150°. The acceleration factor
of the in vivo brain dataset was 4. Another in vivo knee
imaging was performed on a 1.5 Tesla Avanto MR scan-
ner (Siemens AG, Erlangen, Germany) using an
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Fig. 3 The flowchart of HF-SENSE. The k-space raw data is high-
passed before undersampling and sensitivity estimation. The SENSE
reconstructed image is transformed into k-space data, which is
filtered with the corresponding inverse high-pass filter. Final image
is obtained by applying inverse 2D Fourier transform to this
k-space data

8-channel knee coil. The T; sequence employed acquisi-
tion parameters: field of view 180 x 180mm?, TR/TE =
550/18 ms, oversampling ratio 2, slice thickness 4 mm,
and flip angle 150°. The acceleration factor of the in vivo
knee dataset was 4. All the datasets were reconstructed
offline in the Matlab (R2017; MathWorks, Natick, MA)
programming environment.

Evaluation criteria

Using the reconstructed image with square root of
sum-of-squares (SSOS) as reference, difference maps
between images reconstructed with HF-SENSE (or SENSE)
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and SSOS were shown. Normalized root-mean-square error
(NRMSE) was also calculated to evaluate the simulation
and in vivo results. The NRMSE is defined as follow:

NRMSE = \/ ST (L (N-1)?) " (Lr(1)* (6)

where I{r) denotes the reference image; I(r) is the
undersampled reconstruction result, and r is the spatial
location of the image. The NRMSE is calculated within
the whole image.

Results

Simulations

Figure 4a shows the results of simulated axial brain data-
set. The acceleration factor was 4. The parameters of
high-pass filter ¢ and w were set to be 24 and 8, respect-
ively. The left columns show the reconstructed images
with SSOS, SENSE and HF-SENSE, which are scaled
into the same color range. Taking the SSOS result as ref-
erence, the NRMSEs of HF-SENSE and SENSE recon-
structed images with different regularization paramters
are shown in Table 1. NRMSEs of HF-SENSE are lower
than that of SENSE when the regularization factor is
lower than 0.01. Figure 4b shows the SENSE recon-
structed image while 1=0.01 and Fig. 4d is the
HEF-SENSE reconstructed image while 1 =0.001. The
SENSE reconstructed image is noisier than that of
HE-SENSE (Fig. 4b Vs. d). This is more obvious consid-
ering the absolute error maps (Fig. 4c Vs. e).

In vivo experiments

Figure 5 shows the results of the 5th sagittal slice ac-
quired with a 10-channel brain coil. The left column
shows the reconstructed images by SSOS, SENSE and
HEF-SENSE. The white square in Fig. 5a shows the lo-
cation of a selected region of interest (ROI). The
small figures in the right bottom corner of each fig-
ure demonstrate the corresponding zoomed in ROI
defined by the white box. Taking the SSOS result as
reference, the NRMSEs of HF-SENSE and SENSE
reconstructed images with different regularization
parameters are shown in Table 2. Figure 5b and d
show the SENSE and HF-SENSE reconstructions with
A =0.01 individually. It is observed that the SENSE
reconstructed image is pretty noisy, and boundaries of
cerebellum are seriously blurred. The noise of
HEF-SENSE reconstructed image (Fig. 5d) is greatly
suppressed compared with SENSE reconstruction (Fig.
5b). As can be seen from the HF-SENSE recon-
structed image and the corresponding enlarged image
(Fig. 5d), the blurred edges of cerebellum are re-
stored. Figure 5c¢ shows the difference map between
Fig. 5a, b, and e shows the difference map between
Fig. 5a and d. The difference maps are scaled in the
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same range and brightened 4 times for better visibil-
ity. The difference maps (Fig. 5¢ Vs. e) further con-
firm that the noise level in the image reconstructed
by HE-SENSE method is reduced compared with that
of SENSE. Consequently, HF-SENSE shows better re-
constructed image quality than SENSE.

Figure 6 shows the results of the 6th sagittal slice
acquired with an 8-channel knee coil. The parameters

Table 1 NRMSEs of SENSE and HF-SENSE reconstructed images
with different regularization parameters

A NRMSE

SENSE HF-SENSE
0.1 44.5% 45.5%
0.01 17.2% 54%
0.001 17.5% 5.2%
0.0001 17.9% 5.3%

of high-pass filter ¢ and w were set to 24 and 8,
which is the same as the simulation experiment. The
left column shows the reconstructed images by SSOS,
SENSE, and HF-SENSE. Taking the SSOS result as
reference, the NRMSEs of HF-SENSE and SENSE re-
constructed images with different regularization pa-
rameters are shown in Table 3. Figure 6b and d are
the SENSE and HF-SENSE reconstructions while A =
0.01, respectively. It is observed that lower noise level
can be found on HF-SENSE reconstructed image (Fig.
6d) than that of SENSE (Fig. 6b). This is confirmed
with difference maps (Fig. 6¢ Vs. e), which were
brightened 5 times for better visibility. The NRMSEs
of HF-SENSE and SENSE are 21.8 and 24.2%, respect-
ively. Therefore, the HE-SENSE reconstructed image
quality is better than that of SENSE. Further decreas-
ing the regularization parameter cannot significantly
improve the image quality.
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Fig. 5 Results of the sagittal brain dataset. The Acceleration factor was 4. c=24 and w =12 were used in the high-pass filter. a, b and d the
image reconstructed with SSOS, Tikhonov regularized SENSE (A =0.01) and HF-SENSE (A =0.01), the small figures in the right bottom corner of
each figure depict the corresponding zoomed in region defined by the white box. ¢ The absolute error map of (a) and (b). e The absolute error
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Discussion

An improved SENSE method, termed HF-SENSE is pro-
posed in this article. The adaptive array-combination method
is adopted to calculate sensitivity maps on a block-by-block
basis, both in HF-SENSE and SENSE. In theory, compared

Table 2 NRMSEs of SENSE and HF-SENSE reconstructed images
with different regularization parameters

A NRMSE

SENSE HF-SENSE
0.1 28.7% 26%
0.01 22% 18.2%
0.001 22% 18.2%
0.0001 22% 18.2%

to the SSOS method, the root-mean-square noise level in
background image regions of adaptive reconstructed image
is reduced by as much as /N, where N is the number of coil
in the receiver array. However, when the reduction factor
goes higher, the SENSE reconstructed image is pretty noisy
in the whole image, and some structure details are blurred.
For example, the in vivo experiment showed that boundaries
of cerebellum were undistinguishable when the reduction
factor was increased to 4 (Fig. 5b).

Both simulation and in vivo experiments were tested,
using difference maps and NRMSE as evaluation criteria.
In vivo experiments include 10-channel brain imaging
and 8-channel knee imaging, the k-space raw data of
which were off-loaded from different MRI scanners.
Both simulation and in vivo experiments demonstrated



Zhang et al. BMC Medical Imaging (2019) 19:27

Page 8 of 10

w
&
=)
&
2]
=
z
w
=
=
I
2]
=
z
]
=
Reconstructed images

Fig. 6 Results of the sagittal knee dataset. The acceleration factor was 4. a, b and d the image reconstructed with SSOS, Tikhonov regularized
SENSE, and HF-SENSE. ¢ The absolute error map of (@) and (b). e The difference map of (a) and (d). ¢ and e were brightened 5 times for better visibility

e

Absolute error maps

that HF-SENSE reconstructed image showed lower noise
level and lower NRMSE value than SENSE. As shown in
the simulation results, the NRMSEs of HF-SENSE and
SENSE are 5.2 and 17.2%, respectively. As for the in vivo
experiments, the NRMSEs of HF-SENSE are also signifi-
cantly lower than that of SENSE, regardless of imaging
applications, number of coil channels or MRI pulse se-
quences. Hence better image quality can be achieved
with HE-SENSE than SENSE, which is in consistence
with hp-GRAPPA.

The HF-SENSE algorithm is easy to implement, only a
high-pass filter and its corresponding inverse filter are

Table 3 NRMSEs of SENSE and HF-SENSE reconstructed images
with different regularization parameters

A NRMSE

SENSE HF-SENSE
0.1 24.9% 48.6%
0.01 21.8% 24.2%
0.001 21.8% 24.2%
0.0001 21.8% 24.2%

applied before and after SENSE reconstruction individu-
ally, both work in k-space, which would not add too
much calculation burden to SENSE. It is found that the
parameters defining the high-pass filter may be prede-
fined. The same high-pass filter parameters (c = 24 and w
=8) were used in simulation and in vivo knee experi-
ments, both achieve satisfied results. This is because the
number of coil channel is both equal to 8 in these two ex-
periments. In contrast, the 10-channel brain in vivo MRI
reconstruction experiment used different high-pass filter
parameters (c = 24 and w = 12).

There are several limitations remain in the proposed
approach. One limitation is the parameter sensitive
problem. The HF-SENSE is sensitive to the high-pass fil-
ter parameters (¢ & w in this work). It is quite possible
that no improvement would be shown if the inappropri-
ate parameters are used. This limitation is also applied
to high-pass GRAPPA technique. Another limitation of
the HF-SENSE is the reduction factor issue. When the
reduction factor goes higher, the HF-SENSE will not
perform so well as in the case of low and moderate
reduction factors.
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In this article, it was found that HF-SENSE generates
both less noise and lower NRMSE values than SENSE.
The feasibility of using HF-SENSE on other clinical ap-
plications, dynamic MRI for example, needs further in-
vestigation. In addition, HF-SENSE can be combined
with other fundamentally different acceleration methods
to further improve the reconstruction quality, such as
non-Cartesian k-space undersampling [29, 30] and com-
pressed sensing [17-19].

Conclusions

To the best of our knowledge, artificial sparsity with a
high-pass filter can improve the image quality of SENSE
reconstruction, which is validated with both simulation
and in vivo datasets. The high-pass filter parameters can
be predefined. The noise of the reconstructed image is
significantly suppressed with the HF-SENSE method.
This will improve the clinical applicability of SENSE.
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