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Abstract

Background: Magnetic Resonance Imaging (MRI) is a crucial medical imaging technology for the screening and
diagnosis of frequently occurring cancers. However, image quality may suffer from long acquisition times for MRIs due
to patient motion, which also leads to patient discomfort. Reducing MRI acquisition times can reduce patient
discomfort leading to reduced motion artifacts from the acquisition process. Compressive sensing strategies applied
to MRI have been demonstrated to be effective in decreasing acquisition times significantly by sparsely sampling the
k-space during the acquisition process. However, such a strategy requires advanced reconstruction algorithms to
produce high quality and reliable images from compressive sensing MRI.

Methods: This paper proposes a new reconstruction approach based on cross-domain stochastically fully connected
conditional random fields (CD-SFCRF) for compressive sensing MRI. The CD-SFCRF introduces constraints in both
k-space and spatial domains within a stochastically fully connected graphical model to produce improved MRI
reconstruction.

Results: Experimental results using T2-weighted (T2w) imaging and diffusion-weighted imaging (DWI) of the
prostate show strong performance in preserving fine details and tissue structures in the reconstructed images when
compared to other tested methods even at low sampling rates.

Conclusions: The ability to better utilize a limited amount of information to reconstruct T2w and DWI images in a
short amount of time while preserving the important details in the images demonstrates the potential of the
proposed CD-SFCRF framework as a viable reconstruction algorithm for compressive sensing MRI.
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Introduction
Magnetic Resonance Imaging (MRI) is a medical imaging
technology that is currently used for diagnostic imag-
ing of a wide range of diseases. In particular, since MRI
does not use ionizing radiation, it has become a crucial
imaging modality for screening frequently occurring can-
cers such as prostate cancer in men, breast cancer in
women, as well as lung and colorectal cancer for both
men and women. In 2015, 196,900 new cases of cancer
(excluding non-melanoma skin cancers) were expected,
with 51 % of these belonging to the four aforemen-
tioned types of cancer in Canada [1]. As such, cancer
screening methods with accurate and reliable informa-
tion such as MRI is highly desired. Of particular interest
for cancer screening is multi-parametric MRI (MP-MRI)
since more information can be acquired through different
modalities. MP-MRI contains different techniques such
as diffusion weighted imaging (DWI), correlated diffu-
sion imaging (CDI) [2–4], dynamic contrast enhancement
(DCE), T2-weighted (T2w) imaging, and T1-weighted
(T1w) imaging [5]. Although this approach provides a
more complete information, acquisition times are signif-
icantly longer which causes more patient discomfort and
motion artifacts that decrease image quality. As a result,
newmethods to improveMRI acquisition times are highly
desired to facilitate for reliable MP-MRI data acquisition.
Compressive sensing has been demonstrated to be an

effective strategy for reducing MRI acquisition times by
acquiring significantly fewer samples in k-space. A com-
plete signal can then be fully reconstructed through
sparse, yet sufficient number of samples [6–8]. In MRI,
compressive sampling strategies have been demonstrated
to be highly effective at reducing acquisition time while
maintaining image quality as different types of tissue
structure have been shown to be sparse in certain
domains [9]. Furthermore, different techniques have been
proposed to improve the imaging process [10] as well as
the reconstruction process [11–23] in compressive sens-
ing. Due to the limited amount of data available through
compressive sensing, advanced reconstruction algorithms
are required to produce high quality and reliable images.
Different methods have been proposed for sparse recon-

struction of compressive sensing MRI [11–23]. As a
notable example, Block [14] proposed an iterative image
reconstruction technique using a modified total variation
(TV) constraint [20, 21] for sparse reconstruction of com-
pressive sensing brain MRI. Trzasko [15] introduced a
homotopic l0 minimization method for the sparse recon-
struction of compressive sensing spinal MRI. Wong [12]
extended upon this idea and proposed a regional sparsi-
fied domain for the sparse reconstruction of breast MRI.
A similar technique was also demonstrated by Qu using
combined sparsifying transforms and smoothed l0 norm
minimization [13], where they showed that the use of

combined transforms can improve image quality com-
prised of the reconstructed images from compressive
sensing MRI when compared to methods using a single
sparsifying transform. However, the downside of the l0
norm minimization is the fact that its performance sig-
nificantly depends on the tuning parameters where these
tuning parameters can greatly affect the convergence rate
of the algorithm. Other ln optimization techniques such as
the standard l2 (least squares) minimization can have high
error rates as reported in [24].
An area that is little explored but can reap significant

potential benefits is the application of random field mod-
eling for improved sparse reconstruction of compressive
sensingMRI. Random field modeling such asMarkov ran-
dom fields (MRF) [25, 26] and conditional random fields
(CRF) [27] have long been shown to be powerful tools
for incorporating spatial context within a probabilistic
graphical modeling framework, which can have significant
benefits for reconstructing images from sparse measure-
ments. Despite powerful modeling capabilities and poten-
tial benefit to sparse reconstruction, one of the biggest
hurdles in leveraging random field models for compres-
sive sensingMRI is the fact that all MRImeasurements are
made in k-space, whereas the images are reconstructed
in spatial domain. As the majority of random field mod-
els are typically modeled in a single domain, such models
cannot be used directly for the purpose of sparse recon-
struction of compressive sensing MRI. This is further
complicated by the fact that the MRI measurements in k-
space are sparse and incomplete, which make it difficult
to leverage existing random field models for this problem.
Therefore, a probabilistic graphical modeling framework
that can consolidate the fact that partial measurements
are made in a domain different than the desired states of
the reconstruction images is needed to truly leverage the
power of random field modeling for sparse reconstruction
of compressed sensing MRI.
This paper proposes a cross-domain Stochastically

fully connected conditional random field (CD-SFCRF)
approach for the reconstruction of compressive sensing
MRI at below Nyquist sampling rates [28]. Inspired by the
stochastic cliques method presented in [29], the proposed
cross domain model is a significant extension upon this
method by consolidating two different domains of spa-
tial domain and k-space specifically for MRI compressive
sensing. CD-SFCRF framework introduces constraints in
both k-space and spatial domains within a stochastically
fully connected graphical model to produce improved
MRI reconstruction. The proposed CD-SFCRF frame-
work has the ability to utilize spatial and data driven
consistencies in the spatial domain along with data driven
consistencies in the k-space domain pertaining to sparse
measurements while maintaining edge features and struc-
tural details in the reconstructed images. Phantom MRI
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data as well as prostate MRI data captured using T2w
and DWI imaging modalities, which also yields appar-
ent diffusion coefficient (ADC) map images, were used to
illustrate the efficacy of the proposed CD-SFCRF frame-
work for sparse reconstruction of compressive sensing
MRI. To the best of the authors’ knowledge, this is the first
time that constraints in both k-space and spatial domains
are used in conjunction within a stochastically fully con-
nected graphical model for the sparse reconstruction of
compressive sensing MRI, which is the main contribution
of this paper.
The paper is formatted as follows. The method-

ology behind the proposed CD-SFCRF framework is
described in Section “Methodology”. The experimen-
tal setup is described in Section “Experimental setup”.
Results and discussions are presented and discussed in
Sections “Results” and “Discussion”, respectively. Finally,
the conclusion is presented in Section “Conclusions”.

Methodology
In MRI, measurements are made in the k-space [30],
with the lower frequency coefficients in the k-space con-
taining coarse-grained contrast information while higher
frequency coefficients contain fine-grained image detail
information. The MRI measurements from the k-space
are transformed into the spatial domain to form the recon-
structed MRI image. Most compressive sensing strate-
gies [6, 15] sparsely sample the k-space to reduce image
acquisition time significantly. Therefore, to fully utilize
available information in the reconstruction process, data-
driven constraints in the k-space domain and data and
spatial driven constraints in the spatial domain would
be highly beneficial in improving image reconstruction
quality from compressive sensing MRI.
Motivated by this, the proposed cross-domain stochas-

tically fully connected conditional random field (CD-
SFCRF) introduced here for the purpose of sparse
reconstruction of compressive sensingMRI, extends upon

the seminal work on stochastically fully connected con-
ditional random fields (SFCRF) first proposed in [29] to
facilitate for this cross-domain optimization. SFCRFs are
fully-connected conditional random fields with stochas-
tically defined cliques. Unlike traditional conditional
random fields (CRF) where nodal interactions are deter-
ministic and restricted to local neighborhoods, each node
in the graph representing a SFCRF is connected to every
other node in the graph, with the cliques for each node
is stochastically determined based on a distribution prob-
ability. Therefore, the number of pairwise cliques might
not be the same as the number of neighborhood pairs as
in the traditional CRF models. By leveraging long-range
nodal interactions in a stochastic manner, SFCRFs facil-
itate for improved detail preservation while maintaining
similar computational complexity as CRFs, which makes
SFCRFs particularly enticing for the purpose of improved
sparse reconstruction of compressive sensing MRI. How-
ever, here the problem is to reconstruct an MRI image
in the spatial domain while the available measurements
are made in k-space domain. Similar to most CRF mod-
els, SFCRFs cannot be leveraged directly for this purpose.
Motivated by the significant potential benefits of using
SFCRFs in improving reconstruction quality of compres-
sive sensing MRI, we extend the SFCRF model into a
cross-domain stochastically fully connected conditional
random field (CD-SFCRF) model that incorporates cross-
domain information and constraints from k-space and
spatial domains to reconstruct the desirable MRI image
from sparse observations in k-space.
The theory pertaining to sparse reconstruction via a

cross-domain stochastically fully connected conditional
random field model is detailed in Appendix 1.

Implementation
An implementation of the proposed CD-SFCRF
framework for the purpose of sparse reconstruction from
compressive sensing MRI is illustrated in Fig. 1. Here,

Fig. 1 Optimization framework of the proposed CD-SFCRF framework for sparse reconstruction from compressive sensing MRI



Li et al. BMCMedical Imaging  (2016) 16:51 Page 4 of 12

an iterative gradient descent optimization approach is
employed, and can be described as follows. First, the
original compressive sensing MRI data in k-space is
transformed to the spatial domain to provide an initial
estimate of the reconstructed image. Second, the gradient
of the unary and pairwise energy potentials is computed,
where the unary data driven consistencies with respect to
the original observations are enforced in the k-space, and
spatial and data driven consistencies are enforced in the
spatial domain. Third, the estimate of the reconstructed
image is updated based on the previous estimate and the
computed gradient. The second and third steps of this
process are repeated until convergence.

Experimental setup
To study the efficacy of the proposed CD-SFCRF method
for the purpose of sparse reconstruction of compressive
sensing MRI, experiments were performed including: i)
MRI data acquired of a MRI training phantom, and ii)
prostate MP-MRI data of 20 patient cases. A detailed
description of the phantom data, patient data, and MRI
image acquisition procedure to facilitate for the various
experiments are described below.

Phantom data
The MRI training phantom used in the experiments,
shown in Fig. 2, was a multi-modality prostate training
phantom from Computerized Imaging Reference Systems
Inc (CIRCS MODEL 053). The phantom is composed of a
clear acrylic container with dimensions 11.5×7.0×9.5 cm
with a front probe opening of 3.2 cm diameter and a rear

Fig. 2 Example slice of the prostate training phantom from
Computerized Imaging Reference Systems Inc (CIRCS MODEL 053)
used for evaluation purposes

probe opening of 2.6 cm diameter. The prostate is com-
posed of high-scattering Blue Zerdine with dimensions
5×4.5×4.0 cm and is placed in a background gel similar to
water with little backscatter attenuation (≤ 0.07 dB/cm−
MHz). Within the prostate, there are 3 randomly placed
lesions of sizes between 0.5 − 1.0 cm placed hypoechoic
to the prostate. The urethra and rectal wall are made
of low scattering Zerdine with diameter of 0.7 cm with
dimensions 6 × 11 × 0.5 cm, respectively. This phantom
was imaged with an inflatable Medrad eCoil ERC using
DWI. The DWI MRI was acquired by a 3T GE Discovery
MR750. DWI was collected at b = 0 mm2/s at 3-NEX2.
For the DWI data, the echo time (TE) was 71.70 ms and
repetition time (TR) was 10, 000.00ms.

Patient data experiments
To test the efficacy of the proposed CD-SFCRF framework
within a real clinical scenario, MRI data of 20 patients
(17 with cancer and 3 without cancer) were acquired
using a Philips Achieva 3.0T machine at Sunnybrook
Health Sciences Centre, Toronto, Ontario, Canada. All
data was obtained retrospectively under the local insti-
tutional research ethics board (Research Ethics Board of
Sunnybrook Health Sciences Centre). For each patient,
the followingMP-MRImodalities were obtained (Table 1):
T2w and DWI. The patients’ age ranged from 53 to 83.
Table 1 summarizes the information about the 20 patients’
datasets used in this study, which includes displayed field
of view (DFOV), resolution, echo time (TE), and repeti-
tion time (TR).

Compressed sensing configuration
In order to evaluate the efficacy of the proposed CD-
SFCRF framework at different sample rates, we first
acquired MRI measurements at all k-space coefficients.
Based on this fully-sampled set of k-space measurements,
sparse sampling was then conducted using radial sampling
patterns with different numbers of radial sampling lines to
achieve a desired sampling rate. For example, Fig. 3 shows
a radial sampling pattern which corresponds to a sampling
rate of 32 % of the k-space. Different sampling rates were
tested and evaluated in this study.

Results
In order to evaluate the efficacy of the proposed
CD-SFCRF framework for sparse reconstruction of com-
pressive MRI sensing, a comparative evaluation analysis

Table 1 Description of the prostate T2w and DWI images

Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22 × 22 0.49 × 0.49 × 3 110 4,687

DWI 20 × 20 1.56 × 1.56 × 3 61 6,178
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Fig. 3 Radial k-space sampling pattern at 32 % sampling rate

was performed alongside a baseline l2 minimization (L2)
reconstruction method, and a state-of-the-art homo-
topic l0 minimization (HL0) [15] reconstruction method.
The tested methods were compared quantitatively
through peak signal-to-noise ratio (PSNR) analysis, and

qualitatively via visual assessment. All tested methods
were implemented based on the original literature, with
optimal parameters used in this study. All tested methods
were run until convergence.
Figure 4 shows the PSNR versus sampling rate plots for

the tested methods for the phantomMRI data.
Tables 2, 3, and 4 show the PSNR results for the three

reconstructed methods for the T2w, DWI, as well as ADC
map images for the patient data experiments at different
sampling rates.
Figures 5 and 6 shows the visual comparison between

the reconstructed images produced using the pro-
posed CD-SFCRF framework compared with that
produced using the L2 and homotopic l0 minimization
reconstruction methods for three cases for T2w
images.
Figures 7 and 8 shows the visual comparison between

the reconstructed images produced using the proposed
CD-SFCRF framework compared with that produced
using the L2 and HL0 methods for three patient cases for
DWI (b = 100s/mm2) and ADC maps.

Discussion
As it can be observed from Fig. 4, the proposed CD-
SFCRF framework achieved noticeable PSNR improve-
ments over the other tested methods at all tested sampling

Fig. 4 PSNR vs. sampling rates plots for the tested methods for the phantom MRI data at different sampling rates
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Table 2 PSNR ± standard deviation (stdev) for T2w images for the patient data experiments (24 images/patient for 20 patients) across
different methods with P-values comparing L2 and HL0 methods with CD-SFCRF, respectively

Sampling rate (%) L2 (dB) P-value HL0 (dB) P-value CD-SFCRF (dB)

17 25.56 ± 0.92 p � 0.0001 26.22 ± 1.01 p � 0.0001 27.34± 1.16

32 28.39 ± 0.98 p � 0.0001 28.80 ± 1.01 p � 0.0001 29.72± 1.16

47 30.42 ± 1.05 p � 0.0001 30.80 ± 1.05 p � 0.0001 31.23± 1.17

Bold face indicates the method with the highest performance metric

rates. The CD-SFCRF produced improvements of up to
4 dB over HL0 and 7 dB over L2 in low sampling con-
ditions. It can also be observed that as sampling rates
increase, the performance differences decrease. This is
due to the fact that as the sampling rate increases, the
amount of available measurements increases, and as such
the level of reconstruction quality improvements that can
be achieved will naturally decrease given the amount
of available information becomes increasingly sufficient
for high quality reconstruction. The ability of the CD-
SFCRF framework to produce high quality reconstruction
at very low sampling rates can be demonstrated visually as
well.
From additional quantitative analysis of patients MRI

data presented in Tables 2, 3, and 4, it can be observed
that the proposed CD-SFCRF framework achieved the
greatest PSNR improvements for the lowest sampling rate
(i.e., 17 %) where for T2w, CD-SFCRF improved PSNR by
1.78 dB and 1.12 dB over the L2 and HL0 methods, respec-
tively. For DWI, CD-SFCRF improved PSNR by 1.85 dB
and 0.28 B over the L2 and HL0 methods, respectively.
Interestingly for ADC maps, the best improvements in
PSNR were achieved for the highest sampling rate (47 %)
where CD-SFCRF improved PSNR by 4.44 dB and 0.21 B
over the L2 and HL0 methods, respectively.
Tables 2, 3 and 4 also show the P-values calculated by

comparing the proposed CD-SFCRF method with L2 and
HL0 methods, respectively. As it can be seen, P-values
show significant difference between CD-SFCRF and the
other two methods for T2w and DWI images. For ADC
maps, the proposed CD-SFCRF was significantly differ-
ent than L2 method as well. The only comparison that
did not show significantly different results was CD-SFCRF
compared to HL0 method for ADC maps. This shows
that the PSNR improvement for the proposed CD-SFCRF

framework was meaningful for the majority of cases when
compared to other tested methods.
Comparing the results for phantom MRI data (Fig. 4)

and patients MRI data shown in Tables 2, 3 and 4 shows
that the proposed CD-SFCRF framework yields higher
performance improvement at 10 - 20 % sampling range
for phantom MRI data compared to patients MRI data.
The reason for this difference on PSNR improvement is
the fact that the morphological and textural properties of
the phantom is significantly less complex than that of real
patients’ prostates, and thus the reconstruction problem
is a simpler one for the phantom and as a result, greater
PSNR gains were achieved using the proposed method.
Qualitative observations from Figs. 5 and 6 show that

the L2 method resulted in blurry T2w images as well
as noticeable radial artifacts at low sampling rates as
expected due to the least squares reconstruction being
prone to errors. The HL0 approach performed better
than the L2 minimization and was able to noticeably
reduce artifacts and provide a higher quality reconstruc-
tion. However, in comparison, the CD-SFCRF was able
to better restore details and fine tissue structure in the
reconstructed image when compared to HL0. This is to
be expected as the CD-SFCRF takes advantage of more
complete data and spatial driven consistencies in a fully
connected nature, thus better modeling the underlying
tissue detail and structures.
Furthermore, as it can be seen in Figs. 7 and 8, the L2

method resulted in blurry DWI and ADC map images
again with noticeable radial artifacts. Although the HL0
approach performed better than the L2 method, it can
be observed once again that the proposed CD-SFCRF
approach was able to preserve more fine tissue structure
and detail in the reconstructed image when compared
to the HL0 method. Nevertheless, an inherent trade-off

Table 3 PSNR ± stdev for DWI images for the patient data experiments (24 images/b-value for 4 b-values/patient for 20 patients)
across different methods with P-values comparing L2 and HL0 methods with CD-SFCRF, respectively

Sampling rate (%) L2 (dB) P-value HL0 (dB) P-value CD-SFCRF (dB)

17 26.90 ± 1.86 p � 0.0001 28.46 ± 2.50 p � 0.0001 28.75± 2.22

32 31.92 ± 2.32 p � 0.0001 33.39 ± 3.03 p � 0.0001 33.61± 2.17

47 36.45 ± 2.67 p � 0.0001 37.85 ± 2.48 p � 0.0001 37.99± 2.11

Bold face indicates the method with the highest performance metric
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Table 4 PSNR ± stdev for ADC images for the patient data experiments (24 images/patient for 20 patient) across different methods
with P-values comparing L2 and HL0 methods with CD-SFCRF, respectively

Sampling rate (%) L2 (dB) P-value HL0 (dB) P-value CD-SFCRF (dB)

17 17.20 ± 0.61 p � 0.0001 19.35 ± 0.58 0.88 19.50± 0.57

32 18.05 ± 0.48 p � 0.0001 21.66 ± 0.54 0.89 21.72± 0.55

47 18.72 ± 0.32 p � 0.0001 22.94 ± 0.39 0.89 23.16± 0.37

Bold face indicates the method with the highest performance metric

exists between preserving fine textural granularity and
reducing artifacts due to compressed sensing which can
be well utilized in the proposed CD-SFCRF framework to
achieve a balance between the two competing constraints.
In Figs. 5, 6, 7 and 8, the tumourous regions marked by

a radiologist and confirmed by pathology report (biopsy
results) are shown by red arrow or white boundary. It
can be seen that the proposed CD-SFCRF method pre-
serves the separability of the cancerous and healthy tissue
in all cases, which is an important measure for usability
of the proposed method in practice. As it can be seen, the
tumourous regions are blurred in the L2 method, which
may make it difficult to detect for radiologists.
Both quantitative and qualitative analysis demonstrate

the potential of the proposed CD-SFCRF framework as
a reliable reconstruction approach for compressive sens-
ing in MRI. It demonstrates the ability to produce edge
and tissue details at very low sampling rates. The CD-
SFCRF framework better utilize available information to

produce high quality reconstructed images given very lim-
ited available information. Preservation of tissue structure
and detail enhancement, and noise and artifact mitiga-
tion are very important for MRI as the diagnostic quality
is directly related to the image quality. This demonstrates
that the CD-SFCRF framework can be a viable clini-
cal technique as the reduction in acquisition can lead
to faster acquisitions and lower patient wait times. With
a lower acquisition time and hence lower patient wait
time, patients can have access to the necessary treatments
in a timely manner, significantly improving the patient
outcome and survival rates.
The compressive sensing method used to recon-

struct MR images can influence the performance of
the computer-aided diagnosis (CAD) tools. For exam-
ple, several radiomics-based CAD algorithms have been
proposed for automatic prostate cancer detection which
use T2w and DWI to extract texture and morphologi-
cal features fed into a classifier [31–36]. These algorithms

Fig. 5 Sample T2w results for 3 patient images produced using CD-SFCRF, L2, and HL0 at 32 % sampling ratio. Compared to other methods, CD-SFCRF
preserves tissue details and contrast especially in the tumourous regions. The arrow shows tumourous region in the fully sampled image (a, e, i)



Li et al. BMCMedical Imaging  (2016) 16:51 Page 8 of 12

Fig. 6 Sample T2w results (zoomed in) for 3 patient images produced using CD-SFCRF, L2, and HL0 at 32 % sampling ratio. Compared to other
methods, CD-SFCRF preserves tissue details and contrast especially in the tumourous regions. The arrow shows tumourous region in the fully
sampled image (a, e, i)

heavily rely on the quality of regions of interests in similar
cases in DWI and therefore, it is expected that a recon-
structed MRI with better quality will improve the perfor-
mance. As future work, we will investigate the effect of the
proposed compressive sensing method on the detection
accuracies of these radiomics-based CAD algorithms with
respect to the L2 and HL0 methods. Moreover, recently,
computational diffusion MRI (CD-MRI) has been intro-
duced which utilizes the wealth of information in DW-
MRI to computationally construct new sequences of MRI
that potentially will help radiologists with more accurate
and consistent diagnosis [2, 3]. The proposed CD-SFCRF
framework will be integrated into CD-MRI algorithms
[2, 3] to investigate whether CD-SFCRF improves the
separability of cancerous and healthy tissues in prostate
for these computationally generated MR sequences with
respect to the L2 and HL0 methods.
The limitations of the proposed CD-SFCRFmethod that

will be addressed in the future direction of this work
include the limited sample size. A larger and more diverse
dataset will be used to address this limitation. Moreover,
in this work, the proposed method was applied only to
the prostate. Future work also includes applications of the
proposed method to the MRI acquisitions of other organs

such as breast or moving organs such as heart. In addition,
although the CD-SFCRF can significantly decrease MRI
acquisition times, because of the fully-connected nature
of this method, the algorithm may require a considerable
processing time to complete (although not comparable to
original MRI acquisition time). As future work, we will
modify the proposed method to improve processing time
and the efficiency of the algorithm.

Conclusions
In this paper, a cross domain stochastic fully connected
conditional random field (CD-SFCRF) framework for
sparse reconstruction of compressive sensing MRI was
presented. The proposed CD-SFCRF framework intro-
duces constraints in both k-space and spatial domains
within a stochastically fully connected graphical model
to produce improved MRI reconstruction. To test the
efficacy of the proposed CD-SFCRF framework, quan-
titative experimentation using peak signal-to-noise ratio
(PSNR) analysis was performed on phantom MRI data.
Quantitative and qualitative experimentations were also
performed on prostate MP-MRI data of 20 patient cases
at different sampling rates. The results show an improve-
ment over other tested sparse reconstruction approaches,
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Fig. 7 Sample DWI results (b = 100s/mm2) for three patient cases produced using CD-SFCRF, L2, and HL0 at 32 % sampling ratio. Compared to
other methods, CD-SFCRF preserves tissue details and contrast especially in the tumourous regions. The tumourous region in the fully sampled
image is marked (a, e, i)

especially at low sampling rates. The ability to better
utilize available information given very limited informa-
tion demonstrates the potential of the proposed CD-
SFCRF framework as a viable reconstruction algorithm
for compressive sensing MRI. The proposed CD-SFCRF
can significantly reduce MRI acquisition times with-
out sacrificing quality and potential reduction in the
accuracy of diagnosis. Reducing MRI acquisition time
would reduce related cost significantly and lead to less
patient discomfort during the MRI acquisition and more
importantly, it would reduce the patient wait times con-
siderably. A fast access to MRI would directly trans-
late to better care given to patients who need it the
most.

Appendix 1
Sparse reconstruction via cross-domain stochastically fully
connected conditional random field
The main goal here is to reconstruct image Y given orig-
inal sparsely sampled k-space observations X. We model
the conditional probability P(Y |X) of the full state set Y in
spatial domain given the set of sparse measurements X in
k-space, which can be written as:

P(Y |X) = 1
Z(X)

exp(−ψ(Y |X)) (1)

where Z(X) is the normalization function and ψ(.) is a
combination of unary and pairwise potential functions:

ψ(Y |X) =
n∑

i=1
ψu(yi,X) +

∑
ϕ∈C

ψp(yϕ ,X) (2)

Here yi ∈ Y is a single state in the set Y = {yi}ni=1, yϕ ∈ Y
encodes a clique structure in the set C, and X = {xj}nj=1
is the observations (radially sub-sampled frequency coef-
ficients) in the frequency domain (k-space). The unary
potential ψu is enforced in the k-space while the pairwise
potential ψp is applied in the spatial domain. The unary
potential enforces original observations to preserve data
fidelity. Since the available observations are captured in k-
space in MRI, the model must be formulated in a way to
be consistent in both k-space and spatial domain.
The pairwise potential, on the other hand, has to be in

the spatial domain to better preserve image detail since
neighboring coefficients in the k-space does not contain
any meaningful spatial or data consistencies to be utilized
by the pairwise potential. Therefore, the optimal way to
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Fig. 8 Sample ADC map results for three patient cases produced using CD-SFCRF, L2, and HL0 at 32 % sampling ratio. Compared to other methods,
CD-SFCRF preserves tissue details and contrast especially in the tumourous regions. The tumourous region in the fully sampled image is marked
(a, e, i)

fully utilize available data within this random field model
is to formulate the unary potential in the k-space and the
pairwise potential in the spatial domain.
One of main differences between the proposed CD-

SFCRF framework from conventional CRF models is to
incorporate long-range information in the model and pre-
serve boundaries and image structural properties more
effectively which is important here due to sparse avail-
able observation. To capture long-range information, CD-
SFCRF assumes fully connected neighboring structure for
the underlying graph which each node i has a set of
neighbors

N(i) = {
j|j = 1 : n, j �= 1

}
(3)

where |N(i)| = n − 1 and includes all other nodes in
the graph as neighbors of node i. Here the pairwise clique
structures are utilized such that:

C = {
Cp(i)

}n
i=1 (4)

Cp(i) =
{
(i, j)|j ∈ N(i), 1S{i,j} = 1

}
. (5)

The active cliques in the inference procedure are deter-
mined by the stochastic indicator function 1S{i,j} = 1. The
indicator function decides whether or not nodes can con-
struct a clique, Cp(i) for node i. This stochastic indicator
function combines spatial and data driven information to
model the probability distribution of informative cliques
which informative cliques have higher probability to par-
ticipate in the inference. The set of active cliques are
obtained to extract pairwise potentials in Eq. 2.
As mentioned before, ψ(·) in Eq. 2 is the combina-

tion of two potential functions ψu(.), the unary potential
and ψp(.), the pairwise potential. These potential func-
tions are formulated with their corresponding weights λ,
respectively as:

ψu(Y ,X) =
K∑
j=1

λuj Fj(Y ,X) (6)

ψp(yϕ ,X) =
K ′∑

{yi,yj}∈yϕ ,k=1
λ
p
kfk(yi, yj,X) (7)

where λ controls the importance of each feature func-
tion in the energy formulation and it is calculated in the
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training stages. Although it is possible to provide several
arbitrary feature functions to model the conditional prob-
ability P(Y |X), here two feature functions are provided
to formulate the image reconstruction for the purpose of
sparse reconstruction from compressive sensingMRI. The
conditional distribution of Y given X is trained to pro-
mote/suppress different features in both the unary and
pairwise potentials. Higher λuj values promotes a higher
reinforcement of original observations while high λ

p
k val-

ues promotes higher consideration of spatial and data
driven neighborhood constraints. In Eq. 6, F refers to the
frequency domain potential function. The unary poten-
tial is calculated in the k-space while the pairwise remains
in the spatial domain. This is the novelty of the CD-
SFCRF whihc facilitates for better preservation of fine
tissue details and contrast in the reconstructed image. The
unary potential function Fj(yi,X) can be formulated as:

Fj(Y ,X) =
π
2∑

ω=− π
2

F (Y ,ω) − xω (8)

where F (·, ·) is the Fourier operator and returns the k-
space coefficient corresponding to frequency ω. Based on
this formulation, the unary potential is enforced in the
k-space and in the inferencing step, the model tries to
estimate image Y to be consistent to the original k-space
observation X = {xω}

π
2
ω=− π

2
.

The pairwise function fk(yi, yj,X) can be formulated as:

fk(yi, yj,X) = exp
(

−(yi − yj)2 · (xi − xj)2

3σ 2

)
(9)

where σ is a control variable for the amount of weighting
node pairs in the clique ϕ = {i, j}. Contrary to the unary
potential, the pairwise potential is enforced in the spatial
domain.

Graph representation
Graph G(V ,E) (Fig. 9) is the realization of the CD-SFCRF
where V is the set of nodes of the graph representing
states Y = {yi}ni=1, E is the set of edges in the graph.
Observations xi ∈ X are made in the k-space domain. Our
final state estimations Y are in the spatial domain (image).
Figure 9 shows the graphical representation of how the
spatial and k-space domain are incorporated to model
the conditional probability P(Y |X). xi comes from sparse
measurements in the k-space. In the inference procedure,
the k-space observations are transformed into the spatial
domain using the Fourier transform to compute the pair-
wise potentials. Pairwise potentials are calculated in the
spatial domain and transformed into the k-space to com-
bine with the unary potential and perform data fidelity.
For different types of MRI data, different sparse sampling

Fig. 9 Realization of CD-SFCRF graph. Xi represents original
observations made in the k-space, xi represents spatial domain
representation of the k-space measurements and yi represent states.
F denotes the Fourier operator used in transforming k-space
observations into the spatial domain. Connectivity is determined
based on probability distributions. Nodes with higher connectivity
have solid black edges while lower probable connections are
represented as dashed red lines

patterns can be used. Furthermore, pairwise connectiv-
ity can be trained for specific types of details and tissue
structure.
The proposed CD-SFCRF framework utilizes consisten-

cies from the spatial domain through the pairwise poten-
tial in conjunction with k-space information through the
unary potential. A combination of the two potentials
is enforced simultaneously. The unary potential utilizes
original observations in the k-space, while the pairwise
potential utilizes the spatial domain representation of
the observation/state information and calculates pair-
wise potentials for nodes in the spatial domain. This
allows CD-SFCRF to take advantage of the lower com-
putational complexity introduced by the stochastically
fully-connected random field model, while leveraging the
original k-space observations in improving signal fidelity.
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