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Nonlocal total variation based on
symmetric Kullback-Leibler divergence for
the ultrasound image despeckling
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Abstract

Background: Ultrasound imaging is safer than other imaging modalities, because it is noninvasive and nonradiative.
Speckle noise degrades the quality of ultrasound images and has negative effects on visual perception and diagnostic
operations.

Methods: In this paper, a nonlocal total variation (NLTV) method for ultrasonic speckle reduction is proposed. A
spatiogram similarity measurement is introduced for the similarity calculation between image patches. It is based
on symmetric Kullback-Leibler (KL) divergence and signal-dependent speckle model for log-compressed ultrasound
images. Each patch is regarded as a spatiogram, and the spatial distribution of each bin of the spatiogram is regarded as
a weighted Gamma distribution. The similarity between the corresponding bins of the two spatiograms is computed by
the symmetric KL divergence. The Split-Bregman fast algorithm is then used to solve the adapted NLTV object function.
Kolmogorov-Smirnov (KS) test is performed on synthetic noisy images and real ultrasound images.

Results: We validate our method on synthetic noisy images and clinical ultrasound images. Three measures are adopted
for the quantitative evaluation of the despeckling performance: the signal-to-noise ratio (SNR), structural similarity index
(SSIM), and natural image quality evaluator (NIQE). For synthetic noisy images, when the noise level increases, the
proposed algorithm achieves slightly higher SNRS than that of the other two algorithms, and the SSIMS yielded
by the proposed algorithm is obviously higher than that of the other two algorithms. For liver, IVUS and 3DUS
images, the NIQE values are 8.25, 6.42 and 9.01, all of which are higher than that of the other two algorithms.

Conclusions: The results of the experiments over synthetic and real ultrasound images demonstrate that the
proposed method outperforms current state-of-the-art despeckling methods with respect to speckle reduction
and tissue texture preservation.
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Background
Ultrasound imaging is one of the four modern medical
imaging techniques that deliver cross-sectional images
of a patient’s anatomy and physiology in real time [1].
The use of ultrasound in the diagnosis and assessment
of imaging organs and soft tissue structures, as well as
human blood, is well established [2]. This technique is
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progressively achieving an important role in the assess-
ment and characterization of cardiac imaging because it is
noninvasive and has a strong ability to identify biological
soft tissues [3]. However, ultrasound imaging generates
images with low contrast resolution, because of speckle
noise.
The speckle pattern, which contains typical light and

dark spots in an image, is generated by the interference
effect of the ultrasonic echoes and scattering of randomly
distributed structure scatters. In fact, speckle is technically
not a noise in the typical engineering sense because its
texture often carries useful information on the image.
Therefore, distinguishing between speckle generated from
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tissue and that from the received RF signal is essential [3].
The former refers to the image texture and the latter, the
speckle noise. Speckle noise is a form of multiplicative
noise subjected to Gamma distribution [4–6]. It is the
primary factor that limits the contrast resolution in diag-
nostic ultrasound imaging, thereby limiting the detectability
of small low-contrast lesions and rendering the ultrasound
images generally difficult for non-specialist to interpret [3].
Therefore, reducing speckle noise is important for the
interpretation and computer-aided analysis of ultrasound
images. The aim of despeckling is to eliminate the speckle
noise and maintain the image boundaries and image
texture.
Decreasing the frequency of the transducer can increase

the signal-noise-ratio (SNR) in ultrasound images. How-
ever, doing so decreases the resolution of the image, and
consequently hinders the capturing of internal details of
human organs. Meanwhile, high-resolution ultrasound
images usually indicate low SNR, which can be increased
by despeckling post processing techniques. One of the
classical despeckling methods is the Wiener filter, which is
a linear filter based on local statistics [7]. It uses the
weighted average calculation of sub-region statistics to
estimate the statistical measures over different pixel
windows [3]. However, the linear filters have an inherent
drawback of over-smoothing anatomical details and transi-
tional boundaries [8]. Thus, in the last two decades,
researchers have focused on nonlinear filtering methods to
remove speckle noise in ultrasound images.
Similar to ultrasound images, the synthetic aperture

radar (SAR) images are usually degraded by multiplicative
speckle noise. Some local speckle statistics-based adaptive
filters proposed for SAR images are also used in ultra-
sound images [9–15]. These adaptive filters use local
speckle statistics to improve smoothness in homoge-
neous regions where the speckle is fully developed and
reduce smoothness appreciably in the other regions
showing the useful details of an anatomical structure [3].
Adaptive filters include the Lee filter [9], Kuan filter [10],
Frost filter [11], adaptive weighted median filter [12],
speckle reducing bilateral filter [13], maximum likelihood
filer [14] and MRGMAP filter [15]. These adaptive filters
use different weighting coefficients calculated from the
subregion statistics over different pixel windows to pre-
serve important image structures while removing speckle
noise. However, although these adaptive filters can retain
the boundaries, they cannot eliminate speckle noise
effectively and are sensitive to the size of the pixel window.
When the window size is large, the image edges are
blurred.
Anisotropic diffusion, proposed by [16], is an efficient

nonlinear technique that can enhance contrast and reduce
noise simultaneously [17–19]. It smooths homogeneous
image regions and preserves image edges without requiring
any information from the image power spectrum [3]. For
example, the speckle-reducing anisotropic diffusion filtering
has been proposed to enhance image contrast [3]. Wavelet
filtering is another method that exploits the decomposition
of an image into the wavelet basis and zeros out the wavelet
coefficients to despeckle the image. Speckle-reduction
filtering in the wavelet domain is based on the concept
of the Daubechies Symlet wavelet and soft-thresholding
denoising [3]. It was proposed first by Donoho [20] and
investigated further by Zhong and Cherkassky [21] and
Gupta et al. [22]. However, although diffusion and wavelet
filters can suppress speckle noise considerably, they pro-
duce excessive smoothing details, particularly in the image
boundaries and texture.
Nonlocal denoising methods that use the similarities

among small patches have been reckoned to be an effective
way to preserve details while decreasing noise [6, 23, 24].
A simple and classic method is the well-known nonlocal
means (NLM) filter [23], which measures the similarities
among the patches centered at a given pixel in the image
and prevents the smoothing of boundaries by assigning
only high weights to pixels with similar local properties.
However, it cannot be applied to speckle filtering directly
since the speckle model of the ultrasound images is not
subjected to the Gaussian distribution. The NLM filter has
been adapted to Gamma-distributed speckle pattern by
introducing a Bayesian estimator to the weighting function
and Rayleigh-distributed speckle pattern through the intro-
duction of maximum-likelihood estimation [25, 26]. These
adapted methods demonstrate better results than the
original NLM filter. The NLM filter generates better
structural preservation than the diffusion filters. How-
ever, it also generates excessive smoothing textures.
Based on the NLM filter, the nonlocal total variation
(NLTV) minimization scheme analyzes the patterns
around the pixels and performs pattern matching in the
global image [27, 28]. The nonlocal total variation norm
processes textures and repetitive structures effectively.
However, although the NLTV filter performs well in
Gaussian noise reduction and sharp boundaries preserva-
tion, it cannot be applied to log-compressed ultrasound
images directly, because the speckle is not subjected to
the Gaussian distribution. Thus, a Bayesian NLTV speckle
filter (BNLTV) has been developed for ultrasound images
and thus is capable of improving speckle suppression and
edge enhancement, outperforming the adaptive filters, dif-
fusion filters, wavelet filters, nonlocal denoising methods,
and original NLTV filter [29]. However, the BNLTV filter
over-smooth image texture and introduces some artificial
traces, while it eliminates the speckle noise. It cannot
determine whether or not the speckle received from RF
signal.
Another nonlocal denoising method is the blocking

matching 3D (BM3D) filter proposed by Dabov et al.



Table 1 The results of the KS test on the clinical ultrasound
images and synthetic noisy images

Distribution Gaussian Rayleigh Fisher-Tippett Gamma

Shepp-Logan Phantom
Gamma-distributed

0.5699 0.9884 0.3871 0.2210

Field II Kidney Phantom 0.3812 0.9673 0.3751 0.0781

Liver 0.3451 0.9567 0.3761 0.1261

IVUS 0.4523 0.9907 0.3744 0.0270

3DUS 0.3432 0.9549 0.3716 0.1195
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[30]. This method combines nonlocal and transform-
domain approaches and presents an effective denoising
framework by grouping similar patches into a 3D array. It
subsequently filters the 3D array by using sparse representa-
tion in the transform domain. Finally, it aggregates multiple
estimates at each location. Based on the BM3D filter, the
SAR-BM3D filter [31] was proposed for despeckling SAR
images. The SAR-BM3D filter is generally used to despeckle
breast ultrasound images and exhibited the impressive
despeckling ability [32].
In this paper, an adapted NLTV speckle filter is pro-

posed to address the problem on speckle noise. This filter
can eliminate the speckle noise while maintaining the
edges and image texture. For the improvement of the des-
peckling performance, spatiogram similarity measurement
based on symmetric KL divergence is introduced to the
similarity calculation between the image patches. The
proposed method is validated by considering both real
ultrasound images and synthetic noisy images. Before the
experiment, a Kolmogorov-Smirnov (KS) test has been
conducted on the experimental images to ensure that
the images are subjected to Gamma distribution [5].
For the evaluation of the despeckling performance with-
out the ground truth image, the natural image quality
evaluator (NIQE) [33] is introduced. NIQE can predict
the quality of distorted images (noise, ringing, blur, or
blocking), even without any prior knowledge of the
Table 2 Parameters Settings for the Proposed Algorithms

Data Set
Algorithm

Shepp_Logan Phanto
sigma = {0.8;1.0;1.3}

SAR-BM3D Number of looks L 1

Patch Size Ni 8 × 8

Search_Window |△i| 11 × 11

Proposed Lambda λ {30;35;20}

Beta β {25;25;25}

Bandwidth h {0.2;0.2;0.2}

Search_Window |△i| {31 × 31;41 × 41;41 × 4

Patch_Size Ni 5 × 5

Inner_Iteration n 2

Outer_Iteration k 50
reference images or their distortions. The remainder of
this paper is organized as follows: Section 2 provides
the proposed NLTV filtering procedure. Section 3 reports
the experimental results. Finally, Section 4 presents the
conclusions.

Methods
NLTV algorithm
Based on nonlocal denoising methods, NLTV denoising
is generally designed for the zero mean Gaussian noise.
Dong et al. [28] and Wen et al. [29] proposed a nonlocal
total variation noise removal model for multiplicative noise.
In these models, the noisy image Y from a noise-free image
X can be modeled as follows [28, 29]:

Y ¼ X þ Xγη; ð1Þ
where η generally denotes a zero mean Gaussian noise
with a variance σ2. γ is a factor that relies on ultrasound
devices and additional image reconstruction processing,
and when γ = 0.5, the formation process for the log-
compressed ultrasound image can be approximated [12].
Denoising methods aim to restore X or find a good estimate
X̂ of X from Y.
The NLTV denoising method searches similar patches in

a certain searching window centered at a given pixel and
obtains the weight coefficients according to the similarities
among the patches. The restored pixel is reconstructed by
minimizing nonlocal TV model. This operation is repeated
for each pixel in the sliding searching window fashion in
the whole noisy image. The details of the NLTV denoising
process are described in the subsequent text.
Given a p × p patch and a iw × iw searching window

centered at a certain pixel, i, in the noisy image, m similar
patches (including the given patch) are found. The distance
of two patches can be formulated as follows [28]:

d i; jð Þ ¼ Gα
� X iþ ∙ð Þ−X jþ ∙ð Þk k2� �

; ð2Þ
m Field II
Kidney Phantom

Liver IVUS 3DUS

1 1 1 1

8 × 8 8 × 8 8 × 8 8 × 8

11 × 11 11 × 11 11 × 11 11 × 11

30 30 30 30

25 25 25 25

0.3 0.3 0.5 0.3

1} 31 × 31 11 × 11 11 × 11 11 × 11

5 × 5 7 × 7 7 × 7 7 × 7

2 2 2 2

50 50 50 50



Fig. 1 The impact of nonlocal total variation scheme-related parameters for the proposed method. aThe signal-to-noise ratio (SNR) as a function
of lambda λ. b The signal-to-noise ratio (SNR) as a function of beta β
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where Gα is a Gaussian kernel with standard deviation α,
X(i + ∙) and X(j + ∙) are the patches centered at i and j,
respectively, in a given searching window. The similarity
coefficients can be calculated as follows [28]:

w i; jð Þ ¼ exp
−d i; jð Þ
2h2

� �
; ð3Þ

where h is a filtering parameter. The smaller the distance,
the greater the w(i, j), which means the two patches is
more similar.
Then the NL gradient is defined based on the weighting

of similar patches, which is determined as follows [28]:

∇NLXij j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j
X jð Þ−X ið Þð Þ2w i; jð Þ

q
ð4Þ

Based on the Bayesian rational [29] and Eq. (4), the
restored gray value of i can be obtained by minimizing
the nonlocal TV model represented as follows [28]:

min E Xið Þ ¼
X

i
∇NLXij j þ λ

2

X
i
Xi−Y ið Þ2; ð5Þ
Fig. 2 The impact of the searching space |Δi| for the proposed method
where λ > 0 and is a Lagrange parameter balancing
the influence between the nonlocal regularization term
∑i|∇NLXi| and data fidelity term.
The above operation is performed in each pixel in the

sliding search window fashion in the whole noisy image.
In this operation, an efficient minimizing algorithm is
necessary to improve the performance at a relatively fast
rate. Many efficient algorithms for the computation of
the nonlocal TV problem have been proposed [34, 35].
Of these algorithms, the split Bregman method can solve
the nonlocal TV minimization efficiently. It simplifies the
nonlocal TV problem to two sub-problems calculated by
the Gauss–Seidel iterative scheme and soft-thresholding
formula [34].

Symmetric KL divergence NLTV speckle filter
The NLTV method was originally proposed for additive
Gaussian noise removal [27]. It uses the non-robust
Euclidean distance to measure the similarities among
the patches. To improve the performance of the NLTV
despeckling method, we propose to replace the similarity
measurement based on Euclidean distance with a spatiogram
similarity measurement based on symmetric KL divergence.
This similarity measurement is performed on the noisy
patches to determine the similarities between each pair
of patches. Each patch is regarded as a spatiogram, and
the spatial distribution of each bin of a spatiogram is
regarded as a weighted Gamma distribution, where the
weight is the probability of the corresponding bin; sub-
sequently, the similarity in the corresponding bins of the
Table 3 The SNR Comparison under Different Gamma
distribution Conditions

BNLTV SAR-BM3D Proposed

sigma = 0.8 28.11 28.53 33.04

sigma = 1.0 26.92 26.78 29.52

sigma = 1.3 26.18 24.7 26.72



Table 4 The MSSIM Comparison under Different Gamma
distribution Conditions

BNLTV SAR-BM3D Proposed

sigma = 0.8 0.9921 0.9921 0.9962

sigma = 1.0 0.9903 0.9917 0.9953

sigma = 1.3 0.99 0.9891 0.9945
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two spatiograms is computed by the symmetric KL diver-
gence with two weighted Gamma distributions [36].
Given a spatiogram,

h ¼ nb; μb;Σbf g b ¼ 1; 2;…;Bð Þ ð6Þ
where nb is the probability value of the bin, μb and Σb

are the mean and covariance matrix, respectively, of the
pixel coordinates in the bin, B is the number of bins. A
weighted Gamma distribution is represented as follows:

f b xð Þ ¼ nbpb; ð7Þ
where

pb ¼
βα

Γ αð Þ x
α−1e−βx; ð8Þ

where α = μ2/Σ, β = μ/Σ. The KL distance between the
two weighted Gamma distributions, fb(x) and f

0
b xð Þ , can

be calculated as follows:

dKL

�
f b

��� f
0
b

��� 	
¼ dKL

�
nbpb

�� n0
bp

0
b

�� 	
¼ nbdKL

�
pb∣ p

0
b

�� 	
þnb log nb=n

0
b

� 	
;

ð9Þ
where
Fig. 3 Results obtained with the compared filters applied to the Shepp-Logan p
(sigma) = 1.3). aThe noisy image and its corresponding enlarged representative re
representative region. (c)-(e)Outputs of the compared filters and the same repres
e The proposed method. BNLTV = Bayesian NLTV; SAR-BM3D=blocking matchin
dKLðpb∣ p′b
�� � ¼ log

βαΓ α′ð Þ
β′

α′
Γ αð Þ

þ α−α′
� �

− β−β′
� �

; ð10Þ

where d is the space dimensionality (for spatiogram, d = 2).
The symmetric KL distance between the two weighted
Gamma distributions is represented as follows:

dSKL f b; f
;
b

� � ¼ dKL f b jj f
0
b

� 	
þ dKL f

0
bjjf b

� 	
2

¼ nbdKL pbjjp
0
b

� 	
=2þ n

0
bdKL p

0
bjjpb

� 	
=2

þ nb−n
0
b

� 	
log nb−n

0
b

� 	
=2: ð11Þ

Then, the weight coefficient between the two patches
can be calculated as follows:

w i; jð Þ ¼ exp
−
PB

b¼1dSKL f b; f
0
b

� 	
2h2

0@ 1A: ð12Þ

Split-Bregman implementation
After obtaining the weight coefficients by Eq. (12), we use
the Split Bregman iteration [28] to minimize the adapted
NLTV-functional Eq. (5).
To prevent the singularity and complexity of the numer-

ical difference, Goldstein and Osher [35] proposed an alter-
nating minimization scheme. They introduced an auxiliary
variable to approximate the image gradient. The NLTV
functional can be modified as the following minimization
problem by introducing the auxiliary variable d instead of
∇NLX, such that [28]
hantom image corrupted with Gamma-distribution noise (standard deviation
gion labeled with the red rectangle. bThe ideal image and its corresponding
entative regions corresponding to the filtered image, c BNLTV, d SAR-BM3D,
g 3D filter of SAR image



Fig. 4 Results obtained with the compared filters applied to the Shepp-Logan phantom image corrupted with Rayleigh-distribution noise (standard deviation
(sigma) = 1.3). a The noisy image and its corresponding enlarged representative region labeled with the red rectangle. b The ideal image. c-e Outputs of the
compared filters, c BNLTV, d SAR-BM3D, e The proposed method. BNLTV= Bayesian NLTV; SAR-BM3D=blocking matching 3D filter of SAR image

Table 5 The SNR and MSSIM Indices for the Shepp-Logan
Phantom under Rayleigh distribution Conditions with sigma = 1.3

BNLTV SAR-BM3D Proposed

SNR 19.88 31.541 36.8

MSSIM 0.9550 0.9939 0.9987
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min E X; dð Þ ¼
X

i
dj j þ λ

2

X
i
X−Yð Þ2 s:t:d

¼ ∇NLX: ð13Þ

The above constrained problem can be converted into
an unconstrained problem by using the quadratic penalty
method [28].

min E X; dð Þ ¼
X

i
dj j þ β

2
d−∇NLXð Þ2 þ λ

2

X
i
X−Yð Þ2:

ð14Þ

Then, the Bregman iteration is used to solve the above
minimization [28].

X; dð Þ ¼ min argX;d
X

i
dj j þ λ

2

X
i
X−Yð Þ2

þ β

2

X
i
d−∇NLX−bj j2; ð15Þ

Where β is a positive constant and b is the Bregman
parameter.
Apparently, Eq. (15) is a multivariate function and can

be minimized by alternatively solving the two minimization
subproblems with respect to X and d. Fixed d, the
minimization over X is [28]

X ¼ min argX
λ

2

X
i
X−Yð Þ2 þ β

2

X
i
d−∇NLX−bj j2:

ð16Þ

The optimal solution of X satisfies the following equation
using the Euler-Lagrange formula [28]:
−β divNL d−∇NLX−bð Þ−λ X−Yð Þ ¼ 0 ð17Þ
To get a fast solution for Eq. (17), we use the Gaussian-

Seidel iteration, and the solution is represented as [28]

dXkþ1
i ¼ 1

λþ β
P

jwij
β
X

j
wijX

k
j þ λY i−β

X
j

ffiffiffiffiffiffi
wij

p
dk
ij−b

k
ij−d

k
ji þ bkji

� 	� 	
:

ð18Þ
Fixed X, the minimization over d is [28]

d ¼ min argd
X

i
dj j þ β

2

X
i
d−∇NLX−bj j2: ð19Þ

According to the soft-thresholding formula [28], the
solution of Eq. (19) is provided by

dkþ1 ¼ ∇NLXkþ1 þ bk

∇NLXkþ1 þ bk
�� �� �max ∇NLX

kþ1 þ bk
�� ��− 1

β
; 0

� �
:

ð20Þ
Finally, the Bregman variable b is updated as follows [28]:

bkþ1 ¼ bk þ ∇NLX
kþ1−dkþ1: ð21Þ

The algorithm of NLTV model is summarized in
Algorithm 1. The procedure consists of two steps: the
NL weights computation step and NLTV minimization



Table 6 The NIQE values on the Synthetic Kidney Phantom
Images

BNLTV SAR-BM3D Proposed

Kidney Phantom 6.04 6.71 7.96
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step. In the NL weights computation step, the KL distance
is calculated using Eq. (11). It is then used to calculate the
NL weights using Eq. (12). After the NL weights are calcu-
lated, the NLTV minimization step is performed using the
Split-Bregman scheme. In this algorithm, n represents the
number of Gaussian-Seidel iteration and is used to deter-
mine a good approximation in Eq. (18). Meanwhile, k is
the number of the overall iteration.

Experiments
The synthetic noisy images and clinical ultrasound images
from [29] are studied to assess and compare the perfor-
mances of the despeckling methods quantitatively. In [29],
a 2D synthetic image “Modified Shepp-Logan Phantom”
available in MATLAB is considered and corrupted with
different noise levels. The speckle simulation for the
synthetic image is based on the noisy model, the Eq. (1).
Three levels of noise are tested by setting standard
deviations sigma = {0.8,1.0,1.3}.The clinical ultrasound
images include liver, intravascular, and 3D ultrasound
images. Many experiments performed on log-compressed
ultrasound images showed that the speckle noise is better
described by the Gamma distribution [4–6, 37]. A simple
experiment is then conducted to determine whether or
not the speckle noise is subjected to Gamma distribution.
In this experiment, the Kolmogorov-Smirnov (KS) test is
performed on the experimental images [5]. For each
image, the comparison between Gaussian, Gamma, and
Rayleigh distribution is done. The formula of the KS test
is as follows [5]:
Fig. 5 Results obtained with the compared filters for the Field II simulated B-m
of the compared filters, b BNLTV c SAR-BM3D, d The proposed method. BNLTV
DKS ¼ sup cFn ið Þ−FX ið Þ
��� ���; ð22Þ

where Fn is the empirical cumulative distribution function
(CDF) of the observed images, FX is the CDF of either
Gaussian, Gamma, − Rayleigh, or Fisher-Tippett distribu-
tion. The Glivenko-Gantelli theorem states that, if the
samples are subjected to distribution FX, then DKS con-
verges to 0 [38]. In Table 1, the values in the Gamma
column are smaller than the other values, and this means
the real ultrasound images and synthetic noisy image are
tended to subject to the Gamma distribution.
Three measures are adopted for the quantitative evalu-

ation of the despeckling performance: the signal-to-noise
ratio (SNR), structural similarity index (SSIM), and natural
image quality evaluator (NIQE). The SNR is established
on the variance ratio of the effective signal and noise using
the despeckled and noise-free image such that

SNR ¼ 20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM
i X

2
i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

PM
i Xi−Xið Þ2

q ; ð23Þ

where M is the total number of pixels in the noisy
image, Xi and Xi are the restored value and true value at
pixel i, respectively. The SSIM is used to measure the
structural similarity between the images [39, 40], and is
defined as follows:

SSIM ¼ 2μXμX þ c1ð Þ 2σXX þ c2ð Þ
μ2X þ μ2X þ c1ð Þ σ2X þ σ2X þ c2ð Þ ; ð24Þ

where μX and μX are the mean of the ground truth X and
denoised image X , respectively, σXX is the covariance of X
and X , and c1 and c2 are constant parameters. In this
research, the SSIM is locally measured with an 8 × 8
Gaussian kernel, and the mean SSIM (MSSIM) is estimated
ode image of synthetic kidney. a The synthetic kidney image. b-d Outputs
= Bayesian NLTV; SAR-BM3D= blocking matching 3D filter of SAR image



Fig. 6 Results obtained with compared filters applied to the liver ultrasound image. a The original image. b-d Outputs of the compared filters, b BNLTV,
c SAR-BM3D, d The proposed method. BNLTV = Bayesian NLTV; SAR-BM3D = blocking matching 3D filter of SAR image
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as a global SSIM by all the local SSIMs. The NIQE [33] is
based on the construction of a “quality aware” collection of
statistical features, which are based on a simple and
successful space domain natural scene statistic model,
represented as

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1−v2ð ÞT Σ1 þ Σ2

2

� �−1
s

v1−v2ð Þ; ð25Þ

where v1, v2 and Σ1, Σ2 are the mean vectors and covariance
matrices, respectively, of the natural Multivariate Gaussian
(MVG) model and MVG model of a distorted image.
The proposed algorithm is compared with two adaptive

algorithms, namely, the BNLTV filter [29], which is based
on Bayesian framework, and SAR-BM3D filter [31] to
provide relevant comparisons. The results of the [29] are
provided by the author. The parameters of proposed filter
and SAR-BM3D filter are adjusted to obtain the best SNR
scores. The detailed parameters for the proposed filter
and SAR-BM3D filter are listed in Table 2. All the
algorithms are implemented with MATLAB R2012a, and
the computer is equipped with 2.80 GHz CPU (10-core,
E5) and 64 GB RAM.

Filter parameters
The performance of the proposed despeckled method
depends on the setting of the two patch-related parameters
(i.e., the patch size p and the number of similar patches in
a search window m) and two nonlocal total variation
scheme-related parameters. The parameters are the
Fig. 7 Results obtained with the compared filters applied to the IVUS imag
c SAR-BM3D, d The proposed method. BNLTV = Bayesian NLTV; SAR-BM3D
Lagrange parameter λ, which balances the action between
the nonlocal regularization and data fidelity terms, and
the quadratic penalty parameter β, which must be large
enough to ensure d is sufficiently close to ∇NLX. In our
despeckling experiments with synthetic noisy images, p
and m are selected as 5 and 10, respectively, which yield
higher denoising SNR. For the real ultrasound images, the
proposed algorithm is implemented with parameters of p
and m with values of 7 and 10, respectively. The suitable
values for λ and β are then ascertained by implementing
the proposed algorithm on the synthetic noisy images with
varying λ and β values. The SNR values are used as quan-
titative indicators to evaluate the sensitivity to the setting
of these two parameters. For the proposed algorithm, the
curves as a function of the λ and β parameters are shown
in Fig. 1. These two parameters have an apparent effect on
the speckle suppression and edge sharpness of the des-
peckling image. As shown in Fig. 1, the speckle cannot be
reduced because of the small Lagrange parameter λ and
quadratic penalty parameter β. Meanwhile, large λ and β
values result in a blurred edge transition region. Only the
proper parameters can balance the performance between
speckle reduction and boundary preservation. Based on
the observation from Fig. 1, λ and β are fixed at 30 and 25
in the following experiments while using the clinical ultra-
sound images, respectively, which yield an improved SNR
for data with varying noise levels, although these two
values are not strictly optimal for each image.
The searching window size is another parameter that

affects the despeckling effect. The effect of searching
e. a The original image. b-d Outputs of the compared filters, b BNLTV,
= blocking matching 3D filter of SAR image



Fig. 8 Results obtained with the compared filters applied to the 3D ultrasound image. a The original image. b-d Outputs of the compared filters,
b BNLTV, c SAR-BM3D, d The proposed method. BNLTV = Bayesian NLTV; SAR-BM3D = blocking matching 3D filter of SAR image
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window size is illustrated in Fig. 2, where the experimental
results demonstrate that larger search windows do not
necessarily produce favorable results. When the searching
window size increases, the searching time increases
dramatically, whereas the SNR score has no significant
difference. The result implies that a 40 × 40 searching
window size is suitable for despeckling and can reduce
the computation time.

Results
Despeckling of synthetic noisy images
The SNR and MSSIM of the BNLTV, SAR-BM3D, and
proposed methods on the Shepp–Logan phantom image
corrupted with Gamma-distributed noise are shown in
Tables 3 and 4. With regard to SNR, the proposed method
significantly outperforms the other two methods in images
under all noise levels (standard deviation (sigma) from 0.8
to 1.3). When the noise level increases, the proposed algo-
rithm achieves slightly higher SNRS than the SAR-BM3D
algorithm, and the SSIMS yielded by the proposed algo-
rithm is obviously higher than that of the SAR-BM3D algo-
rithm. The proposed algorithm outperforms SAR-BM3D
algorithm with SNR improvements ranging from 2.02 dB
to 4.51 dB and SSIM improvements from 0.0036 to 0.0063.
Compared with the BNLTV algorithm, SNR improvements
of the proposed method are ranging from 0.54 dB to
4.93 dB and SSIM improvements from 0.0041 to 0.005.
Figure 3 provides a visual evaluation of the despeckling

results from the Shepp–Logan phantom image corrupted
with Gamma-distributed noise corresponding to sigma of
1.3. The proposed algorithm shows better performance in
removes speckle without considerable detail loss and edge
Fig. 9 The representative regions corresponding to the red rectangle region in
of the compared filters, b BNLTV c SAR-BM3D, d The proposed method. BNLTV
blurring and thus exhibits better performance than the
other despeckling algorithm. The BNLTV result has
the edge preservation but with the texture information
loss. The proposed method generates fewer intensity
oscillations in the homogeneous region than the SAR-
BM3D method.
The Shepp–Logan phantom image corrupted by the

Rayleigh-distributed speckle with sigma of 1.3 is used to
evaluate the ability of the despeckling filters to manage
speckles with different distributions. The results obtained
from the SAR-BM3D, BNLTV and proposed method on
the Rayleigh corrupted image are shown in Fig. 4. Table 5
presents the SNR and MSSIM scores in despeckling
the Rayleigh corrupted image. Among the methods,
the proposed method has the highest SNR and MSSIM
scores for the Rayleigh-based image.
Despeckling of field II kidney phantom noisy image
The performance of the proposed algorithm on the image
is verified by performing Field II simulation of speckle
noise. The B-mode image of a synthetic kidney is shown
in Fig. 5a. The results despeckled by the three methods
are given in the Fig. 5b–d. All the algorithms exhibit
improved speckle noise reduction performance. Notably,
the result of the BNLTV filter has the most texture
information loss and artificial traces compared with the
other two despeckling methods. Compared with the
SAR-BM3D filter, the proposed method shows stronger
speckle noise reduction ability.
As no ground truth image for the simulated kidney

image is present, a blind or no-reference image quality
Fig. 6a for the liver ultrasound image. aThe original image. b-d Outputs
= Bayesian NLTV; SAR-BM3D= blocking matching 3D filter of SAR image



Fig. 10 The representative regions corresponding to the red rectangle region in Fig. 7a for the IVUS image. a The original image. b-d Outputs of
the compared filters, b BNLTV, c SAR-BM3D, d The proposed method. BNLTV = Bayesian NLTV; SAR-BM3D= blocking matching 3D filter of SAR image
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assessment metric, natural image quality evaluator (NIQE),
is introduced. The quantitative results are listed in Table 6.
The results show that the proposed method achieves the
highest NIQE value, because it can maintain the texture of
the image while removing the speckle noise.
Despeckling of clinical ultrasound image
The effectiveness of the proposed approach on the real
ultrasound images is verified. The experiments are
conducted on real 2D liver ultrasound image, intravas-
cular ultrasound (IVUS) image, and 3D ultrasound
image. Compared with the previous synthetic images,
these clinical images contain more fruitful structure
information, such as the edges, tiny features, and uni-
form areas.
The despeckled results of these compared methods on

the real 2D liver ultrasound, IVUS, and 3D ultrasound
images are presented in Figs. 6, 7, and 8, respectively.
The proposed method reduces the speckle noise consider-
ably without losing substantial texture information and
smooths the details. As shown by the enlarged images in
Figs. 9, 10, and 11, the BNLTV filter slightly smooths the
image texture information slightly. Notably, the proposed
filter generates the most visually pleasant results. These
observations are consistent with the results obtained from
the synthetic data.
The quantitative perceptual results of NIQE scoring

are provided in Table 7. The results show that the proposed
method has the highest NIQE values for 2D liver, IVUS
and 3D ultrasound images.
Fig. 11 The representative regions corresponding to the red rectangle reg
Outputs of the compared filters, b BNLTV, c SAR-BM3D, d The proposed m
of SAR image
Discussion
The excellent despeckling performance of the proposed
filter can be attributed to the spatiogram similarity based
on symmetric KL divergence. This similarity measure-
ment is more adaptable to the complex speckle noise,
because the KL divergence can measure the difference
between two probability distributions and the spatio-
gram can consider the spatial information of the image
patches. Therefore, it demonstrates better performance
than the similarity computation based on the non-robust
Euclidean distance, because Euclidean distance uses only
the intensity information of the pixels in the patch.
Finally, the limitation of the proposed filter is that its

filtering parameters (m, p, λ, and β) are currently manu-
ally determined by experience. The optimal parameter
setting may change with noise levels and image charac-
teristics. Although the experimental results in this study
show that the proposed filter can achieve state-of-the-art
performance with experiential parameters, the automatic
determination of filtering parameters with theoretical
foundations is warranted in a future study.

Conclusion
In this paper, an adapted NLTV-based speckle filter has
been presented to despeckle the ultrasound images. The
filter exploits the spatiogram similarity based on the
symmetric KL divergence for the similarity calculation
between image patches. As a result, the performance of
NLTV is improved. The adapted filter is applied on
synthetic and real ultrasound images and then compared
with current state-of-the-art methods. The results
ion in Fig. 8a for the 3D ultrasound image. a The original image. b-d
ethod. BNLTV = Bayesian NLTV; SAR-BM3D = blocking matching 3D filter



Table 7 The NIQE values on the Liver, IVUS and 3DUS Images

BNLTV SAR-BM3D Proposed

Liver 6.86 7.58 8.25

IVUS 5.49 6.06 6.42

3DUS 8.33 7.27 9.01
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demonstrate that the proposed filter outperforms
current state-of-the-art filters with regard to ultrasound
despeckling. We believe that our method can improve
the quality of ultrasound images and has benefit effects
on visual perception and diagnostic operations.
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