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Abstract

Background: Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular
events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called
atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in
order to identify high-risk plaques, which might escape detection using conventional methods based on the
assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and
fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an
analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical
landmarks, ensuring to compare equivalent regions across different subjects.

Methods: We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is
especially useful for the understanding of complex and heterogeneous regional processes during the course of
atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity
normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster
enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge
these strategies have so far not been applied in cardiovascular molecular imaging.

Results: We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in
atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing
approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels.

Conclusions: We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic
plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences of tracer
distributions in inflamed atherosclerotic vessels.
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Background
Cardiovascular diseases are the leading cause of death
worldwide [1] and most prominently originate from
atherosclerosis, a chronic inflammation of the arterial ves-
sel wall [2]. The complex pathophysiology of atherosclero-
sis includes the accumulation of lipids, inflammatory cells
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and fibrous tissue in the arterial wall, leading to its thick-
ening. This results in the formation of so called atheroscle-
rotic plaques, which may be asymptomatic, or, if plaques
compromise the vessel lumen, leads to a hypoperfusion
(ischemia) of organs downstream of the respective artery.
Life-threatening clinical complications of atherosclerosis
mainly occur when the atherosclerotic plaque becomes
unstable (vulnerable) and ruptures, which immediately
triggers clot formation resulting in the thrombotic occlu-

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-017-0207-7&domain=pdf
http://orcid.org/0000-0001-5985-7701
mailto: robert.seifert@uni-muenster.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Seifert et al. BMCMedical Imaging  (2017) 17:36 Page 2 of 11

sion of the affected artery. As a consequence of this
event, the blood flow to an organ is suddenly termi-
nated, resulting in organ hypoxia and loss of tissues as
occurs in the major clinical scenarios myocardial infarc-
tion, stroke and peripheral vascular disease. Numerous
inflammatory processes and other mechanisms that con-
tribute to plaque vulnerability have been described [3].
There is a clinical need to develop new, non-invasive vas-
cular imaging techniques in order to identify high-risk
plaques, which might escape detection using conventional
methods based on the assessment of the luminal narrow-
ing of an artery secondary to a plaque in the arterial wall.
Such an early and non-invasive diagnosis could have a
major impact on individual treatment decisions as well as
efficiency and hence the overall survival of the population
at risk.
In this respect, molecular imaging strategies based

on fluorescent or radioactive tracers combined with
the respective imaging modalities such as fluorescence
reflectance imaging (FRI), positron emission tomography
(PET), and single photon emission tomography (SPECT)
seem well suited to assess molecular and cellular activ-
ity. Various approaches of this kind targeting vascu-
lar inflammation have been described (reviewed in [4]).
However, analysing tracer distribution in the arterial wall
of a given vessel or the entire vascular tree in whole-
body images remains a huge challenge. This is due to
(a) the complex and variable anatomy of arteries across
model systems, but also patients, (b) the thin vascular wall
(partial volume), and (c) the spill-in of signals into the
vascular wall from either the blood or tissues/organs sur-
rounding the vessel, and various other factors. To address
these issues, a precise and standardized analysis method is
required which orientates itself on anatomical landmarks,
ensuring to compare equivalent regions across different
subjects [5].
Image standardization approaches are a common

method for comparing functional images across different
subjects, like in functional magnetic resonance imaging
(fMRI) or PET data [6, 7]. This is due to the fact that Statis-
tical Parametric Mapping (SPM) image analysis is widely
used in neuroimaging research [6, 8]. Since Holmes et al.
[9] discovered the advances of permutation-based sta-
tistical testing, there have been many achievements in
non-parametric based image testing [10, 11]. Generally,
permutation-based image testing performs better than
parametric approaches [12], which explains the preference
for permutation testing in neuroimaging and for elec-
troencephalography (EEG) data. Additionally, such meth-
ods can be combined with cluster-enhancement of pixels
[13, 14]. However, to the best of our best knowledge, so
far these strategies have not been applied to cardiovas-
cular molecular imaging. We therefore propose a novel
method, Statistical Permutation-based Artery Mapping

(SPAM). Our approach is especially useful in understand-
ing the complex and heterogeneous regional processes in
the course of atherosclerosis.
We chose 2D fluorescence reflectance imaging (FRI)

data sets of tracer distribution in murine aortic vessels
as an example for the application of permutation testing
in combination with a cluster-enhancement approach to
standardized images. We demonstrate that our pixel-wise
and cluster-enhanced testing approach is feasible and use-
ful for analysingMMP tracer distributions in FRI data sets
of 13 aortic vessels.

Methods
Our novel SPAM method involves three steps, namely
standardisation, permutation, and cluster-enhancement,
for the analysis of atherosclerotic plaque formation and
tracer distribution in FRI images of murine aortic vessels.
The overall workflow of the proposed method is depicted
in Fig. 1. An anatomical overview of the analysed vessel
region is presented in Fig. 2. First, we define regions of
interest (ROIs) within the vessels for the subsequent anal-
ysis. Each region is transformed into a standardized map,
i.e. the region of the vessel is unwarped (i.e. straightened)
and its length and width rescaled to predefined values.
Furthermore, the fluorescence intensity of these maps is
normalized to improve comparability between different
subjects. To compare two different groups of subjects,
we then apply permutation testing in combination with a
cluster-enhancement method. In the subsequent sections,
we will describe each of the steps in detail. All images
depict fluorescence intensity maps, which were visualized
by application of a false colour palette.

ROI definition
To acquire comparable ROIs across all subjects, we
propose a semiautomatic approach. Although there are
automated segmentation approaches for vessel structures
(such as described in [15] and [16]), we propose a method
relying on user-defined boundary points. This allows our
method to be applied on a wide variety of different image
modalities where multiple sets of parameters or even
entirely different automated segmentation approaches
would be necessary otherwise.
At first, several boundary points are marked manually

along each of the two outer boundaries of the vessel to be
analysed. Those points are then used to retrieve the ves-
sel boundaries by performing a natural cubic spline curve
interpolation [17]. An example of this process is depicted
in Fig. 2d. Each of the two outer aortic curves is evaluated
at multiple positions, which results in a list of points along
the curve constituting a piece-wise linear approximation
of the curve, i.e. a polygonal chain. To obtain a sufficient
number of points regarding the resolution of the image,
we experimentally chose a step size of 0.1 along the spline.
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Fig. 1 Overall Workflow, containing ROI definition, unwarping & standardization and intensity normalisation for every image of the test groups.
Pre-processed map groups are then tested against each other using cluster enhanced permutations

The step size is defined in terms of the spline curve length
according to the centripetal scheme proposed by Lee [17]
and corresponds to approximately 1.88 steps per pixel or a
step size of 18μm. This results in nearly a thousand points
per curve and ensures a complete overlap of the vessel area
later on (see results section and Fig. 3a).
In the next step, we compute orthogonal line segments

from one vessel boundary curve to the other which are
later used for unwarping the vessel. For each point along
a polygonal chain A we compute its nearest neighbour
on polygonal chain B and vice versa, resulting in a set of
orthogonal line segments for each of the boundary chains.
An example showing the resulting orthogonals for both
aortic boundary curves is depicted in Fig. 2a. Combin-
ing these two sets of line segments results in instances of
crossing orthogonals (see Fig. 2b). We then aim to find a
subset of the line segments in the union of the two sets
which best represents the area within the vessel so that in
the unwarping process no information is lost, i.e. to pre-
vent holes which might originate when choosing the line
segments of the shorter boundary curve (see Fig. 2a). This

is achieved by choosing the line segments resulting from
the locally longer curve (i.e., the curve at the outside of a
bend) and switch at inflection points of the vessel if nec-
essary. At such points (or straight vessel segments) two
points are assigned to each other from both sides, i.e. they
are mutually nearest neighbours. Figure 2b depicts the
line segments between those points using the red colour.
The result of combining the sets of line segments using
the aforementioned approach is a set of orthogonal line
segments, which represents the entire area of the vessel
(see Fig. 2b). The line segments are used to generate a
medial axis (centre line) of the vessel which is defined by a
polygonal chain consisting of the centre point of each line
segment, providing length information of the vessel or its
anatomical sub parts.
Based on the set of orthogonal line segments, it is possi-

ble to choose orthogonals which define the boundaries of
anatomical regions of interest. The first and last selected
line segments thereby define the closure of the region,
providing a mask for the ROI. To improve the comparabil-
ity of the anatomical landmarks and reduce the difficulty
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Fig. 2 Schematic vessel boundaries marked as black lines in panel (a)
and (b). Lines connecting nearest neighbours of points on the first
boundary (panel a left) or the second boundary (panel a right) are
drawn as blue lines. Common orthogonals between the two curves of
the outer vessel boundaries are marked with red lines and points in
panel (b). Choosing the boundary assignment for each segment
between inflection points of the vessel separately leads to a set of
non-crossing orthogonal line segments. In the right subfigure, the red
dashed line shows the medial axis of the vessel computed from these
non-crossing orthogonals. The microscopic photograph of the
analysed aortic artery with highlighted boundaries is shown in panel
(c). The ROI used for normalization is marked in red. (AA = aortic arch,
DA = descending aorta, BA = brachycephalic artery, CCA = common
carotid artery, SA = subclavian artery). Panel d shows the Cy5.5-AF443
fluorescence image where the manually defined boundary points are
marked in white. Natural cubic spline curve interpolation of the
boundary points leads to vessel boundaries marked in bold black. The
light black line shows the medial axis of the vessel. The unwarped
aortic vessel is shown in panel (e), numbers indicate corresponding
vessel parts in panel (f) and (g). Panel f depicts the map resulting from
standardization, whereas panel g shows additional normalisation

of manually selecting corresponding sections in images
of multiple subjects, we limit the selection to the non-
crossing orthogonal line segments from the previous step.
Figure 2d shows an example of selected ROI sections using
the dotted lines orthogonal to the vessel.
For analysing aortic vessels, the anatomical ROIs are

defined as the vessel segments between the major branch-
ing points, as these may affect shear stress and are robust

to identify across subjects. The major branching points
are the aortic artery and the brachiocephalic artery, the
left common carotid artery, and finally the left subclavian
artery. Thereby homologues regions are formed that are
suitable for comparison. Making use of the automatic gen-
erated centre line, it would even be possible to split up the
sections into inner and outer curvature ROIs, taking into
account the different flow patterns.

Unwarping, standardization and normalisation
Using the orthogonal line segments and anatomical
section definition outlined above, it is now possible to
compute an intensity map along the vessel. This produces
an unwarped version of the aortic vessel, which we refer
to as map throughout the remainder of this article. To
compute the map, we first create a temporary image by
recording the image intensities along each of the orthog-
onal line segments computed in the previous step into a
separate row of a new image. To account for the varying
distance of the line segments along the vessel, we per-
form an additional correction step where the image is
stretched according to the physical length of the vessel’s
medial axis by resampling the rows using bi-cubic interpo-
lation, resulting in the actual map. An example is depicted
in Fig. 2e.
To compare maps across subjects, each map must be

standardized to a uniform length and width. Using the
information of anatomical sections, the map’s sections
are stretched to predefined lengths, again using bi-
cubic interpolation. For our example data, we specified 5
sections (A1 toA5) which were standardized to the lengths
L1 = L2 = L3 = L4 = 50 pixels and L5 = 200 pix-
els to alleviate the problem of underrepresenting certain
regions. Otherwise the aortic arch region would be rel-
atively reduced in size due to strong bending. Moreover,
each profile is scaled to a predefined width to compen-
sate for lumen narrowing. For the whole map, a uniform
width W = 40 pixels was chosen. Those parameters can
be adjusted by the user according to the specific applica-
tion. To overcome spatial inaccuracies and signal noise,
a Gaussian smoothing operation is applied to the maps.
For the initial Gaussian smoothing, the parameter σ = 3
was used. When computing the mean difference maps,
for lower values of σ , noise and artifacts are visible in
the images, while larger values lead to overly smoothed,
i.e. blurry, images. An exemplary visualization of this
parameter’s influence is shown in figure Fig. 3b.
These standardized maps can be compared to each

other, providing high anatomical accuracy. Furthermore,
each map is normalized to the subject’s mean background
signal intensity, e.g. the uninflamed left common carotid
artery (see Fig. 2c) to allow a comparison of the inten-
sitymaps. An example of the standardized and normalized
map is depicted in Fig. 2f).



Seifert et al. BMCMedical Imaging  (2017) 17:36 Page 5 of 11

Fig. 3 Panel a depicts the influence of the spline step size on the area of the vessel covered by the orthogonal line segments. The chosen step size
of 0.1 (approximately 1.88 steps per pixel or a step size of 18 μm) leads to a complete coverage of the underlying vessel area and is thus an optimal
choice for unwarping the vessel, as no image information gets lost. Panel b highlights the influence of the Gaussian smoothing σ on the mean
difference maps, which has been experimentally chosen as σ = 3. For lower values of σ , noise and artifacts become visible in the mean difference
maps, while for larger values, structures become less clear due to overly smoothing the maps

Now that comparable maps have been computed, the
following section will focus on the methodology of com-
paring those maps in a reliable way to identify statistically
significant differences between groups of subjects.

Permutation testing
A simple form of evaluating maps is to calculate an
average map over a group of subjects. To compare two
groups, a mean difference map, i.e. the difference image
of the two average maps, can be computed. However,
this method provides no statistical significance, as this
information cannot be derived directly from the differ-
ence image. To overcome this problem, groups of stan-
dardised maps can be compared by means of pixel-wise
permutation testing or cluster-wise permutation testing.
This technique is already well-established in quantita-
tive analysis of fMRI, e.g. [9, 10, 12]. The main idea of
permutation testing is to build up an H0 distribution
by randomly exchanging group labels of the measure-
ments between the two test groups [10]. If the biggest
difference between two groups is observed in the origi-
nal assignment, this difference is likely not due to random

variation [9]. Using the H0 distribution, one can check this
assumption using a test statistic [18].
Permutation tests share the benefit that only few

assumptions have to be met in order to be applicable [10].
However, one key assumption is that subjects are inter-
changeable between the two subject groups [10]. Unfor-
tunately, there are circumstances when this assumption is
not correct, such as in paired comparisons (e.g. compar-
ing two tracers in the same individuals such that there is
a pair of images for the same subject, each image in one
of the two groups). Therefore, we apply two different per-
mutation approaches, one for unpaired and one for paired
comparisons.

Unpaired permutation
For permutation testing of two unpaired groups, the mean
difference map is calculated for each of the groups. As
mentioned previously, the goal is to eliminate insignif-
icant differences, i.e. arbitrary differences that are also
present when randomly exchanging the assignment of
subjects to group A and B. This is done by sequentially
computing permutations of the group labels which are
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assigned to the images (see Fig. 4a) and calculating the
mean difference map of the groups resulting from each
permutation. For n subjects in total and k < n subjects
in one of the groups, we obtain

(n
k
)
combinations in total

[10]. Unfortunately, for large numbers of subjects, testing
of all combinations is not feasible due to the large num-
ber of combinations [18]. For instance, even a moderate
number of n = 30 subjects with a group size of k = 15
leads to over 155 ·106 combinations in total. In such cases,
it is possible to choose a random subset of permutations,
which is sometimes referred to as Monte-Carlo permuta-
tion testing [10]. In general, selecting 1000 permutations
is sufficient to obtain effective approximate permutation
tests [10]. In our implementation, we restrict the maxi-
mum number of permutations to 5000 for instances where
more combinations are possible.
The aforementioned mean difference maps lack the

information on signal scatter. A high local difference sug-
gesting a disparity might be misleading due to high signal
scatter. Therefore, for each pixel, the standard deviation
(SD) of its intensity is calculated over the mean difference
maps of all permutations and used to normalize this pixel
in each of the difference maps, i.e. the pixel’s intensity is
divided by its SD [18]. The resulting maps are referred to
as normalized difference maps for the remainder of this
section. The maximum pixel value is calculated for each
individual normalized difference map to derive a distribu-
tion of maximum values over the permutations. Thereby,
permutation testing produces its ownH0 test distribution.

Since the distribution consists of the maximum differ-
ence values (regardless of the pixel location containing
the maximum at a given permutation) it is taken account
of the multiple comparisons problem. Using the acquired
maximum difference distribution, the desired percentile
(e.g. 5%, see Fig. 4c) can be used to identify a threshold
t which is then used for thresholding the normalized dif-
ference map computed using the original labelling of the
images, i.e. the actual groups.
As the (normalized) difference maps contain signed

values, we perform the same test using the minimum
pixel value (i.e. maximum negative pixel value) on the
normalized difference maps computed from the permu-
tations, which allows us to identify significantly smaller
pixels across groups analogue to its maximum counter-
part. Some exemplary results of the whole procedure are
included in the results section.

Paired permutation
A slightly different approach is used when group A and
B are paired. In this situation, we apply the method pro-
posed by Simpson et al. [19]. Only corresponding group
members, i.e. images of the same subject, are exchanged
between groups (see Fig. 4b). If the true assignment of
group A and B is significantly different for any pixel, swap-
ping images of one subject results with high likelihood in a
less extreme maximum or minimum difference value. The
maximal amount of permutations is given by 2

n
2 . After

building the test distribution, subsequent calculations are

Fig. 4 Panel a shows all possibilities for the label exchange of four subjects and the resulting combinations. The box highlights the true assignment
of the subjects to test groups A and B. A sample maximum difference distribution is shown in panel (b). The desired 5% percentile is marked in red. It
can be used to identify a threshold t which is then used for thresholding the normalized difference map. Panel c shows the label exchange of paired
images which are acquired using the same subjects. Only images of the same subject are exchanged between groups. Light grey colour indicates
corresponding images. The box highlights the true assignment of images to test groups
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performed analogously to the paired permutation test. It
should be noted that a comparison of two tracers is made
possible using this method because of the aforementioned
normalisation of each image to a predefined background
region. Therefore, background normalized tracer images
are compared to each other.

Cluster-based enhancement
A limitation of the described permutation test is that it
explicitly ignores cooperative effects between pixels. If a
given pixel has a high value and its surrounding neigh-
bours also show a comparable signal, it is more likely
to be significant than if it is surrounded by pixels with
low signal. As pixels should not be regarded as indepen-
dent observations, it seems more suitable to perform a
cluster-based statistic rather than a pixel-wise one. A clus-
ter in this regard is a group of adjacent pixels with similar
intensities.
The Threshold-Free Cluster Enhancement (TFCE)

approach proposed by Smith and Nichols [13] aims at
solving the aforementioned problem by enhancing the
image throughmeans of adding local support by its neigh-
bourhood to a pixel. Intuitively, the method interprets the
two-dimensional image as a three-dimensional topolog-
ical surface given by the pixel intensities and enhances
local maxima of pixels in local clusters by incorporat-
ing the extent of the connected region below them (see
Fig. 5a). The cluster-enhanced value of a pixel p in the
normalized difference map is computed by evaluating the
following equation:

enhanced signal(p) =
∫ hp

h0
e(h)E · hHdh, (1)

where h0 is the lowest intensity in the image, hp is the orig-
inal intensity of p in the normalized difference map, e(h)
is the extent of the connected region under p at height
h, and E as well as H are the additional parameters of
the model. It should be noted that only locally connected

regions directly under the pixel p at height h contribute
to the enhancement so that unconnected local maxima
are ignored (see Fig. 5a). The TFCE-enhanced map is thus
not only dependent on the original signal intensity, but on
the amount of surrounding pixels that show a similar sig-
nal intensity. Therefore, TFCE supports pixels bundled to
clusters to be more likely significant (see Fig. 5b). For the
parameters E and H, the standard values 0.5 and 2 have
been used as defined by Smith and Nichols [13]. It should
be noted that the TFCE method retains local maxima
of the input image (although transforming their height)
and that an iso-contour in the original image necessar-
ily corresponds to an iso-contour in the TFCE-enhanced
image, i.e. while TFCE is a non-linear transformation, it
retains important basic features of the data [13]. In our
implementation, a finite approach is used by threshold-
ing the mean difference map at 500 levels between the
image’s minimum and maximum. At each step, the size
of a cluster containing the considered pixel is determined
and multiplied with the current thresholding height ht .
We apply the cluster-enhancement in the permutation

tests described above to each of the normalized differ-
ence maps, i.e. to the normalized difference map of each
individual permutation (as well as the original labelling
of the images). The aforementioned maximum and min-
imum distributions are thus already computed from the
TFCE-enhanced values.

Animal details and data acquisition
For our exemplary study, 13 ApoE deficient mice (Charles
River Laboratories International, Inc., Wilmington, MA,
USA) were fed a Western type diet (Altromin GmbH,
Lage, Germany; 21% fat, 19.5% casein, 0.25% cholesterol)
either for 12 (n = 6) or 17 (n = 7) weeks. At diet end,
mice were injected intravenously with 2 nmol of the
MMP photoprobe Cy5.5-AF443 [20]. Three hours past
tracer administration, animals were euthanized (anaes-
thetized by 2% Isoflurane, 0.5l O2/min), perfused using

Fig. 5 This figure highlights the function of cluster-enhancement on an artificial example signal. An exemplary point is marked in all of the panels.
Panel a demonstrates that only locally connected regions directly under the given point contribute to the enhancement. Unconnected local
maxima are ignored. Panel b shows a two-dimensional sample function expressed as a three-dimensional topological surface before and after
cluster-enhancement is applied. The enhanced map is not only dependent on the original signal intensity, but also on the amount of surrounding
pixels that show a similar signal intensity. This enhances local maxima in larger connected clusters of pixels
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a sodium chloride solution and dissected for the aortic
artery explantation. To acquire the ex vivo fluorescence
images, we employed an IVIS Spectrum Imaging System
and the Living Image Software 4.0 (Caliper Life Sciences,
Hopkinton, MA, USA).

Results
One of the crucial steps of our proposedmethod is the cal-
culation of a medial axis for unwarping the vessels to ulti-
matively obtain comparable regions of interest between
different subjects. To validate the accuracy of our medial
axis, we analyzed its position with respect to the two ves-
sel boundary curves. For each pixel of the detected medial
axis, we determined the pixels with the smallest distance
on each of the two vessel boundaries. If the difference of
those two distances is close to zero, the medial axis pixel is
in the middle of the two boundaries, which is the optimal
position. We evaluated 13 FRI data sets (see below) and
obtained a mean difference of 0.3451 pixels with a stan-
dard deviation of 0.8636 pixels. Since both of those values
are below one pixel, we can conclude that the medial axis
is generally in a good position.
In addition to validating the medial axis in terms of its

distance to the boundary curves, we performed an evalu-
ation of the step size parameter for the boundary points of
the spline curves with respect to the coverage of the vessel
area by the orthogonals. The covered vessel area for dif-
ferent step sizes can be found in Fig. 3a. The chosen step
size of 0.1 leads to a complete coverage of the underlying
vessel area and is therefore an optimal choice for unwarp-
ing the vessel, as the image information is completely
retained. Increasing the step size decreases the covered
vessel area considerably so that lower values would result
in information loss in the unwarped maps.
To evaluate our method as a whole, we used two groups

of ApoE deficient mice (n = 13 in total), which were
fed with a high cholesterol diet for 12 or 17 weeks. Both
the genotype and diet have been shown to promote the
development of atherosclerosis [21]. The MMP binding
Cy5.5-AF443 photoprobe was administered intravenously
3 h before image acquisition [20]. At the end of the diet
animals were sacrificed, aortic vessels were dissected and
ex vivo FRI images acquired. Aortic arteries were cut at
the root proximally and at the diaphragm hiatus distally.
Figure 6a shows the average maps computed from the two
groups as well as the mean difference map derived from
those average images [22]. Figure 6b shows the resulting
normalized difference map after permutation testing as
well as the thresholded difference map where the thresh-
old t has been derived from the maximum and mini-
mum distributions using the significance level α = 0.05.
Figure 6c shows the same results with the addition of the
TFCE. Note that the cluster of pixels significantly differ-
ing between group A and group B is difficult to identify

Fig. 6 Panel a shows the average maps of two test groups as well as
the mean difference map derived from those average images. The
colour maps of the two average maps are scaled to the same maxima
and minima. The arrow indicates blood flow of the unwarped and
standardized aortic artery maps. Aortic arch, descending aorta and
inner as well as outer curvature are marked. Panel b depicts the
resulting normalized difference map after permutation testing as well
as the thresholded difference map, where the threshold t has been
derived from the maximum permutation distribution using the
significance level α = 0.05. Panel c shows the same results with the
addition of the cluster-enhancement

in the normalized difference map of the first example, but
clearly visible when applying the cluster-enhancement.
The greatest difference of Cy5.5-AF443 signal between

the two diet groups (12 vs. 17 weeks) is located in the mid-
dle of the descending aortic artery. There is a significant
hotspot of MMP activity adjacent to the inner curvature
due to higher intensities of the 17 week’s average map
(p < 0.05). Additionally, the 17-week group shows more
Cy5.5-AF443 signal compared to the 12-week group in the
outer curvature of the aortic arch, but this difference is not
significant (p > 0.05).

Discussion
In the current study we present a novel method, which
we call SPAM, for analysing inflamed atherosclerotic aor-
tic vessels in order to find significant patterns of tracer
distribution in FRI images. In this respect, targeting
MMPs by tracers seems a promising approach for imag-
ing atherosclerotic plaque [23–26]. However, to evalu-
ate the chosen Cy5.5-Af443 MMP tracer or any other
tracer targeting atherosclerosis for identifying dangerous
plaques, it is mandatory to use precise and standardized
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image analysis methods. Our method enables the defini-
tion of vascular ROIs in a highly reproducible and accu-
rate manner using vessel branching points as landmarks.
This allows us to compare results across subjects to study
the development of atherosclerotic plaque and potential
tracer uptake per vascular segment.
Alternatives to ROI-based image quantification have

been published, like the combination of whole image
sets to form standardized maps [5, 6]. To display and
analyse vessel images in such a standardized manner,
unwarping is a common procedure [27–29]. While we
also apply unwarping, we use vascular branching points
in our method to transform the image into a stan-
dardized map. This overcomes the topographical image
variety consisting of positional and morphological contri-
bution [7].
We demonstrated the vessel standardization using 13

FRI images of murine aortic vessels in total. Our strat-
egy of average map generation and display provides a clear
overview of the relevant image features. There are sev-
eral other approaches to mask, refine and display vessel
segmentation volumes [30–33]. However, these lack the
possibility to test maps against each other.
The use of permutation testing provides a strong control

over alpha errors in imaging settings [12]. There are other
approaches to find significant changes between groups of
maps, like Gaussian Random Field. However, these could
lead to too liberal results due to violation of the Gaussian
Random Field assumptions [11, 12]. Adjusting the α-value
for every pixel using Bonferroni correction, on the other
hand, may lead to a too conservative result [34]. Thus, the
non-parametric permutation seems to be best suited.
Whole-map testing is especially useful as there is often

no regional distribution hypothesis for atherosclerotic
plaque. This could lead to excessive ROI definitions with
an alpha error accumulation. In contrast, our approach
enables the user to find significant patterns of plaque,
which would not be visible without it. This is demon-
strated by our data, indicating that the 17-week group
bears more Cy5.5-AF443 signal activity in the descending
part of the aorta than the 12-week group, which sets our
approach apart from the general expectation that the aor-
tic arch is a universal predisposed site of atherosclerotic
plaque formation [35]. However, further studies are neces-
sary to validate the correlation of FRI signal intensity with
atherosclerosis.
The TFCE-enhanced map enables the viewer to find the

hotspot more easily prior to the thresholding operation.
Furthermore, the distal significant cluster is bigger com-
pared to the non-TFCE result. This distal cluster is located
at the prolongation of the inner curvature which is a well
described predilection side for atherosclerosis [35].
We expect that our method will provide a useful tool

for the field of molecular imaging of atherosclerosis.

Although vessel sites prone to atherosclerotic plaque for-
mation have been described, very little is known about
the underlying biophysical parameters. This results in
a lack of a priori knowledge that would be needed
to define meaningful ROIs for specific vessel parts.
Our standardization and testing method does not need
this a priori information and is therefore able to study
atherosclerotic vessels in an unbiased manner. Moreover,
it helps to gain a deeper understanding of the underlying
biophysical parameters and thereby leads to valuable a pri-
ori knowledge for future molecular imaging approaches.
The presented method is equally applicable to image

information obtained in vivo. However, FRI images are
not easily acquired in vivo due to limitations of tis-
sue preparation and light scattering caused by adjacent
anatomical structures. Yet we do believe that suitable in
vivo data could become available soon, e.g. through highly
refined intravital multiphoton microscopy approaches.
To fine tune and validate our methodology, ex vivo data
seems to be the most robust and appropriate choice.
In future work, we will extend our method to the

analysis of three-dimensional datasets (e.g. acquired
by PET). For doing so, the specification of orthog-
onal slices through the aortic vessel must be modi-
fied to take care of three-dimensional spill-in artefacts.
The remaining parts of SPAM can easily be adjusted
to volume analysis [32, 36]. Furthermore, we want to
include more automated segmentation methods in the
ROI definition step of our workflow for specific image
modalities.

Conclusion
We propose a novel method for analysing molecular
images with regard to atherosclerosis plaque forma-
tion which is based on a semi-automatic standardisa-
tion approach in combination with permutation testing
and a cluster enhancement method. Although permu-
tation tests are already well-established in other areas,
to the best of our knowledge such methods have not
been applied to molecular image analysis so far. We
tested our method using FRI images of murine aortic
vessels in order to find recurring patterns of atheroscle-
rotic plaque across multiple subjects. In addition, we
have shown that cluster-enhanced permutation testing
is a powerful approach for finding significant differ-
ences of tracer distributions in atherosclerotic inflamed
vessels.
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