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Applying a computer-aided scheme to
detect a new radiographic image marker
for prediction of chemotherapy outcome
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Abstract

Background: To investigate the feasibility of automated segmentation of visceral and subcutaneous fat areas from
computed tomography (CT) images of ovarian cancer patients and applying the computed adiposity-related image
features to predict chemotherapy outcome.

Methods: A computerized image processing scheme was developed to segment visceral and subcutaneous fat
areas, and compute adiposity-related image features. Then, logistic regression models were applied to analyze
association between the scheme-generated assessment scores and progression-free survival (PFS) of patients using
a leave-one-case-out cross-validation method and a dataset involving 32 patients.

Results: The correlation coefficients between automated and radiologist’s manual segmentation of visceral and
subcutaneous fat areas were 0.76 and 0.89, respectively. The scheme-generated prediction scores using adiposity-related
radiographic image features significantly associated with patients’ PFS (p < 0.01).

Conclusion: Using a computerized scheme enables to more efficiently and robustly segment visceral and subcutaneous
fat areas. The computed adiposity-related image features also have potential to improve accuracy in predicting
chemotherapy outcome.

Keywords: Computer-aided detection (CAD), Quantitative image feature analysis, Prediction of chemotherapy outcome,
Clinical image markers for cancer prognosis prediction

Background
Due to the cancer heterogeneity, patient response to a
specific therapeutic treatment varies significantly. In
order to improve cancer treatment efficacy, the recent
Precision Medicine Initiative calls for developing a new
cancer treatment strategy that takes individual variability
into account [1]. This requires using effective bio-
markers to more accurately characterize patients and/or
predict clinical outcome of the patients in participation
of the targeted chemotherapy. Although many cancer
genomic biomarkers have been discovered [2], which
aim to optimally select the targeted therapies to treat
cancer patients [3], using existing biomarkers to deter-
mine a specific therapeutic treatment strategy for

individual patients remains a clinically difficult task
because 1) many biomarkers are only applicable to a
small group of patients [4, 5], 2) genomic tests are often
invasive and expensive [6] and 3) most genomic bio-
markers have lower specificity [7]. Therefore, radio-
graphic imaging tests are still important in cancer
diagnosis and prognosis assessment. However, reading
and interpreting medical images in the clinical imaging
facilities has several limitations including the large inter-
reader variability and the lack of methods to quantita-
tively assess useful image features.
In order to overcome these limitations, developing

new quantitative image feature analysis methods to in-
crease the discriminatory power in predicting cancer risk
and prognosis has attracted wide research interest and
efforts recently [8–10]. For example, using the new con-
cept of “Radiomics,” some researchers believed that one
can use the quantitative image features computed from
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medical images including computed tomography (CT)
and magnetic resonance imaging (MRI) to build new
predictive models to phenotype gene-protein signatures
and/or genomic biomarkers. As a result, using quantita-
tive feature analysis has potential to produce new clinical
markers to better assist cancer diagnosis and prognosis
assessment [11, 12]. However, a prerequisite of develop-
ing a reliable quantitative image feature analysis ap-
proach is developing an accurate automated image
segmentation scheme, which remains a challenging task.
Although researchers have previously developed and
tested many different computerized schemes to detect
and segment different types of suspicious lesions or ana-
tomic structures depicting on different types of medical
images, selecting and/or applying which segmentation
algorithms depends on the specific application tasks.
Recently, much research effort has been spent on the

development of image processing based clinical decision
support systems. For example, we previously investigated
the feasibility of applying quantitative image feature ana-
lysis methods to identify image markers for assisting
prediction of prognosis and treatment efficacy of several
different types of cancers, which include breast [13],
lung [14], and ovarian cancer patients [15, 16]; Ramirez
et al. tested an image parameter selection and support
vector machine based framework for improving early
detection of Alzheimer’s disease [17]; Olsen et al. devel-
oped an image-processing based system to enable dental
caries detection [18]. In existing image based decision
support systems for prognosis and treatment assessment
of ovarian cancer, all of the previous studies only com-
puted image features from the segmented tumors from
either CT or MR images. For example, Qiu et al. ex-
tracted image features related to tumor volume, density
and variance for predicting clinical benefit of treating
ovarian cancer at early stage [15]; Tan et al. applied a
B-spline based image registration process to identify or
track tumor changes and assess treatment response [16].
However, besides tumor-related image features, the
patients’ overall health condition and other non-tumor
related image features may also be important to indicate
how the patients will respond to (or receive benefit or
not from) the chemotherapy. For example, angiogenesis
played a fundamental role in the pathogenesis of epithe-
lial ovarian cancer (EOC) with higher vascular endothelial
growth factor (VEGF) expression. It promotes tumor
growth, ascites and metastasis [19]. Thus, a bevacizumab-
based therapy that targets the angiogenesis-specific
pathways has been developed and tested to treat EOC
patients in the clinical trials [20–22], which indicated that
some EOC patients received benefit with increased
progression-free survival (PFS) or overall survival (OS)
[21], while some others did not receive any benefit with
shorter PFS and OS [20]. Because of the high toxicity and

other harmful side effects of using bevacizumab-based
chemotherapy [23], it is important to rationally select who
are most likely to receive the benefit from bevacizumab or
other antiangiogenic therapies among the EOC patients
[24]. Among the image feature based clinical markers, a
recent study has shown that the ratio of visceral fat areas
(VFA) and subcutaneous fat areas (SFA) has been recog-
nized as potentially useful features to predict clinical out-
come of bevacizumab-based chemotherapy [25]. However,
manually segmenting VFA and SFA in a large number of
CT image slices is quite tedious and often inconsistent
due to the intra- and inter-reader variability.
In order to overcome the difficulty of manual segmen-

tation and improve consistency and efficiency of SFA
and VFA segmentation, we proposed and developed a
new computer-aided image feature analysis scheme to
automatically segment and quantify the entire volume of
the VFA and SFA computed from the abdominal CT im-
ages of the EOC patients. We compared the correlation
between the fat areas (VFA and SFA) segmented by the
automated scheme on volumetric CT image data and a
radiologist on one selected CT image slice of each test-
ing case. In addition, to test the potential clinical utility
of applying this automated scheme to predict prognosis
or treatment efficacy of the EOC patients based on new
quantitative image feature analysis method, we also built
two logistic regression models using the image features
computed from the segmented VFA and SFA and assess
the feasibility of applying the new computerized scheme
to identify and/or select EOC patients who are most
likely to get benefit from receiving the bevacizumab-
based chemotherapy.

Methods
In this study, a retrospectively collected image dataset
that involves CT images of 32 patients was assembled
based on our Institutional Review Board (IRB) approved
data collection and study protocol. All patients were
diagnosed and treated with advanced Stage III and IV
epithelial ovarian cancer (EOC) in our University
Medical Center. For each patient, the contrast enhanced
perfusion CT image scans were performed post the
primary cyto-reductive surgery and prior to the chemo-
therapy initiation. All the perfusion CT images were
scanned and produced using a GE LightSpeed VCT
64-detector or a GE Discovery 600 16-detector CT
machine. As an established testing protocol in our
University Medical Center, X-ray power output of the
CT machine was set at 120 kVp and a variable range
from 100 to 600 mA depending on body size of the
patient. In each examination, 100 cc contrast agent of
Isovue 370 was intravenously injected using a standard
power injector with a rate of 2-3 cc/second before start-
ing CT image scanning.
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As a standard procedure, each patient also received
chemotherapy of bevacizumab (175 mg/kg) plus pacli-
taxel (175 mg/m2), and plus carboplatin AUC 6 with a
follow-up maintenance bevacizumab. In addition, we
collected the PFS and OS data of all 32 patients in the
dataset. Among these patients, mean age is 59.5 years
old, mean weight is 70 kg along with a mean body mass
index (BMI) of 26.1, and the median PFS and OS were
28.9 and 40.8 months, respectively.
For each of the EOC patients, perfusion CT was per-

formed to scan from lung to pelvis, which crosses the
entire abdomen region (as illustrated in Fig. 1). In each
case, an upper and a lower boundary were manually
placed to mark and select a CT scanning range in the
entire abdomen scanning region. The upper bound of
the selected CT image slices is just located below the
lung area, while the lower bound of the region is just
placed above the umbilicus level of a patient.
We then developed and applied a computer-aided

image processing scheme to (1) detect and segment vis-
ceral fat area (VFA) and subcutaneous fat area (SFA) on
the masked or selected abdominal CT image slices, and
(2) compute volumes of VFA and SFA, as well as the fat
density distribution related image features. Figure 2
shows a flow diagram of our computer-aided scheme in
detecting and segmenting VFA and SFA with the follow-
ing four image processing steps.
First, the scheme was used to detect and segment a

body trunk region from the background including air
and CT bed depicting on each CT image slice as shown
in Fig. 3a. This was done using a previously developed
and tested algorithm of automated CT image segmenta-
tion [26]. In this method, an operating threshold of −140
HU (determined by previous experiments) is applied to
generate a body trunk related mask. Using this thresh-
old, the scheme scans the images from four edges of the
CT image slice line-by-line in four different directions

namely, from top to bottom, from bottom to top, from
left to right, and from right to left, to determine the
pixels of the mask boundary. Specifically, in each linear
scan, the scheme scans each pixel along the line and
keeps moving forward until it hits a pixel, which has a
HU value greater than the predetermined threshold. The
scheme then defines this pixel as a boundary pixel of a
body trunk mask and the scan along this line stops.
Once the body trunk mask was defined (as shown in
Fig. 3b, it is straightforward to apply this mask on the
CT image slice to segment the body section and remove
other air background and CT bed sections from the
image slice (Fig. 3c).

Fig. 1 Illustration of CT image scanning range (between two horizontal bars) selected by the CAD scheme to segment VFA and SFA and
compute the corresponding image features

Fig. 2 A flowchart of a CAD scheme for segmenting SFA and VFA
on CT images
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Second, since CT numbers of the fat pixels range
from −140 HU to −40 HU as defined in the previous
study [27], these two values are used by the scheme as
two operating thresholds to define and segment the
body region within the body trunk mask placed on the
CT image. The scheme then generates two new masks
to cover the fat and non-fat regions as represented by
white pixels in Fig. 3d and e, respectively.
Third, in attempt to detect between VFA and SFA

regions, the scheme applies several image processing
algorithms to the non-fat region mask and then produces
a new visceral region mask [28]. As shown in an example
of Fig. 4, a 4-pixel connected labelling algorithm was ap-
plied to the non-fat region mask. The scheme removes the
connected regions with sizes smaller than a predefined
threshold (e.g., 200). As a result, all small and isolated
pixels located inside the SFA region were discarded. The
scheme then applies a morphological dilation operation
with a spherical kernel to the non-fat image region. This
process breaks the potential connection between SFA and
VFA regions in some CT slices. Last, the scheme creates a
visceral region mask by performing a hole-filling algo-
rithm to cover all non-fat structures after a morphological
erosion operation (e.g., Fig. 4d).
Fourth, the scheme defines (1) a VFA mask by perform-

ing an “AND” logic operator between the fat region mask
(e.g., Fig. 3d) and the visceral region mask (e.g., Fig. 4d)
and (2) a SFA mask by performing another “AND” logic
operator between the fat region mask and body truck
mask (e.g., Fig. 3c minus the visceral region mask). After

completing the above image processing steps, the scheme
is able to classify all image pixels in fat region mask as
either the subcutaneous fat pixels or the visceral fat pixels.
Last, these four image processing steps are iteratively

performed on all CT slices in the preselected abdominal
section of each patient. Our computer-aided scheme was
applied to process all 32 cases in our dataset to detect
and segment VFA and SFA regions. Although in many
previous studies, the manually traced segmentation re-
sults were often used as “ground truth” to evaluate ac-
curacy of the automated segmentation, the manually
traced boundaries typically suffer from significant inter-
reader variability and results in the lower reproducibility
[29]. To balance this limitation, we took two approaches
and two criteria to evaluate segmentation accuracy of
our CAD scheme. First, for each case, SFA and VFA
were also manually segmented and measured by a radi-
ologist on one cross-sectional CT image slice visually se-
lected at the umbilicus level using the previous standard
method reported in the literature [27]. We then com-
puted the correlation coefficient between the manually
segmented SFA/VFA and CAD-segmented/measured
SFA/VFA, which is the first evaluation criterion used in
this study. Second, since we recognized that the
“ground-truth” provided by one radiologist may not be
reliable, our ultimate goal is to assess whether we can
use quantitative fat or adiposity-related image features
that are computed from the automatically segmented
VFA and SFA to predict prognosis or clinical outcome of
the patients in participation of the targeted chemotherapy.

Fig. 3 An example of applying our CAD scheme to segment a CT image slice. a An original CT image, b a CAD-generated body trunk mask,
c segmented body region, d a CAD-generated fat region mask, and e a CAD-generated non-fat region mask
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Therefore, our second evaluation criterion is the accuracy
of predicting clinical outcomes of the patients using the
computed fat image features.
Thus, to predict clinical outcome of the patients, we ap-

plied our computer-aided scheme to compute seven image
features from the entire segmented CT image slices,
which include (1) the ratio (or percentage) of either VFA
or SFA volumes as comparing to the whole body volume
(size) computed from all scheme-processed CT image
slices in the targeted abdominal section, (2) the mean and
standard deviation of the CT HU number (pixel value) of
the VFA and SFA, and (3) the ratio between the seg-
mented volume between SFA and VFA. In summary, com-
bining with the pre-measured body mass index (BMI) of
each patient, we built an image feature pool that includes
eight features: f 1 – BMI, f 2 – Ratio between SFA and the
whole body size; f 3 – Ratio between VFA and the whole
body size; f 4 – Mean CT number of the segmented SFA
volume; f 5 – Standard deviation of the CT number of all
SFA-related pixels; f 6 – Mean CT number of the seg-
mented VFA volume; and f 7 – Standard deviation of the
CT number of all VFA-related pixels.
Next, we applied logistic regression approaches or

models that combine BMI and the computed quantita-
tive features to predict patient’s clinical outcome (PFS or

OS). Since a logistic regression based statistical classifi-
cation model can use or combine two or more continu-
ous variables (or features) to generate binary outcomes
that indicate which class the observations (or test sam-
ples) belong to [30], we in this study built and optimized
two multiple logistic regression classifiers or models to
predict PFS and OS of the EOC patients, respectively.
For this purpose, PFS and OS values of 32 patients were
divided into two classes by using the median PFS and
OS value of these 32 patients as the threshold. Two clas-
ses then indicate “long” and “short” survival (for both in-
dices of PFS and OS). Specifically, we divided 16 cases
into “long” survival and 16 cases into “short” survival
classes based on the actually clinical outcome data of
these 32 patients. Then, a logistic regression based stat-
istical prediction model was trained and performed to
classify these 32 testing cases into these two “long” and
“short” survival classes based on the scheme (or model)
generated prediction scores.
In order to identify optimal feature set and eliminate

un-correlated features to build each model, we applied a
Sequential Forward Floating Selection (SFFS) [31] fea-
ture subset selection algorithm to identify and select the
feature subset with high discriminatory power. In order
to minimize the training bias of the logistic regression

Fig. 4 Illustration of defining a visceral region mask, a A mask of non-fat area, b after removing the small and isolated regions using a pixel
labeling algorithm, c after a morphological dilation operation, and d a mask to cover the entire visceral region
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model, the model performance was trained and tested
using a leave-one-case-out (LOCO) based cross-validation
method [32]. Specifically, in each model training and test-
ing iteration, the scheme selects 31 cases to train the
model and uses one remaining case to test the remaining.
SFFS was performed on the training cases to select a sub-
set of features and logistic regression was optimized using
these selected features. The evaluation index used in this
training and testing process is an area under a receiver
operating characteristic (ROC) curve (AUC), which is
computed using a maximum likelihood data analysis based
ROC curve fitting program (ROCKT, http://metz-roc.
uchicago.edu/MetzROC/software, University of Chicago).
After building an optimal prediction model, we compared
the classification accuracy to a null binomial distribution
B(η, ρ) and investigated the significance of the classifica-
tion performance over a random guess level. Here η is the
total observations and ρ is a random guess accuracy (i.e.
0.5). Meanwhile, the classification or prediction accuracy
after adding image features was also compared with that
using BMI feature only.

Results
Figure 5 shows two images that are marked with the seg-
mented VFA and SFA regions depicting on two abdom-
inal CT image slices of interest, which are acquired from
two EOC patients in which one patient has substantially
higher SFA ratio (a) than another patient (b). Figure 6
shows two scatter plots of the manually segmented SFA/
VFA volumes (in cm2) and the CAD-segmented/mea-
sured SFA/VFA percentage (in %) among all 32 cases in
our dataset. The computed correlation coefficients
between manual and automated data are 0.886 for SFA
and 0.726 for VFA, respectively, which shows a relatively
higher correlation of the SFA and VFA segmented
between a radiologist and our CAD scheme.
Table 1 summarized the performance of applying the

two logistic regression based statistical prediction models

to classify the EOC patients in our dataset into two classes
of “long” and “short” survival based on the known clinical
outcome criteria of both PFS and OS of the patients. It
demonstrated that the classification accuracy of PFS was
significantly greater (p < 0.01) than a binomial null distri-
bution with chance level (i.e. 0.5) accuracy, while the dif-
ference is not significant for the logistic regression model
used to predict OS. Table 2 ranked the importance of the
features for predicting PFS according to their frequencies
of being selected by SFFS in the LOO process. It shows
that quantitative features were more frequently selected
by SFFS and thus possibly more discriminative for
predicting PFS than BMI.
Table 3 includes and compares two confusion matrixes

when using (1) BMI and (2) quantitative features
selected by SFFS. When using BMI, 18 of 32 cases were
predicted or classified into the correct classes with an
overall classification accuracy of 56.3 %. Both positive
and negative predictive values are 56.3 % (9/16). After
building a logistic regression model using SFFS-selected
image features, the overall new model classification
accuracy increased to 87.5 % (28/32), which represents a
55.6 % increase as comparing to using BMI only. The
results show that the feasibility of using the computed
quantitative image features to provide valuable supple-
mentary or complementary information to help increase
accuracy in predicting or assessing clinical outcome of
the patients treating with chemotherapy.

Discussion
Identifying quantitative image feature based clinical
markers that correlate well with the patients’ clinical
outcome is important to establish an optimal personal-
ized cancer treatment strategy and/or develop precision
medicine in the future. For this purpose, many studies
have been performed by a number of research groups
including our group to explore, identify and compute
different image feature analysis based clinical markers

Fig. 5 Two examples showing the segmentation of VFA and SFA in four CT image slices. In these two images, SFA is shown in light gray color,
VFA is represented by white color, and dark gray color masks other human organs and/or structures
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[13–18]. This study is different from the previous studies
in this field (e.g., Radiomics). We demonstrated that the
image features computed from non-tumor regions could
also provide important and/or supplemental information
to assist predicting response of cancer patients to the
chemotherapy. Although this study only predicted
whether the EOC patients can benefit from receiving the
bevacizumab-based chemotherapy, the new computer-
aided image processing scheme provides a new quantita-
tive image marker that is also applicable to analyze PFS
or OS of EOC patients without receiving maintenance
bevacizumab therapy [33] and/or many other different
types of cancer patients underwent similar chemother-
apy because the angiogenesis and/or vascular endothelial
growth factor (VEGF) expression play a fundamental
role in the pathogenesis of many types of cancers. Thus,
accurately or quantitatively assessment of SFA and VFA
is important to determine whether and how the cancer
patients should be optimally treated using bevacizumab
or other against angiogenesis related chemotherapy.
Since accurate SFA and VFA segmentation is the first

step to develop a reliably quantitative image feature ana-
lysis approach, which will determine the accuracy of the
computed image features as well as the final model pre-
diction results, we developed a simple, computationally
efficient and robustly performed scheme to segment SFA
and VFA from the volumetric CT image data. Our

scheme applies four image processing steps based on the
modified region growing algorithms to define a number
of corresponding masks that cluster and classify the
pixels of each CT image slice into four categories
namely, (1) outside the body, (2) SFA, (3) VFA and (4)
other human internal organs. We applied this automated
image segmentation scheme to all 32 cases in our data-
set and visually examined the segmentation results. We
did not visually identify any significant segmentation er-
rors in this dataset. We also asked an experienced radi-
ologist to manually segment/trace the SFA and VFA
boundary on one CT image of each case using the
method reported in the literature [25]. We then com-
puted and compared the correlation coefficients between
the manual and automated segmentation results in both
SFA and VFA. The relatively higher correlation as shown
in Fig. 6 indicates that automated scheme could be used
to replace the manual segmentation. Although due to
the lack of accurate “ground-truth,” it is often difficult to
evaluate the absolute region segmentation accuracy of
using an automated scheme, using the computer-aided
image segmentation scheme has several advantages to

Fig. 6 The scatter plot of the manually and automatically segmented SFA or VFA

Table 2 Rank of features according to the frequencies of being
selected by SFFS for predicting PFS

Feature ID Frequency of Selection

f2 23/32

f6 8/32

f3 2/32

f4 2/32

f1 0/32

f5 0/32

f7 0/32

Table 1 Summary of performance in classifying the two classes
of “longer” and “shorter” survival using the multiple logistic
regression models

Clinical
Outcomes

Prediction
accuracy

p-value over
null hypothesis

AUC 95 % confidence
interval

PFS 0.875 9.65 × 10−6 0.827 (0.634,0.938)

OS 0.531 0.43 0.505 (0306,0.702)
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yield high efficient and also avoid inter-reader variability.
In another aspect, changes of parameters in the segmen-
tation model only affect the segmentation results of a
small percentage of selected CT slices. As a result, meas-
urement from multiple CT slices may provide more
robust and accurate results than from a single CT slice.
We also tested the performance of using a number of

image features computed from the automatically seg-
mented SFA and VFA regions from CT images to classify
the patients into the “long” and “short” survival class
groups after receiving the bevacizumab-based chemother-
apy. We applied a simple logistic regression based statis-
tical data analysis method to build prediction models and
demonstrated that the model-prediction scores have a sta-
tistically significant association with the PFS of the EOC
patients. It is also quite encouraging to observe from the
study results that using the computed SFA and VFA image
features yielded substantially higher prediction accuracy
than using BMI (as shown in Table 3). Since BMI is com-
puted from height and weight from the patients and is the
most commonly used measurement of adiposity in current
clinical practices, our results demonstrated that the quan-
titative features may provide supplementary and useful
information other than BMI. This is a more important evi-
dence to support the potentially clinical utility of applying
our CAD-based automated SFA and VFA segmentation
scheme. Using the CAD scheme, we are able to compute
not only the size or volume of SFA and VFA similar to the
previous manual method [25], and also other related
image features (i.e., the CT number distribution, which re-
lates to the heterogeneity of the SFA and VFA). This is
also an importantly potential advantage of developing and
applying our CAD scheme.
Despite the promising results, this is a preliminary

study with several limitations. First, the dataset size is
small and CT images were collected from a single
medical institution (or a single CT imaging acquisition
protocol). Thus, the 95 % confidence intervals of the
AUC values as shown in Table 1 are relatively large. To
overcome this issue, further studies and better cross-
validation using the new independent datasets are
needed before this computer-aided image processing
scheme can be accepted and integrated into the
advanced quantitative image feature analysis schemes to
more accurately predict clinical outcome of EOC patients

underwent bevacizumab or other types of chemotherapy.
Second, the selection of multiple CT slices belonging to
abdomen part was manually processed, which was time-
consuming and may introduce inter and intra reader vari-
ability. Therefore, further studies will focus on developing
automated framework for CT slices selection. Third, due
to the limited dataset, the scheme-generated classification
scores only significantly associate with PFS, but not OS of
EOC patients receiving maintenance bevacizumab based
chemotherapy in this study. Further efforts (e.g. extract
more features or collect a larger dataset) are required to
validate whether OS is significantly related to adiposity
characteristics of EOC patients.

Conclusion
In this study we developed and applied a new computer-
aided image segmentation scheme to segment SFA and
VFA regions from the volumetric CT image data. We also
trained and tested logistic regression models to combine a
number of quantitative image features computed from the
segmented VFA and SFA regions. Using the leave-one-
case-out cross-validation method, our experimental results
showed that using this new computer-aided scheme or pre-
diction model enabled to generate a new radiographic
image feature marker, which could help more accurately
predict which EOC patients are most likely to benefit from
receiving maintenance bevacizumab-based chemotherapy
than using the traditional BMI based approach. Meanwhile,
we also recognized the limitations of this study and identi-
fied future research tasks or directions. In summary, we be-
lieve that this is a valid technology development study,
which demonstrated the feasibility of developing and pro-
viding clinical researchers a new computer-aided image
processing tool to quantitatively assess a potentially import-
ant radiographic image-marker and investigate its associ-
ation with clinical outcome of cancer patients underwent
variety of chemotherapy treatment.
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