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An automatic restoration framework based
on GPU-accelerated collateral filtering in
brain MR images
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Abstract

Background: Image restoration is one of the fundamental and essential tasks within image processing. In medical
imaging, developing an effective algorithm that can automatically remove random noise in brain magnetic resonance
(MR) images is challenging. The collateral filter has been shown a more powerful algorithm than many existing
methods. However, the computation of the collateral filter is more time-consuming and the selection of the
filter parameters is also laborious. This paper proposes an automatic noise removal system based on the
accelerated collateral filter for brain MR images.

Methods: To solve these problems, we first accelerated the collateral filter with parallel computing using the
graphics processing unit (GPU) architecture. We adopted the compute unified device architecture (CUDA), an
application programming interface for the GPU by NVIDIA, to hasten the computation. Subsequently, the
optimal filter parameters were selected and the automation was achieved by artificial neural networks.
Specifically, an artificial neural network system associated with image feature analysis was adopted to establish
the automatic image restoration framework. The best feature combination was selected by the paired t-test
and the sequential forward floating selection (SFFS) methods.

Results: Experimental results indicated that not only did the proposed automatic image restoration algorithm
perform dramatically faster than the traditional collateral filter, but it also effectively removed the noise in a wide variety of
brain MR images. A speed up gain of 34 was attained to process an MR image, which completed within 0.1 s.
Representative illustrations of brain tumor images demonstrated the capability of identifying lesion boundaries,
which outperformed many existing methods.

Conclusions: We believe that our accelerated and automated restoration framework is promising for achieving
robust filtering in many brain MR image restoration applications.
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Background
Since its invention in the 1970s, magnetic resonance
imaging (MRI) has been an important imaging technique
for noninvasive diagnosis of the human body. The appli-
cations of MRI in the brain result in diversified images
for further processes such as tissue classification, seg-
mentation and registration [1–3]. However, the random
noise in MRI scanners inevitably causes deterioration of

brain MR images [4]. Consequently, noise removal has
become a crucial issue in brain MR image post-processing
[5]. The Gaussian filter has been extensively adopted in
many image processing applications for its simplicity.
However, anatomical boundaries are inevitably blurred by
this lowpass filter. In addition to the Gaussian filter, one of
the well-known techniques for noise removal has been the
bilateral filter, which was originally proposed by Tomasi
and Manduci [6]. It has been widely utilized in many med-
ical image denoising applications for decades. The bilateral
filter is an effective filtering algorithm that can both
remove the random noise and preserve edges rather than
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blurring the lines in images. An iterative version of the
bilateral filter for MR image restoration was recently
introduced [7].
One remarkable technique of using statistics strategies

is the linear minimum mean squared error (LMMSE)
estimator [8], which computes the local mean, the local
variance, and the local mean square value of the input
image. Another famous method is the anisotropic diffu-
sion filter (ADF) [9], in which pixel intensities are aver-
aged from neighbors in a prescribed window, whose
dimension and shape are measured at every location. An
appropriate function of the image gradient is con-
structed in accordance with the diffusion coefficient to
encourage filtering within a region of interest in prefer-
ence not to filtering across the boundaries. It is noted
that the quality of the denoised image is greatly relevant
to the number of iterations. Subsequently, Ferrari [10]
proposed a mathematical framework to automatically
determine the best number of iterations of the ADF
method by utilizing the maximization of some evalu-
ation index. Nevertheless, it has been adopted in many
medical image restoration applications [11].
In contrast to many methods that mainly reply on

local pixels within a small neighbourhood, the non-local
means (NLM) filter detects repeated structures in the
global domain [12]. The similarity between pixels is
region-based comparison in that pixels far from the ker-
nel center are not penalized due to the distance to the
center. Based on an enhanced sparse representation in
the transform domain, the block-matching and 3D filter-
ing (BM3D) strategy [13] extended the nonlocal filtering
techniques. The enhancement of the sparsity is accom-
plished by aggregating similar 2D fragments of the image
into 3D arrays. Subsequently, the Wiener filter is
employed in the collaborative filtering procedure to
remove noise.
Motivated by the bilateral filter, the collateral filter

[14] was recently proposed that introduced a median
filter and an entropy function to the filtering frame-
work. The median filter compensated the Gaussian fil-
ter for random noise reduction. It has been shown that
the collateral filter is more powerful than the Gaussian
filtering, bilateral filtering, and ADF methods in many
scenarios [14]. However, comparing to these two filters,
the collateral filter is more complicated and time con-
suming. A contemporary technique called the tensor
processing unit (TPU) has shown its excellent compu-
tation and energy efficiency over existing frameworks
[15]. However, this domain specific architecture is ex-
clusively deployed in Google data centers. One realistic
approach to speed up the denoising procedure is
through the parallel programming using the compute
unified device architecture (CUDA) [16, 17] with the
graphics processing unit (GPU).

A GPU is a specialized processor that accelerates
graphic operations on personal computers, workstations,
and mobile devices. The GPU has more processor cores
than a traditional central processing unit (CPU) and
each core can process data simultaneously. Therefore,
the GPU is well suited to handle tasks that can be paral-
lelized. For example, GPU-based acceleration has been
shown effective in segmentation and classification appli-
cations [18, 19]. Additionally, CUDA is a programming
platform developed by NVIDIA for general purpose
computation on GPU (GPGPU) on NVIDIA GPUs [20].
Many of NVIDIA graphics cards support CUDA (e.g.,
GeForce, Quadro, and Tesla). With CUDA, program-
mers can manage memory on the CPU as well as the
GPU from the host. Once memory spaces on both
host and device sides are allocated and data are trans-
ferred, the program can launch kernels for execution
on the device.
A kernel is a function that can be called from the host

and executed on the device. Programmers can design
the code in the kernel function for parallel computing.
The kernel function defines the operations for a single
thread and thousands of threads execute the function
code synchronously. A thread is the basic execution unit
for parallel computing. After the thread completes its
task in the kernel function, the data are transferred back
to the host.
Based on the GPU architecture, one pixel in an

image can be handled by one thread and thousands of
threads can run synchronously. Each thread can access
data from different types of memories such as local,
global and shared memory. While local memory be-
longs to one specific thread, global memory is shared
by all threads. Indeed, local memory is part of global
memory and both is slower than shared memory.
Threads are organized in blocks and a grid is a group
of blocks. Each block has its shared memory that can
be accessed by its own threads. Although shared mem-
ory’s size is smaller than global memory, the access
time of shared memory is faster like cache [21].
The objective of this paper is two-fold. First, to accel-

erate the computation of the collateral filter through the
adoption of the CUDA strategy. Second, to automate the
collateral filtering process by the aid of image texture
features associated with artificial neural networks [22].
We will show that a fast and automatic denoising system
based on CUDA-based collateral filtering provides
robust and accurate restoration results over many
existing denoising methods.

Methods
CUDA-based collateral filtering
As described earlier, the collateral filter is a more
effective denoising method than the bilateral filter in
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that it contains three different Gaussian functions [14].
Let (θx, θy) be the pixel location under consideration in
the filtering image and Ψθx;θy be the neighborhood of
(θx, θy):

Ψθx;θy ¼ μx; μy
� �

: ðμx; μyÞ∈½θx−N ; θx þ N � � ½θy−N ; θy þ N �
n o

ð1Þ

where N is the filter radius. The Gaussian functions for
the spatial, radiometric and median-filtered components
are respectively defined as
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and
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where I(μx, μy)is the intensity value at(μx, μy) and
IM(μx, μy) is the median filtered image at location
(μx, μy). In addition to median filtering, the collateral
filter introduces an entropy function that is utilized
to balance the radiometric and median-filtered com-
ponents using

H θx; θy
� � ¼ −

X
μx;μyð Þ∈Ψθx ;θy

p μx; μy
� �

logp μx; μy
� �

þ 1−p μx; μy
� �h i

log 1−p μx; μy
� �h i

ð5Þ

where

p μx; μy
� �

¼
1−

I μx;μyð Þ−IMðμx;μyÞj j
MAXI

� �2

2
þ 0:5 ð6Þ

where MAXI is the maximum intensity value of the
input image I.
The ensemble weight function that combines all the

components is then defined as

W θx;θy ¼ WS
θx;θy WR

θx;θy

� � 1
1þH θx ;θyð Þ WM

θx;θy

� �H θx;θyð Þ ð7Þ

The collateral filtering of image I at location(θx, θy) is
finally computed using

IC θx; θy
� � ¼

P
μx;μyð Þ∈ΨW θx;θy μx; μy

� �
1−βð ÞI þ βIM

	 

P

μx;μyð Þ∈ΨW θx;θy μx; μy
� �

ð8Þ
where β is adopted to adjust the weight between the
input image I and the median filtered image IM. A num-
ber of techniques have been proposed to accelerate
image filter computation. Some researchers used
approximation methods to reduce the computation time
[23]. A straightforward approach is to take advantage of
an additional memory space. Inspired by the strategy in
[24], we introduce a new scheme not only saving com-
putation time but also achieving the same restoration re-
sults as using the traditional collateral filter.
In the traditional collateral filter, the spatial compo-

nent is repeatedly computed for every pixel, which takes
a lot of time in computing the same pixel distances.
Therefore, we redefine (2) as

DS dx; dy
� � ¼ exp −

dx
2 þ dy

2

2σ2S

� �
ð9Þ

where dx and dy are the spatial distances with 0 ≤ dx ≤N
and 0 ≤ dy ≤N. In our approach, we create a spatial
weight buffer WSB, which is defined as

WSB ¼ DS dx; dy
� �

: dx; dy∈ 1;…;N½ �� � ð10Þ
We then compute all the spatial weights and store

them in this memory buffer WSB according to the filter
radius N. Let WSB(x, y) be an element of WSB, (2) can
be expressed as WSB(μx − θx, μy − θy).
Subsequently, we implement the complex parts of the

collateral filter using CUDA shared memory, which is an
efficient way to reduce the reading and writing time
comparing to the usage of global memory. We split the
image pixels into separate blocks, each denoted as
block(i, j), where i = 1, 2, …, k and j = 1, 2, …, k. For
entropy computation, each pixel and its neighbors are
required to sum up as shown in (5). To hasten the com-
putation, the entropy of the pixel at (x, y) is computed
and stored in the shared memory buffer in advance
using

HPBi; j x; yð Þ ¼ p x; yð Þ logp x; yð Þ
þ 1−p x; yð Þ½ � log 1−p x; yð Þ½ �

ð11Þ
where S × (i − 1) −N < x ≤ S × i +N, S × (j − 1) −N < y ≤
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S × j +N, and S × S represents the block size. Once HPBi,

j is created, the entropy is defined as:

HGi; j δx; δy
� � ¼ −

X
μx;μyð Þ∈Ψδx ;δy

HPBi; j μx; μy
� �

ð12Þ

where (δx, δy) represents a thread in block(i, j) with 1 ≤ δx ≤
S and 1 ≤ δy ≤ S. Since accessing shared memory is faster
than accessing local memory, each thread only needs to
sum up its own value from its neighbors. Consequently,
we redefine (7) as:

Wi; j;δx;δy ¼ WSBi; j WR
i; j;δx;δy

� � 1
1þHGi; j δx ;δyð Þ WM

i; j;δx;δy

� �HGi; j δx;δyð Þ

ð13Þ
where WSBi, j represents the spatial weight buffer in
block(i, j).
In order to more effectively utilize shared memory, the

computation of β in (8) is reformulated so that it is cal-
culated at the beginning in every block(i, j) before apply-
ing the filter to each pixel. Finally, the accelerated
version of the collateral filter is defined as:

IACi; j δx; δy
� � ¼

P
μx;μyð Þ∈Ψδx ;δy

W i; j;δx;δy μx; μy
� �

BETAi; j μx; μy
� �

P
μx;μyð Þ∈Ψδx ;δy

W i; j;δx;δy μx; μy
� �

ð14Þ
where BETAi, j(μx, μy) is the value of β at (μx, μy). The
pseudo code of our GPU-based collateral filter is
depicted in Fig. 1. Note that each pixel being processed
is assigned to a thread since the process is a slice-by-
slice approach, i.e., one 2D image at a time.

Feature extraction
Although the execution time of the traditional collateral
filter is hastened using the GPU strategy, it is still labori-
ous to manually adjust the parameters for achieving the
best restoration results in a particular brain MR image.
Using an artificial neural network system is suitable as it
can learn to estimate the optimal parameters in the fil-
tering process. However, neural networks require appro-
priate input features to obtain the best performance of
the predictable model. In our experience, image texture

features play an important role in the neural network
automation process. The candidate image texture fea-
tures adopted in this study are described as follows.

Statistical features
There are several basic statistical features that are com-
puted directly from the image intensity: mean intensity
(Mean), standard deviation (SD), variance (VAR), entropy
(ENT), and histogram features (skewness, kurtosis, vari-
ance, entropy and energy).

Gray-level co-occurrence matrix (GLCM)
The GLCM features were proposed by Haralick et al.
[25]. A co-occurrence matrix is defined as a matrix of
frequencies at which two pixels, separated by a certain
distance and direction, occur in the image. Eight GLCM
features [25–27] in four directions (θ = 0°, 45°, 90°, 135°)
with distance d = 1 are computed:

(1) Standard deviations in the i-direction (SDi)
(2) Standard deviations in the j-direction (SDj)
(3) Energy or angular second moment (ASM)
(4) Contrast (CON)
(5) Dissimilarity (DIS)
(6) Homogeneity (HOM)
(7) Entropy (ENT)
(8) Correlation (COR)

Gray-level run-length matrix (GLRLM)
The GLRLM features were proposed by Galloway [28]. A
run-length matrix is defined as the number of runs with a
pixel of a specific gray level and its run length in a certain
direction. Eleven GLRLM features in four directions (θ = 0°,
45°, 90°, 135°) are computed:

(1) Short run emphasis (SRE)
(2) Long run emphasis (LRE)
(3) Gray level nonuniformity (GLN)
(4) Run length nonuniformity (RLN)
(5) Run percentage (RP)
(6) Low gray-level run emphasis (LGRE)
(7) High gray-level run emphasis (HGRE)
(8) Short run low gray-level emphasis (SRLGE)

Fig. 1 Pseudo code of the GPU-accelerated collateral filter
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(9) Short run high gray-level emphasis (SRHGE)
(10)Long run low gray-level emphasis (LRLGE)
(11)Long run high gray-level emphasis (LRHGE)

Tamura texture features
Tamura features [29] were developed based on the
human visual and psychological perception. The first
three features, which are correlated more closely with
human perception, are computed:

(1) Coarseness (CRS)
(2) Contrast (CON)
(3) Directionality (DIR)

Their formulas are briefly provided in Additional file 1.

Noise estimation features
Since the collateral filter parameters are sensitive to
noise, noise related features are required. Many noise
variance estimation methods that are based on the
Rician and Rayleigh distributions are complicated. An
easier way to estimate the noise level is to employ a sim-
pler Laplacian operator [30]. A more efficient algorithm
[31] with a generic transfer function improved the
Laplacian mask for better estimation. Aja-Fernández et
al. [32] presented a set of estimators based on the Ray-
leigh distribution in the background. Moreover, the peak
value of the autocorrelation function computed by an
image with itself provides the information of noise [33].
Based on the above methods, the following seven fea-
tures are adopted:

(1) Laplacian mask (LAP)
(2) Laplacian of Gaussian (LOG)
(3) A generic transfer function with Laplacian

(GTFLAP)
(4) Maximum value of some local distribution (AJA)
(5) A least square fitting of the Rayleigh distribution

with the histogram background (BRUM)
(6) Maximum likelihood function (SIJ)
(7) Autocorrelation function (ACF)

Feature selection
If a large amount of features are selected as the input
arguments, the training of neural networks will be an
extremely time-consuming procedure. Consequently, we
utilize the sequential forward floating selection (SFFS)
method [34] to choose the best combination of features.
Before applying the SFFS, we make use of the
paired-samples t-test [35, 36] to rank the significance of
candidate features. The t-test is applied to each image
feature to evaluate the ability for discriminating differ-
ences between noise levels, which results in an average
p-value. The smaller the p-value, the better the

discrimination. Statistically, those features with an
average p < 0.05 are selected as candidates for the SFFS
process.

Neural networks
The popular back propagation neural network (BPN),
proposed by McClelland et al. [37], is utilized for train-
ing our neural network system. The main architecture
includes input, hidden and output layers. The back
propagation process is employed to optimize the weights
by minimizing the target error so that the neural net-
work is able to learn the input-output mapping perfectly.
In our approach, the inputs are the features selected by
the SFFS algorithm and the outputs are the collateral fil-
ter parameters. In addition, a brute-force approach is
conducted to obtain the optimal filter parameters based
on the peak signal-to-noise ratio (PSNR):

PSNR ¼ 10� log10
MAX2

I

1
mn

�
Xm−1

i¼0

Xn−1
j¼0

R i; jð Þ−Fði; jÞ½ �2

2
66664

3
77775

ð15Þ

where F is the m × n noise-free image, R is the restored
image, and MAXI is the maximum possible intensity of F.

Fig. 2 Flowchart of the proposed restoration framework with
automatic parameter decision
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The optimal filter parameters are decided when the
highest PSNR value is obtained.
Finally, a two stage neural network structure is

developed with the first stage for classification and the
second stage for prediction. At the first stage, the neural
network classifier distinguishes inputs into three differ-
ent noise levels. Multiple-layer (input, hidden, and out-
put) neural networks with different noise level models at
the second stage predict the optimal filter parameters
for image restoration. The Levenberg-Marquardt learn-
ing algorithm [38] is exploited to independently train
each of the three individual BPN models. For each BPN
model, the transfer function between the input layer and
the hidden layer is the hyperbolic tangent function,
whereas the linear transfer function is employed between
the hidden layer and the output layer. The overall flow-
chart of the proposed methods is depicted in Fig. 2.

Performance evaluation
In addition to the PSNR metric in (15), the structural
similarity (SSIM) metric [39] is utilized to evaluate the
restored images using

SSIM F ;Rð Þ ¼ 2μFμR þ C1ð Þ 2σFR þ C2ð Þ
μ2F þ μ2R þ C1
� �

σ2F þ σ2R þ C2
� � ð16Þ

where σ represents the standard deviation, μ represents
the mean intensity, C1 = (K1MAXI)

2 and C2 = (K2MAXI)
2

with K1 = 0.01 and K2 = 0.03. The higher the PSNR and
SSIM scores the better the restoration results. To more
thoroughly evaluate the image restoration ability of the
proposed system, the restoration results obtained using
the automatic framework are compared with the results
obtained using the brute-force method, which is consid-
ered as the optimal outcome. Let PSNRA be the restor-
ation score of the proposed automatic system and

Table 1 Execution time of the CPU-based and GPU-based
collateral filters

Image
number

CPU
(s)

GPU without
SM (s)

GPU with
SM (s)

Speed
up

1 0.63 0.14 0.018 34

10 6.06 0.16 0.027 224

100 58.78 0.24 0.108 541

500 260.52 0.59 0.425 612

1000 512.38 1.05 0.871 588

Fig. 3 Plots of the running times of the CPU-based and the GPU-based with shared memory collateral filters

Table 2 Paired-samples t-test results based on the average
p-value with p < 0.05

No. Feature p-value No. Feature p-value

1 BRUM 0.019017 15 AJA 0.038044

2 SIJ 0.020022 16 GLN(45°) 0.038485

3 SRLGE(90°) 0.021380 17 RP(45°) 0.040108

4 GTFLAP 0.022898 18 RP(135°) 0.040233

5 SRLGE(45°) 0.023014 19 LGRE(0°) 0.041105

6 SRLGE(0°) 0.028114 20 LGRE(90°) 0.041233

7 SRLGE(135°) 0.028445 21 RLN(135°) 0.042278

8 RLN(90°) 0.030137 22 SIJ 0.043803

9 GLN(0°) 0.032553 23 LAP 0.044592

10 RP(0°) 0.032900 24 LGRE(135°) 0.045512

11 RP(90°) 0.033309 25 GLN(135°) 0.046477

12 GLN(90°) 0.033748 26 RLN(45°) 0.046907

13 RLN(0°) 0.034005 27 ACF 0.048627

14 con 0.035178 28 LOG 0.049145
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PSNRT be the restoration score of the brute-force
method. The relative error εr is then defined as

εr ¼ PSNRT−PSNRAj j
PSNRT

� 100% ð17Þ

Results
We first conducted the experiments on the BrainWeb
database [40] as it contains simulated brain MR
image data based on normal and multiple sclerosis
(MS) models with different thicknesses, noise levels
and intensity non-uniformities. Clinical image data

were acquired from the medical image database in
the Division of Interventional Neuro Radiology,
Department of Radiology, UCLA, Los Angeles, CA,
USA. For efficiency tests, the experiments were per-
formed on an Intel® Xeon(R) CPU E5–2620 v3
2.40GHz equipped with a Tesla K40c GPU. Tesla
K40c is one NVIDIA’s GPU based on the NVIDIA’s
Kepler architecture. The Tesla K40c GPU contains 15
multiprocessors and each multiprocessor contains 192
cores, which results in 2880 cores. Its memory size is
12 GB and the maximum bandwidth is 288 (GB/sec).
Each block has 65,536 registers with 48 KB shared
memory and the maximum number of threads is
1024. The CUDA driver version is 7.5. The algorithm
was implemented and programmed in MATLAB
2017a (The MathWorks Inc. Natick, MA, USA) asso-
ciated with C for CUDA-based acceleration.
Table 1 presents the execution performance of the

traditional collateral filter and our accelerated version on
the same 217 × 181 brain MR images. The performance
of using the shared memory (SM) or not is also indi-
cated. The block size for the shared memory was 16 × 16
threads and the filter size was 3 × 3. When the number
of images was increasing, the proposed framework exe-
cuted the filtering process more effectively and a
remarkable acceleration was attained. It was noted that

Table 3 Restoration result analyses of the proposed GPU-based
collateral filter on different slices

Slice 7 14 17 20 23

Noise

5% PSNRA 33.066 34.131 34.156 33.836 34.736

PSNRT 33.229 34.145 34.157 33.855 34.758

εr(%) 0.4891 0.0395 0.0031 0.0575 0.0621

7% PSNRA 31.278 31.728 31.956 32.015 32.613

PSNRT 31.355 31.837 31.960 32.028 32.658

εr(%) 0.2453 0.3430 0.0117 0.0415 0.1377

Fig. 4 Comparison of visual restoration results on slice 10 with 5% noise in the 5 mm MS dataset. a Noisy MR image. b Intact image in magnified
view. c IBF with PSNR = 32.49 and SSIM = 0.8650. d ADF with PSNR = 33.61 and SSIM = 0.8684. e LMMSE with PSNR = 32.53 and SSIM = 0.8657. f
NLM with PSNR = 32.53 and SSIM = 0.8800. g BM3D with PSNR = 32.49 and SSIM = 0.8997. h Proposed with PSNR = 34.32 and SSIM = 0.8803
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the speed up gain raised from 34 for one single image to
541 for processing 100 images. Our proposed
GPU-based collateral filter is much faster than the ori-
ginal CPU version. The corresponding running times
with respect to different image pixel sizes are depicted
in Fig. 3. Obviously, the GPU implementation ran less
than 0.1 s for each scenario, whereas the computation
time of the CPU version was roughly linearly propor-
tional to the pixel number.
As presented in Table 2, there were 28 selected fea-

tures from different image feature classes for the input
candidates of the BPN system. The order of significance
of these adopted image features was based on the aver-
age p-value of the t-test outcome with p < 0.05. For
understanding the optimal features, T1-weighted brain
MR images with three different slice thicknesses (1 mm,
3 mm and 5mm), five noise levels (1, 3, 5, 7 and 9%),
and three intensity non-uniformities (0, 20 and 40%)
acquired from the BrainWeb database were utilized to
evaluate the proposed automatic restoration framework.
Each noise level had 1476 images, which were divided
into two groups: 984 slices for training and 492 slices for
testing. After the SFFS procedure, five optimal features
of RLN(0°), RP(135°), RP(90°), AJA, and kurtosis were
obtained and they were further employed in the BPN
training phase.

In the testing phase, the first stage BPN system classi-
fied the input image into three major categories based
on the noise level: low (1 and 3%), median (5 and 7%)
and high (9%) estimators. The correct classification rate
was up to 97.6% overall. The computed five features of
the input image were fed into the corresponding second
stage BPN model for producing the filter parameter
values for denoising. Table 3 summarizes the PSNR
scores and the relative error εr of the proposed auto-
matic filtering framework and the brute-force method
on randomly selected slices of the 5 mm normal MR im-
ages with 5 and 7% noise. It is indicated that the PSNR
scores of the proposed restoration algorithm were
extremely close to the optimal PSNR scores of the
brute-force method with negligible errors.
In Fig. 4, we illustrate our automatic restoration out-

come of the 10th slice image corrupted by 5% noise level
in the 5 mm MS dataset in comparison with the ADF
[9], LMMSE [8], NLM [12], iterative bilateral filtering
(IBF) [7], and BM3D [13] methods. Comparing to other
techniques, the proposed GPU-based collateral filter re-
vealed more uniform intensity profiles and better sharp-
ened edges in the white matter (WM) and gray matter
(GM) regions. Quantitative analyses also indicated that
our automatic collateral filter provided the highest score
of PSNR = 34.32 dB and the second highest SSIM =

Fig. 5 Comparison of visual restoration results on slice 26 with 7% noise in the 3 mm MS dataset. a Noisy MR image. b Intact image in magnified
view. c IBF with PSNR = 28.87 and SSIM = 0.7981. d ADF with PSNR = 31.41 and SSIM = 0.8133. e LMMSE with PSNR = 29.08 and SSIM = 0.8016. f
NLM with PSNR = 31.74 and SSIM = 0.8406. g BM3D with PSNR = 31.78 and SSIM = 0.8367. h Proposed with PSNR = 31.95 and SSIM = 0.8479
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0.8803 than other tested methods. Figure 5 depicts the
visual restoration results of the 26th slice image cor-
rupted by 7% noise level in the 3 mm MS dataset. It was
obvious that, in contrast to other methods, the proposed
denoising algorithm achieved a sharper and cleaner rep-
resentation for the GM and WM with the best PSNR =
31.95 dB and SSIM = 0.8479, which was closer to the
intact image.
Figure 6 delineates the restoration results of the 1 mm

normal image volume with 9% noise level and 40% in-
tensity non-uniformity in 3D visualization. After apply-
ing the ADF, LMMSE, and IBF methods, the brain
structures still, more or less, exhibited grainy noise influ-
ences. On the other hand, the proposed automatic filter
decently wiped out the heavy noise while maintaining
noticeable cortical structures as illustrated in Fig. 6f.
Table 4 presents quantitative analyses on massive 1 mm
image volume restoration with various scenarios of ana-
tomical models and noise levels. It was noted that the
LMMSE method performed much worse than other

methods in the image volumes with 1% noise. Our auto-
matic denoising framework produced the best restor-
ation results in terms of average PSNR and SSIM in all
noise levels. As the noise level was increasing, the
advantage of our collateral filter over other methods was
more compelling.
For completeness, we demonstrate the capability of

our automatic filtering algorithm in restoring clinical
brain MR images with diseases. Figure 7 depicts the res-
toration results of denoising T1-weighted MR images
with brain tumors using different methods. While the
restoration results obtained using the ADF, LMMSE,
and IBF methods were somewhat grainy in the tumor
area, the NLM, BM3D and proposed algorithms
achieved more suitable smoothness while maintaining
sharpness at the tumor boundaries. Another example of
filtering distorted PD-weighted MR images with brain
tumors is illustrated in Fig. 8. It was indicated that, com-
paring to other methods, our automatic collateral filter
more effectively removed the artefact while disclosing

Fig. 6 Qualitative analyses on the restoration results of the 1 mm normal image dataset with 9% noise and 40% intensity non-uniformity in 3D
visualization. a Noisy image volume. b Intact image volume. c ADF. d LMMSE. e IBF. f Proposed
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distinct edges between anatomical structures. Finally, in
Fig. 9, we show the visual improvement of noisy MR
images with low resolution and severe grains using all
tested methods. It was obvious that the proposed filter-
ing algorithm more adequately eliminated the noise and
identified the lesion in contrast to other techniques.

Discussion
Stimulated by the recent advance in artificial
intelligence and parallel computing, we have devel-
oped an efficient filtering framework for brain MR

images. An essential property of the proposed auto-
matic restoration algorithm is the two-stage mechan-
ism of the neural network concatenation. A benefit of
this strategy is to divide the broad noise range into
three narrower classes corresponding to three individ-
ual BPN models, where the prediction of the filter pa-
rameters can be further clarified. To correlate the
image with the BPN models for automation, a wide
variety of image texture features were investigated
based on the SFFS strategy, from which five best
texture features were obtained. Three features of
RLN(0°), RP(135°), and RP(90°) belong to the GLRLM
category, AJA is one of the noise estimation features,
and kurtosis makes use of the histogram information.
These five features play an essential role in the effect-
ive discrimination between images with different noise
levels, anatomical structures, and intensity
non-uniformities.
A variety of T1-weighted brain MR images acquired

from the BrainWeb database [40] with various scenarios
were utilized in the proposed BPN models to obtain the
optimal filter parameters. Due to the facility limitations,
other MR modalities such as T2-weighted and
PD-weighted images were not included in the training
dataset in the current study. From the viewpoint of the
clinical demand, the proposed automatic filter
adequately restored various brain MR images with dis-
tinct anatomical structures and modalities such as
PD-weighted images (see Figs. 7, 8, 9), which were quite

Fig. 7 Comparison of the restoration of clinical T1-weighted MR images with brain tumors. a Input MR image. b Input image in magnified view.
c IBF. d ADF. e LMMSE. f NLM. g BM3D. h Proposed

Table 4 Quantitative analyses on the restoration results of the
1 mm image data in terms of average PSNR and SSIM scores
using different methods

Type Noise LMMSE IBF Proposed

PSNR SSIM PSNR SSIM PSNR SSIM

Normal 1% 34.97 0.8513 38.04 0.9766 39.17 0.9816

3% 33.34 0.8626 33.28 0.8924 34.79 0.9027

5% 30.65 0.8042 30.51 0.8239 32.42 0.8538

7% 28.65 0.7535 28.60 0.7711 30.53 0.7959

9% 27.03 0.7127 27.04 0.7309 29.13 0.7585

MS 1% 35.09 0.8512 38.16 0.9767 39.29 0.9830

3% 33.48 0.8628 33.40 0.8928 34.87 0.9006

5% 30.79 0.8046 30.64 0.8244 32.51 0.8540

7% 28.79 0.7541 28.73 0.7715 30.62 0.7958

9% 27.17 0.7135 27.16 0.7315 29.21 0.7587
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different from the training BrainWeb dataset. This sug-
gested the propriety of the proposed automation strategy
and the robustness of the developed restoration scheme.
Nevertheless, to achieve optimal restoration results on
massive T2-weighted and PD-weighted brain images,
retraining involving these types of images is recommended.

Conclusions
We have described an automatic image restoration algo-
rithm based on the accelerated collateral filter that has
been implemented on the GPU architecture. The pro-
posed framework reduced the execution time of the fil-
tering process by taking advantage of shared memory in

Fig. 8 Comparison of the restoration of distorted PD-weighted MR images with brain tumors. a Input MR image. b Input image in magnified
view. c IBF. d ADF. e LMMSE. f NLM. g BM3D. h Proposed

Fig. 9 Comparison of the restoration of noisy MR images with low resolution. a Input MR image. b Input image in magnified view. c IBF. d ADF.
e LMMSE. f NLM. g BM3D. h Proposed
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CUDA to decrease memory access latency. This new
denoising system fully automated the restoration pro-
cedure for brain MR images without the need of adjust-
ing the filter parameters. Experimental results indicated
that the proposed automatic restoration framework
effectively removed noise in various brain MR images
with satisfactory quantity and quality. We also demon-
strated its great capability of improving the clinical MR
image quality and delineating the tumor boundary that
outperformed other tested methods. We believe that our
automatic filtering framework is of potential and able to
provide a fast and powerful solution in a wide variety of
medical image restoration applications.
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