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Abstract

Background: Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the
human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to
clinician’s judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system
becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and
robust method is challenging and still underway.

Methods: We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification
problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an
algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based
and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method
combining the optimized Daugman'’s algorithm and Localized Active Contour (LAC) model is proposed to efficiently
extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial
evolving curve for facial features’ segmentation are automatically selected. The symmetry score is measured by the
ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized
logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for
facial paralysis grading based on House-Brackmann (H-B) scale.

Results: Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments
show that the proposed method demonstrates its efficiency.

Conclusions: Facial movement feature extraction on facial images based on iris segmentation and LAC-based key
point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on
facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits
that are essential for our real application. Aside from the facial key points, iris segmentation provides significant
contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the
significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes
directed upward, and can model the typical changes in the iris region.
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Background

Facial nerve palsy is a loss of the voluntary muscles move-
ment in one side of the human face. It is frequently
encountered in clinical practices which can be classified
into two categories: peripheral and central facial palsy.
Peripheral facial palsy is the result of a nerve dysfunction
in the pons of the brainstem where the upper, middle and
lower one side of facial muscles are affected while cen-
tral facial palsy is the result of nerve function disturbances
in the cortical areas where the lower half of one side of
the face is affected but the forehead and eyes are spared,
unlike in peripheral FP (Fig. 1) [1, 2].

Facial paralysis (FP) afflicted individuals suffer from
inability to mimic facial expressions. This symptom
creates not only dysfunctions in facial expression but
also some difficulties in communication. It often causes
patients to be introverted and eventually suffer from social
and psychological distress, which can be even more severe
than the physical disability [3]. This scenario has led to
greater interest to researchers and to clinicians in this
field, and consequently, to the development of grading
facial functions and methods in monitoring the effect of
medical, rehabilitation or surgical treatment.

There has been considerable body of work developed to
assess facial paralysis. Some of the latest and widely used
subjective methods are Nottingham system [4], Toronto
facial grading system (TFGS) [5, 6], linear measurement
index (LMI) [7], House-Brackmann (H-B) [8] and Sun-
nybrook grading system [9]. However, traditional grad-
ing systems are highly dependent to clinician’s subjective
observation and judgment; thus, suffer from inherent
drawback of being prone to intra and inter-rater variabil-
ity [4, 6, 10, 11]. Moreover, these methods have issues in
integration, feasibility, accuracy and reliability and in gen-
eral are not commonly employed in practice [9]. Hence,
an objective grading system becomes apparently invalu-
able for physicians to begin the rehabilitation process.
Such grading system can be very helpful in discriminat-
ing between peripheral and central facial palsy as well as
predicting the degree of severity. Moreover, it may assist
the physicians to effectively monitor the progress of the
patient in subsequent sessions.

In response to the need for objective grading system,
many computer-aided analysis systems have been created
to measure dysfunction of one part of the face and the
level of severity, but none of them tackles the facial paral-
ysis type as the classification problem. Classifying each
case of facial nerve palsy into central or peripheral plays
a significant role rather than just assessing the degree of
the FP. This is to assist the physicians to decide for the
most appropriate treatment scheme to use. Furthermore,
most of the image processing methods used are labor-
intensive, if not; suffer from the sensitivity to the extrinsic
facial asymmetry caused by orientation, illumination and
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shadows. Thus, to create a clinically usable and reliable
method is challenging and still in progress [1].

We proposed a novel method that enables quantitative
assessment of facial paralysis that tackles classification
problem of facial paralysis type and degree of severity.
Maximum static response assay (MSRA) [12] assesses
facial function by measuring the displacement of stan-
dard reference points of the face. It compares facial pho-
tographs taken at rest and at maximum contraction. The
method was labor-intensive and time-consuming [13].
Watchman et al. [14, 15] measured facial paralysis by
examining the facial asymmetry on static images. Their
approach is sensitive to the extrinsic facial asymmetry
caused by orientation, illumination and shadows [16].
Wang et al. [17] used salient regions and eigen-based
method to measure the asymmetry between the two sides
of face and compare the expression variations between the
abnormal and normal sides. SVM is employed to produce
the degree of paralysis.

Anguraj, K. et al. [18] utilize canny edge detection tech-
nique to evaluate the level of facial palsy clinical symptoms
(i.e. normal, mild or severe). Nevertheless, canny edge
detection is very vulnerable to noise disturbances. Input
facial images may contain noise disturbances such us
wrinkles or excessive mustache that may also result to
many false edges detected. On the other hand, Dong, J.
et al. [19] utilize salient point detection and Susan edge
detection algorithm as the basis for quantitative assess-
ment of patient’s facial nerve palsy. They apply K-means
clustering to determine 14 key points. However, this falls
short when this technique is applied to elder patients, in
which exact points can be difficult to find [20]. Most of
these works are solely based on finding salient points on
human’s face with the use of the standard edge detection
tool (e.g. Canny, Sobel, SUSAN) for image segmentation.

Canny edge detection may result in inaccuracy of edge
detection and influences a connected edge points since
this algorithm compares the adjacent pixels on the gradi-
ent direction to determine if the current pixel has local
maximum. This may in turn result to improper genera-
tion of key points. Another method [20] was proposed
based on the comparison of multiple regions on human
face, where they compare the two sides of the face and
calculate four ratios, which is used to represent the paral-
ysis degree. Nevertheless, this method suffers from the
influence of uneven illumination. A technique that gener-
ate closed contours for separating outer boundaries of an
object from background such as LAC model for feature
extraction may reasonably reduce these drawbacks.

In this study, we make three main contributions. First,
we present a novel approach for efficient quantitative
assessment of facial paralysis classification and grading.
Second, we provide an efficient way for detecting the land-
mark points of the human face through our improved
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Fig. 1 a Right-sided central palsy. b Right-sided peripheral palsy

LAC-based key point detection. Third, we study in depth
the effect of combining the iris behavior and the facial
key point-based symmetry features on facial paralysis
classification. In our proposed system, we leverage the
localization of active contour (LAC) model [21] to extract
facial movement features. However, to improve the seg-
mentation performance of LAC, we present a method
that automatically selects appropriate parameters of initial
evolving curve for each facial feature; thereby improving
the key points detection. We also provide an optimized
Daugman’s algorithm for efficient iris segmentation. To
the best of our knowledge, our work is the first to address
facial palsy classification and grading using the combina-
tion of iris segmentation and key-point detection.

Methods

Proposed facial paralysis assessment: an overview

Our work evaluates facial paralysis by asymmetry iden-
tification in both sides of the human face. We capture
facial images (i.e. still photos) of the patients with a front-
view face and with reasonable illumination of lights so that
each side of the face achieves roughly similar amount of
lighting. The patient is requested to perform ‘at rest’ face
position and four voluntary facial movements that include
raising of eyebrows, closing of eyes gently, screwing-up of
nose, and showing of teeth or smiling. The photo taking
procedure starts with the patient at rest, followed by the
four movements. A general overview of the proposed sys-
tem is presented in Fig. 2. Facial images of a patient, which
are taken while being requested to perform some facial
expressions, are stored in the image database.

The process starts by taking the raw image from the
database. This is followed by face dimension alignment.
At this step, we find the face region as our region of inter-
est by performing face detection algorithm. As a result,
we only keep the face region and all other parts of the

captured images are removed. Preprocessing of images
for contrast enhancement and noise removal is then per-
formed. But firstly, the images or region of interest (ROI)
have to be converted to a grayscale form. Median fil-
tering technique and histogram equalization operation
are then applied to remove noise and to obtain satisfac-
tory contrast, respectively. Further image enhancement is
achieved by applying the log transformation technique,
which expands values of dark pixels and compresses val-
ues of bright pixels, essential for subsequent processes.
Figure 3 shows an illustrative example of these pre-
processing steps.

This is followed by facial features detection (e.g. eyes,
nose, and mouth) and feature extraction. Features are
extracted from the detected iris region and the key points.
We then calculate the differences between two sides of
the face. The symmetry of facial movement is measured
by the ratio of the iris exposure as well as the vertical
distances between key points from the two sides of the
face. The ratios generated are stored in a feature set vec-
tor, which are trained by classifiers. Six classifiers (i.e.
using rule-based and regularized logistic regression) were
trained, one for healthy or unhealthy discrimination, one
for facial palsy classification and another four classifiers
for the facial grading based on House-Brackmann (H-B)
scale.

Feature extraction with optimized Daugman’s
integro-differential operator and localized active contour
Face region detection

The facial images sometimes do not only include the
face region only. Captured images may also include other
parts such as the shoulder, neck, ears, hair or even back-
ground. Since we are only interested in the face region, it
is our objective to keep this region and remove unneces-
sary parts of the captured images. To achieve this aim, we
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apply facial feature detection using Haar classifiers [22].
To detect human facial features, such as the mouth, eyes
and nose, Haar classifier cascades are first to be trained. In
order to train the classifier, AdaBoost algorithm and Haar
feature algorithm were implemented. The Haar cascade
classifier makes use of the integral and rotated images.
Integral image [23] is an intermediate representation of
an image and using this, the simple rectangular features
of a certain image are calculated. Integral image is an
array that contains the sums of the pixels’ intensity values
located directly to the left of a pixel and directly above the
pixel at location (x, y) inclusive. Thus, on the assumption
that G[x, y] is the pre-specified image and GI[x, y] is the
integral image then the formula for computing the integral
image is as follows:

Y G(X.)

X' <xy' <y

GI [x,y] = 1)

The integral image is rotated and is calculated at a forty
five degree angle to the left and above for the x value and
below for the y value. If GR[x, y] is the rotated integral

image then the formula for computing the rotated integral
image is as follows:

GR[x,y] =

2

X <X <x—[y—y'|

G (x’, y/) (2)

Using the appropriate integral image and taking the dif-
ference between six to eight array elements forming two
or three connected rectangles, a feature of any scale can
be computed. This technique can be adapted to accurately
detect facial features. However, the area of the image that
is subject for analysis has to be regionalized to the loca-
tion with the highest probability of having the feature.
To regionalize the detection area, regularization [22] is
applied. By regionalizing the detection area, false positives
are eliminated and the detection latency is decreased due
to the reduction of the region examined.

Feature extraction process

Once the facial regions are detected, feature extraction
process takes place. This process involves detections of
key points and iris/sclera boundaries. Figure 4 shows the
flow on how features are extracted.

— ¥

Fig. 3 Pre-processing results. a original RO, (b)—(c) median filter and histogram equalization results, respectively, (d) log transformation result with

c=0.1
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Feature extraction start from the preprocessing of the
input image and facial region detection. To extract the
geometric-based features, parameters of the initial evolv-
ing curve of each facial feature (e.g. eyes, eyebrows
and lip) are first automatically selected. These param-
eters are then used as inputs to localized active con-
tour model [21] for proper segmentation of each facial
feature. This step is followed by the landmarks or key
point detection process. We also apply Scale-invariant
feature transform (SIFT) [24] to find the common inter-
esting point of two images (i.e. at rest position and

Table 1 List of features

eye brows lifting). The points generated by SIFT are
useful for determining the capability of the patients to
do facial motions by comparing the two facial images
that includes at rest position and lifting of eyebrows.
Region-based features extraction involves detection of
iris/sclera boundary using Daugman’s Integro-Differential
Operation [25]. All features are stored in a feature vec-
tor. Table 1 shows the list of asymmetrical features we
used in this paper. Labeled parts of facial features are
shown in the subsection that tackles the key points
detection.

Asymmetrical features Notation Parameters
1) Iris area while lifting eyebrows with both eyes

directed upward. EBIift_lris f1
2) Rate of movement from at rest to lifting of eyebrows

(using distance between SO and upper part of the occluded iris). EBmMd_SO_ulris f2
3) Rate of movement from at rest to lifting of

eyebrows (using distance between SO and 10). EBmMd_SO_IO f3
4) Distance between SO and 10 while lifting eyebrows. EBIift_SO_IO 4
5) Distance between SO and upper boundary of the

occluded iris while raising eyebrows with both eyes looking upward. EBIift_SO_ulris f5
6) Distance between SO and IO while closing both eyes. Eclose_SO_IO f6
7) Iris area while showing teeth or smiling. smile_lris 7
8) Distance between |0 and mouth angle

while smiling. smile_IO_MA f8
9) Iris area while screwing nose. snarl_lris fo
10) Mean ratio of features 1-9. meanRatio f10
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Key points detection

The detection of key points includes initialization and
contour extraction phases for each facial feature we used
in this paper. The goal is to find the 10 key points on edges
of facial features as shown in Fig. 5a and b.

Overview of localized region-based active contour
model (LACM) This section provides the overview of
the primary framework of LAC [21] model, which estab-
lishes an assumption that the foreground and background
regions would be locally different. The statistical analy-
sis of local regions leads to the construction of a family
of local energies in every point along the evolving curve.
In order to optimize these local energies, each point is
considered individually, and moves to minimize (or max-
imize) the energy computed in its own local region. To
calculate these local energies, local neighborhoods are
split into local interior and local exterior region by the
evolving curve.

In this paper, we let I be a specified image on the domain
@, and C be a closed contour represented as the zero
level set of a signed distance function ¢, whose value
can be given as: C = {w|¢(w)} [26]. The interior of C is
specified by the following approximation of the smoothed
Heaviside function:

1, d(w) < —¢
H¢(W) = 01 ¢(W) <é
% {1 + % + % sin (@)} , otherwise.

3)

Similarly, the exterior C can be defined as 1-H¢ (w). The
epsilon € is the parameter in the definition of smooth
Dirac function having a default value of 1.5. The area
just adjacent to the curve is specified by finding the
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derivative of H¢ (w), a smooth version of the Dirac delta
denoted as

ly ¢(W) =€
0, lpw)| <& (4)

dp(w) =
% {1 + cos (” s(w))} , otherwise.

Parameters w and x are expressed as independent spa-
tial variables. Each of these parameters represents a single
pointing, respectively. Using this notation, the character-
istic function B(w,x) in terms of a radius parameter r can
be written as follows:

ﬂ(Wrx) = {

1, |w—x|l<r
0, otherwise.

(5)

B(w,x) is then utilized to mask local regions. There-
fore, a localized region-based energy formed from the
global energy by substituting local means for global ones
is shown below [27]:

F=—(uy—vu)? (6)

o, BOnR) - (H$ () - [()dx
T fo, Bwx) - (H(x)dx

, Jo, Bw,%) - (1 — Hp (x)) - [(x)dx
YT o, Bwn) - (1 — Hp(x))dx
where the localized versions of the means u,, and v,, repre-
sent the intensity mean in the interior and exterior regions
of the contour, which is localized by B(w, x) at point x. By
ignoring the image irregularity that may arise outside the
local region, we only consider the contributions from the
points within the radius r. Also, a regularization term is
added to maintain the smoothness of the curve. Addition-
ally, the arc length of the curve is penalized and weighted

(7)

(8)

Fig. 5 a Labeled parts of facial features, (b) key points
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by a parameter A and the final energy E(¢) is given as
follows:

E(¢>)=/Q 5¢(W)/Q Bw,x) - F(x), ¢ (x))dxdw

+A/Q 56 (w) IV ()]l dw

)

By taking the first variation of this energy with respect
to ¢, the following evolution equation is obtained:

¢
E(W) = 5¢>(W)/Q Bw,x) - Vo FU(x), ¢ (x))dx
(Vo)
+ A8 (w)div <|V¢ (w)|> IVow)]l .

(10)

It is worth note taking that this ensures that nearly all
region-based segmentation energy can be put into this
framework.

Initialization In localized active contour approach, anal-
ysis of the local regions paves the way for the construction
of local energies at each point along the curve. For the
optimization of these local energies each point is consid-
ered separately, and moves to minimize the energy com-
puted in its own local neighborhoods into local interior
and local exterior by the evolving curve. This approach
generally gives a satisfactory result in segmenting objects.
However, such localization has an inherent trade-off
because of its greater sensitivity to initialization [21].
Proper parameters ( e.g. enough amount of the radius, dis-
tance from the evolving curve, etc.) have to be determined
before fitting it in the localized active contour (LAC)
model for correct segmentation.

For finding the minimum-bound rectangular form of
the eyes and eyebrows with proper parameters, we
develop our own approach and the steps are summarized
as follows: We choose the region of interest (ROI) based
on the detected facial feature by Haar algorithm [22, 23].
For each ROI, we apply pre-processing for image improve-
ment, which is to suppress unwanted distortions or
enhances some image features essential for subsequent
processes. This can be achieved by applying median filter,
histogram equalization and log transformation tech-
niques. To find the threshold that maximizes the between-
class variance and transform the graylevel to a binary one,
we choose OTSU’s algorithm [28]. To further remove the
noise, we applied the 8-neighborhood rule implementa-
tion, which removes all connected components that have
fewer than P pixels (e.g. 1 % of the area of an image used
for cluster, i.e. image size * 0.01) from the binary image.
From this result, we define a window kernel m x n in two
forms: vertical and horizontal form. A window kernel, in
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this context, is a binary block of m x n size where m and
n are the number of rows and columns respectively (i.e.
all having a pixel value of 1). For example, to find the x-
axis boundary of the initial evolving curve ¢, k is run from
center point going to the left, then to the right until con-
vergence. In each step, we calculate the sum of the product
of each pixel of k and the pixel of the binary image. The
algorithm has converged when the computed sum yields
0 (i.e. with a background set to O - black), which means
that the kernel hits a certain blocks of an image. Simi-
larly, to find the y-axis boundary of ¢, we run the same
kernel k up then down and stop until convergence. The
intuition is that the operation stops when the kernel finds
a matching shape. Sample output is shown Fig. 6. The size
of the kernel depends on the result after 8-neighborhood
rule implementation. For automatic selection of parame-
ters for initial evolving curve of lip facial feature, we apply
the algorithm in [29].

Segmentation using Localized Active Contour Model
(LACM) and feature pointlocation When the minimum-
bounding rectangle of each region is successfully iden-
tified, this rectangle shape is considered as the evolving
curve that represents the zero level set C, as described
in key point detection subsection, which can be fitted
well in the LACM. Then the local neighborhoods of the
points can be subsequently split by the evolving curve
into two local regions: the local interior and local exterior
region.

The basic idea is to allow a contour to deform in order
to minimize a given energy functional so that the desired
contour extraction is achieved. By computing the local
energies at each point along the curve, the evolving curve
will deform by minimizing the local energies. The steps of
facial feature contour extraction are as follows: Locate the
eyes, eyebrows and lip region;

® Preprocess;

e Obtain the minimum-bounding rectangular form;
e Evolve with iteration;

e Extract the eyes, eyebrows and lip contours.

We are interested of the following key points: two cor-
ners of the mouth, the supra orbital (SO), infra orbital
(IO), inner canthus (IC) and outer canthus (OC). In this
paper, we identify these key points from the segmented
facial features generated by our improved LAC model. We
take the segmented object (i.e. in binary form) and uti-
lize the idea of the distance transform technique. With
this technique, each pixel of the binary image is assigned
a number that is the distance between that pixel and the
nearest nonzero pixel of the binary image. For example, to
get the left corner of the mouth, we calculate the distance
transform of the first half of the binary image; and the first
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region of a binary image.

coordinates that has an assigned value equal to 0 would be
the left corner. Figure 7 shows the experimental samples
of the facial features contour extraction and the key points
generated by the proposed approach.

Iris detection

A person having paralysis in one side of his face would
likely to have asymmetric distance between the upper and
lower eyelid while performing facial movements. Intu-
itively, they may also have uneven iris exposure when
performing different such voluntary movements (e.g.
screwing of nose, showing of teeth or smiling). We apply
Daugman’s algorithm [25] and LACM to detect the iris
boundary. From the detected face region, we need to
determine the parameters of the eye region as input to
Daugman’s algorithm. As such, we utilize the detected 4
key points that includes the upper eyelid, IO, IC, and OC
as shown in Fig. 8.

Daugman’s algorithm Daugman’s algorithm is by far the
most cited method in the iris recognition literature. It was
proposed in 1993 and was implemented effectively in a
working biometric system [30]. In this method, the author

assumes that both pupil and iris have circular form and
the integro-differential operator. After automatic param-
eter selection (i.e. rectangular boundary) of each eye,
we implemented two pre-process operations for image
contrast enhancement purposes. First, we use histogram
equalization to improve the contrast between each eye’s
regions, which potentially facilitate the segmentation task.
Second, we apply binarization based on a threshold, which
is commonly used to maximize the separability of the iris
regions from the rest of the eye region. However, this pro-
cess has one major drawback of being highly dependent of
the chosen threshold, and as image characteristics change,
the results may seriously deteriorate [30]. Moreover, the
binarization that compromises one of the Daugman’s algo-
rithm is based on applying an integro-differential operator
to find the iris and pupil contour. We find the equation
below,

I(x,9)
2rr

max (1, %0, ¥o) |Gg (1) * 3 ff ds (11)

ar

%0:Yo

where Xy, Yy, r: the centre and radius of the circle
(for each of pupil and iris); Go (r): Gaussian function;
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b c d e

f

Fig. 7 The procedure for facial feature contour extraction and key points detection: (a) pre-processing result, (b)-(c) results of our method for
finding the minimum-bounding rectangular form, (d) the segmented object after 100 iterations with parameter A at 0.3, (e) detected key-points, (f)
more sample outputs of key points generated from the segmented region performed by a Localized Active Contour Model (LACM)

dr: the radius range; I(X, Y): the original iris image.
Go (r) is a smoothing function, the smoothed image is
then scanned for a circle that has a maximum gradient
change, which indicates an edge. The above algorithm
is done twice, first is the iris contour extraction then
the pupil contour extraction. It is worth note taking that
the problem is that the illumination inside the pupil is
a perfect circle with very high intensity level, i.e. almost
pure white. Therefore, the problem of sticking to the
illumination as the maximum gradient circle has to be

addressed.

oo |

C
- 10

Fig. 8 Eye edges and corners

Optimized Daugman’s algorithm To alleviate this prob-
lem, modification to the integro-differential operator is
necessary to ignore all circles if any pixel on this circle
has a value higher than a certain threshold. We apply the
method proposed by P. Verma [30], where this thresh-
old is determined to be 200 for the grayscale image. This
is to ensure that only the bright spots, i.e. values usually
higher than 245 will be rejected. On the other hand, iris
is normally occluded by eyelid and eyelashes. For eyelid
and eyelashes detection, P. Verma et al. [30] applied Sobel
edge detection to the search regions to detect the eyelids.
The eyelids are detected using linear Hough Transform
method. The total number of edge points in every hori-
zontal row inside the search region is calculated. In this
paper, since we are only interested with the iris/sclera
boundary, we simply apply the LAC model with our auto-
matic parameter selection of the initial evolving curve to
segment the eyes and get the portion of the eyelids. We
then get the intersection of it with the detected iris/sclera
boundary using Daugman’s algorithm [25]. In what fol-
lows; we describe our approach for detecting the iris:

1. Detect iris/sclera boundary. (Figures 9a and b)
2. Do binarization. We let this as vector A.
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3. Take a fraction of the radius of the detected iris to
create a rectangular bound making it as the initial
evolving contour and fit it to LAC model.

4. Segment iris using LAC model.

5. Do binarization of the result of the active contour
segmentation. We call it vector B.

6. Find intersections of two vectors A and B to get the
values that are common to both vectors A and B. In
set theoretic terms, we represent this as A B.This will
return the values common to both A and B. This was
followed by applying morphological operations:
erosion followed by dilation.

Take note that in iris segmentation in step 4, we tune
the parameters: A = 0.1, » = 12, and iteration = 100;
where A is the relative weighting of curve smoothness,
usually between [0 1], r is the radius of the ball used
for localization and iterations is the number of iterations
to run. Figures 9 and 10 depict the experimental sam-
ples of the iris segmentation by our optimized Daugman’s
algorithm.

Facial paralysis classification and grading

Symmetry measurement by iris and key points

In this study, we measure the symmetry of both sides
of the face using the ratios we obtained from extracting
iris exposure and the vertical distances between the key
points on each side and store them in a feature vector.

We capture a set of five facial images of each patient
performing ‘at rest’ position and some voluntary move-
ments that includes, raising of eyebrows (while looking
upward), closing of eyes, screwing of nose and showing
of teeth or smiling. Then we calculate the area of the
extracted iris as well as the distances between the key
points: P1Py, P5sPg, PoPg and PsP;0 (see Fig. 5b) and cal-
culate the ratio between two sides. We find the expression
below:

e irisA=A;/A,ifA; < Ay

e irisA=A,/A;ifA, <A

e dRatio = Dist;/Dist, if Dist; < Dist,;
e dRatio = Dist,/Dist; if Dist, < Dist;.

where A; and A, are the computed area or amount of iris
exposure at the left and right side respectively; Dist; and
Dist, are the computed distance of the specified points of
each half of the face. irisA and dRatio are the ratio of the
iris area and vertical distances respectively.

Another important feature for symmetry measurement
is the capability of the patients to raise the eyebrows (i.e.
rate of movement feature in Table 1), by comparing the
two facial images, the ‘at rest position’ and ‘raising of
eyebrows’ as shown in Fig. 11. First, we pick one of the
common points generated by SIFT algorithm, which are
located below the eyes. We denote it as PSIFT. Then,
we compute the vertical distances x; and y; (Fig. 11a),
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Fig. 10 More sample results of optimized Daugman’s algorithm. a Peripheral palsy subjects (b) central palsy subjects

where x1 and y; are the distances from P; to PSIFT and
P; to P, of the right eye, respectively. We then compute
the ratio of x; and y;. Similarly, for the second image
(Fig. 11b), we calculate xp and y» as well as the ratio.
We get the difference of these two ratios (i.e. difference
between y;/x; and y2/x; ) and denote it as rMovement.
The same procedure is applied to the two images for
finding the ratio difference for the left eye (i.e. differ-
ence between y3/x3 and ya/x4) and denote it as [Move-
ment. Intuitively, the difference of these two ratios for
FP patients would likely to have a smaller value (usually
approaching to 0, which implies inability to perform) than
those of the normal subjects. Thus, the rate of movement
can be computed by finding the ratio between rMove-
ment and [Movement. The higher the value of this ratio,
the higher possibility that the patient is able to raise his

eyebrows, thereby signifying the ability to perform such
activity.

Facial palsy classification

Classification of facial paralysis type involves two tasks:
discriminating normal from abnormal subjects and the
proper facial palsy classification. In this context, we
need two classifiers to be trained, one for healthy
and unhealthy discrimination (0-healthy, 1-unhealthy)
and another one for facial palsy type classification, i.e.
0-peripheral palsy(PP), 1-central palsy(CP). For each
classifier, we consider Regularized Logistic Regression
(RLR), Support Vector Machine, Decision Tree (DT), and
naive bayes (NB) as appropriate classification methods
as they have been used successfully for pattern recogni-
tion and classification on datasets with realistic size. In
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Fig. 11 Symmetry measurement based on one of the common points (PSIFT) generated by Scale-invariant feature transform (SIFT)

addition to these classification methods, we also consider
a hybrid classifier (i.e. rule-based + RLR) as appropriate
for carrying out the classification task.

We model the mapping of symmetry features (i.e. f1,
f2,..., f10 as described earlier) into each of these tasks
as a binomial classification problem. Although Machine
learning (ML) approach has been proven to yield quite
accurate classification results, our objective is to first
find a classifier with high precision given a training data
size that is not very large. Also, given the intuition that
normal subjects would likely to have an average measure-
ment ratio closer to 1.0 and central palsy patients would
likely to have a distance from SO to IO and iris expo-
sure ratio nearly close to 1, applying rule-based approach
prior to employing ML method would be appropriate in
our work. Hence, a hybrid classifier that combines a rule-
based expert system and machine learning was applied to
both tasks.

This process is presented in Fig. 12. If rule number 1 is
satisfied, the algorithm continues to move to the case path
(i.e. for the second task), making a test if rule number 2
is also satisfied; otherwise, it performs a machine learning
task, such as RLR, SVM, and NB. It is worth note tak-
ing that the rules are generated after fitting the training
set to the DT model. For example, rule 1 may have con-
ditions, like if f10 < 0.95 and f8 < 0.95 (where f10 and {8
are two of the predictors used - see Table 1), then the sub-
ject is most likely to be diagnosed with facial paralysis, and
therefore can proceed for rule no. 2 (i.e. to predict the FP
type); otherwise, it performs a machine learning task. If
the classifier returns 0, the algorithm simply exits from the
whole process (i.e. control as depicted in the figure) as this

implies that the subject is classified as normal/healthy;
otherwise, it goes to the case path (i.e. the 2nd task -
facial palsy classification) for performing test for rule
number 2.

If rule number 2 is met, the system returns 1 (i.e. O-
PP; 1-CP), otherwise the feature set is fed to another
classifier, which could return either 0 or 1. Similar to
rule number 1, rule number 2 is also generated by DT
model. For example, rule 2 may have conditions like,
if f1 > 0.95 and f4 > 0.95, then it is most like to be
diagnosed as having central palsy (CP), otherwise, the fea-
ture set is fed to another classifier, which could return
either 0 or 1 (i.e. 0-PP; 1-CP). For whichever type of
facial paralysis the system returns, the algorithm contin-
ues to feed the features to assess the degree of paralysis
in each region (detailed explanation is given in the next
subsection).

Quantitative assessment

To assess the degree of paralysis in every region, we utilize
the regional H-B scale that starts from grade I (normal)
to grade VI (total paralysis). We model the mapping of
the predictors into a regional H-B grade as a multi classi-
fication problem. Three hybrid classifiers are trained for
the region grading: one classifier for the mouth region,
one for the forehead region, and another one of the eye
region. Finally, another hybrid classifier is employed for
the overall FP grading. For region grading, we have the fol-
lowing features: forehead region utilizes f1, {2, {3, f4 and
{5, mouth uses features {7, f8 and f9 and finally the eye
region use f1 and f6. The next section presents the detailed
steps for rule extraction, which is necessary in formulating
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our hybrid model. This enables us to get the grade of each
region. Finally, to determine the degree of severity or over-
all grade, we utilize the H-B score [8]. We test each of the
region grades (e.g. if mouthGrade = 2, foreheadGrade = 2
and eyeGrade = 2, using to H-B scale [8], the overall
grade is 3 - moderate). If the conditions are not satisfied
the feature set is fitted to a multinomial logistic regression
(MNLR) to get the overall grade.

Results and discussion
In our experiments, 325 facial images were taken from 65
subjects that include 50 patients and 15 healthy subjects.
50 patients consist of 29 males and 21 females, whereas,
healthy subjects contains 5 males and 10 females. Sub-
jects come from different races that include Koreans and
Filipinos, with age ranges from 19 to 82. From the 50
unhealthy subjects, 40 of which have peripheral palsy (PP)
cases and 10 have central palsy (CP) cases. We used 70 %
of the dataset as the training set and 30 % as the test
set. For example, in discriminating healthy from unhealthy
subjects, we used 45 subjects (i.e. 35 patients plus 10 nor-
mal subjects) as the training set and 20 subjects (i.e. 15
patients plus 5 normal) as the test set. While in FP type
classification problem 35 unhealthy cases (i.e. 28 PP and
7 CP) as our training set and 15 (i.e. 12 PP and 3 CP)
as our test set. Subjects with facial palsy symptoms like
Bell’s palsy, left parotid tumor, Ramsay-Hunt syndrome
were taken from Korea University, Guro Hospital. This
study was approved by the Institution Review Board (IRB)
of Korea University, Guro Hospital (with reference num-
ber MD14041-002). The board permitted not taking an
informed consent due to the retrospective design of this
study.

Each subject performs 5 facial movements in 2048 x
1152 resolutions, which are converted to 960 x 720 pixels

during image processing. Their facial palsy type and the
overall H-B grading were evaluated by the clinicians. We
calculate the area of the extracted iris and the vertical
distances between the key points: Py Py, P5Ps, PoPy and
PgP10. Overall, we utilize 10 features to train the classi-
fier. Few sample results are presented in the Table 2. The
samples are categorized into three parts: peripheral palsy
(rows 1-4); central palsy (rows 5-8); and healthy (rows 9—
12) cases. Notice that healthy subjects have very minimal
asymmetry in both sides of the face yielding a ratio that
approaches to 1.

Facial palsy classification and quantitative assessment of
overall paralysis

SVM, regularized logistic regression (RLR), naive bayes
(NB), and classification tree (DT) were also utilized to
compare with our hybrid classifiers. Since the size of the
dataset was not huge, we adopt the k-fold cross-validation
test scheme.The procedure involves 2 phases: rule extrac-
tion and hybrid model formation.

Phase 1: rule extraction Given the dataset D =
(*1,¥15 - - +» (%, Y1), we hold out 30 % of D and use it as a
test set T = ((%1,¥1,. .., (¢, ¢)), leaving 70 % as our new
dataset D’ We adopt k-fold cross-validation test scheme
over the new dataset D; i.e. with k = 9. For example, if
N = 45 samples, each fold have 5 samples. In each fold,
we leave one fold out as our validation set and use the
remaining 8 folds as our training set (e.g. in the first round,
fold 1 is the validation set, in the second round fold 2 is
the validation set and so on and so forth). In each fold,
we train the 8 folds to learn a model (e.g. extract rules).
Since we have 9 folds, we do this procedure for 9 repeti-
tions.We extract rules by fitting the training set to a DT
model.



Barbosa et al. BMC Medical Imaging (2016) 16:23

Table 2 Some results after extracting features

Page 14 of 18

f1 2 f3 4 f5 f6 f7 f8 f9 f10
1 0.86 049 045 0.85 0.62 0.93 0.85 0.97 0.94 0.86
2 0.83 0.24 0.19 0.78 0.68 0.84 0.68 0.82 0.83 0.78
3 0.88 0.54 041 0.86 0.63 0.93 0.90 0.93 0.79 0.84
4 0.84 0.39 045 0.75 0.62 0.83 0.88 0.97 092 0.83
5 0.96 0.87 0.95 0.92 0.94 0.90 092 0.93 0.86 0.92
6 0.97 0.93 0.80 1.00 0.94 0.91 0.88 0.94 0.90 0.93
7 0.98 0.90 0.85 0.95 093 0.92 0.92 0.86 0.85 0.91
8 0.96 0.89 0.87 0.95 0.97 0.91 0.91 0.91 0.90 0.93
9 0.99 0.93 0.86 0.97 0.98 1.00 0.99 0.95 0.95 0.98
10 0.96 0.82 0.79 0.97 1.00 0.95 0.90 0.93 1.00 0.96
1 0.98 0.95 0.86 0.95 0.96 1.00 0.94 0.97 0.95 0.96
12 0.96 0.83 0.80 0.98 097 0.98 0.96 1.00 1.00 0.98

Phase 2: hybrid model formation In this phase, a hybrid
model is formed by combining the rules extracted in each
fold and the ML classifier, followed by the testing out of
each model over the validation set using different param-
eters (e.g. lambda for logistic regression and gamma for
SVM). For example, to form the first hybrid model, we
combine the rule extracted from the first fold and a logis-
tic regression model (i.e. rule + LR) and test out its
performance over the validation set (left-out fold) while
applying it to each of the 10 parameters. Thus, for each
fold, we get 10 performance measures. We repeat this
process for the succeeding folds, which means perform-
ing the steps for k times (i.e. with k = 9 as we are using
9-fold cross validation) will give us 90 performance mea-
sures. We compute the average performance across the
folds. This will give us 10 average performance measures
(i.e. for each parameter n) each corresponding to one spe-
cific hybrid model. Then we choose the best hybrid model
(rule-based + regularized logistic regression), i.e. with
lambda that gives a maximum average or the one that min-
imizes errors. We retrain using selected best hybrid model
on all of D’ and test this out over the hidden test set T =
((x1,¥1,- .., (£, 91)), i.e. 30 % of the dataset D and report
the performance of the hybrid model. We evaluate the
classifiers by their average performance for 20 repetitions
of k-fold cross-validation using k = 9. We repeat the pro-
cess for evaluation of other hybrid model (e.g. rule-based
+ SVM, rule-based + NB, etc.) and finally choose which
hybrid model performs best.

The hybrid classifiers, SVMs, RLR, DT and NB were
tested and our experiments demonstrate that hybrid clas-
sifier rule-based + RLR (hDT_RLR) achieves best per-
formance for discriminating healthy from unhealthy (i.e.
with paralysis) subjects. Similarly, for the palsy type clas-
sification: central palsy (CP) and peripheral palsy (PP),
hDT_RLR hybrid classifier outperformed other classifiers

used in the experiments. Figure 13 presents a graphi-
cal comparison of the average performance of our hybrid
classifier, RLR, SVM, DT and NB based on our pro-
posed approach. For healthy and unhealthy discrimination
(Fig. 13a), our hDT_RLR hybrid classifier achieves a bet-
ter performance on harmonic mean of almost 2.0 % higher
than RLR, SVM, DT and NB. Similarly, for facial palsy
classification, hDT_RLR is at least 4.2 % higher than the
other classification methods as in Fig. 13b. Experiments
reveal that hDT_RLR hybrid classifier yields more stable
results.

For the quantitative assessment of the regional paral-
ysis and overall FP grade, we consider Multinomial
Logistic Regression (MNLR), SVM, Decision Tree (DT),
naive bayes (NB) and hybrid classifiers (e.g. rule-based
+ MNLR) as appropriate classification methods. Hybrid
classifier hMNLR achieves best performance for facial
palsy grading. Figure 14 presents a graphical comparison
of the average performance of hMNLR, RLR, SVM, DT
and NB based on the combined iris and key point-based
approach. The accuracy of grading by hMNLR is at least
4 % higher than the average performance of the other five
classification methods.

Tables 3 and 4 present the comparison of the classi-
fier performance between the key point-based method
using improved LAC model and the proposed approach
combining iris and key point-based features. Overall,
our proposed method outperforms the key point-based
features in harmonic mean by at least 7.6 %; as well
as the sensitivity and specificity with the improve-
ment of 56 — 9.6 % for discriminating healthy from
unhealthy subjects. Similarly, experiments show that
our proposed approach yields better performance for
classifying central and peripheral palsy particularly in
sensitivity and specificity with an improvement of
57 -6.2%.
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Fig. 13 Comparison of the performance of RLR, SVYM, DT, NB and Hybrid classifier hDT_RLR. a healthy and unhealthy classification (b) CP and PP type

Some detailed comparisons of the performance of each
of the classification methods including hybrid classifiers
are presented in Tables 5 and 6.

Hybrid classifiers noticeably reveal a significant
improvement of the performance rather than using
the classification methods individually. Although other
hybrid classifiers also yield a good result as with the
hDT_RLR, we need a hybrid classifier that provides stable
results in terms of sensitivity performance measurement
as it is more important in our study but of course without
sacrificing the specificity; thus we chose hDT_RLR. A
comparison of the performance of the proposed method
based on iris-key-point-based feature extraction and the
key-point-based approach for facial palsy grading is pre-
sented in Table 7. The proposed approach outperforms
the key-point-based approach, most particularly in the
regions of forehead and eye with the improvement of 6.0
and 5.2 % respectively. Most importantly an accuracy of
almost 94 % for the overall H-B grading is achieved by our
proposed iris-key-point-based approach.

The results demonstrate that the better performance is
in the forehead and mouth region. Although eye region
is noticeably having the lowest accuracy among other
regions, but our proposed approach reveals a very sig-
nificant improvement from using the key-point based
approach. The approach based on the combined iris and
LAC-based key point detection yields a better perfor-
mance than the solely key point-based approach, most
particularly in the forehead and eye region, which involves
not only the key-point based features but as well as the iris
behavior.

Discussion

Empirical statistics and methods have found that active
contour approach does have a very appealing quality that
generates closed contours, which can be very useful in
separating the outer boundaries of an object from the
background than Canny and SUSAN [29, 31]. Therefore,
it is presumed that localizing active contour (LAC) yields
superior results than the standard edge detection tools

-
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Table 3 Comparison of the performance of the two methods for
healthy and unhealthy discrimination
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Table 5 Comparison of the performance of different classifiers
for facial palsy classification

Key point-based Our approach Classifier Sensitivity(%) Specificity(%) Harmonic mean(%)
Sensitivity 93.0 % 98.6 % RLR 86.7 100.0 929
Specificity 87.1 % 96.7 % SYM 733 95.8 83.1
Harmonic mean 90.0 % 976 % DT 90.0 95.0 924
NB 80.0 96.7 87.5
hDT_RLR 99.3 95.0 97.1
used in the previous methods for detecting the landmark hDT_SVM 993 908 949
points of the human face. Good enough, our experiments
show that LAC-based key point detection works well. hoTNE 7 o 7
However, combining key point-based detection and iris hLR_SVM 867 98 10
segmentation for comprehensive facial paralysis assess- ~ hLR_DT 933 94.5 939
ment has yet more to offer as it outperformed the method  hLR_NB 86.7 9.7 914
that solely uses key points for feature extraction. Addi-  hsym_LR 867 958 910
tionally, the eye region is full of wrinkles, especially the ¢\ 7 933 942 937
f§c1al images of elderly people. The edges‘ and eyelids hSVM_NB 833 s 477
ridge vary irregularly that sometimes deceived the sys-
tem to generate asymmetrical results even for normal hNB_LR 8.7 %7 on4
subjects. Features that are solely based on standard-edge- ~ NNB_DT 96.7 917 94.1
detection-tools-generated key points are not robust to  hNB_SVM 833 925 87.7

model these subtle characteristics of eye surroundings.

Furthermore, our proposed approach to combine iris
segmentation and the LAC-based key point detection for
feature extraction provides a better discrimination of cen-
tral and peripheral palsy most especially in ‘raising of
eyebrows’ and ‘screwing of nose’ movements. It shows
changes of the structure on edges of the eye, i.e., the sig-
nificant difference between the normal side and the palsy
side for some facial movements (e.g. eyebrow lifting, nose
screwing, and showing of teeth). Also, features based on
the combination of iris and key points generated by LAC
can model the typical changes in the eye region. A closer
look at the performance in the eye region, as shown in
Tables 2, 3, 4 and 7 reveal interesting statistics in terms
of the specific abilities of the two methods. Our method
proves to have significant contribution in discriminating
central from peripheral palsy patients and healthy from
facial palsy subjects. The combination of iris segmenta-
tion and LAC-based key point approach is more suitable
for this operation.

The system ‘fpQAS’ is implemented in matlab. The
executable file is available for download on our website:
http://infos.korea.ac.kr/fpQAS/.

Table 4 Comparison of the performance of the two methods for
facial palsy classification

Key point-based Our approach
Sensitivity 93.6 % 99.3 %
Specificity 88.8 % 95.0 %
Harmonic mean 91.1 % 97.1 %

Table 6 Comparison of the performance of different classifiers
for healthy and unhealthy discrimination

Classifier Sensitivity(%) Specificity(%) Harmonic mean(%)
RLR 96.4 96.7 96.5
SVM 95.5 81.7 88.1
DT 95.0 96.7 95.8
NB 929 100.0 96.3
hDT_RLR 98.6 96.7 97.6
hDT_SVM 98.6 83 87.3
hDT_NB 95.0 6.7 95.8
hLR_SVM 95.6 783 86.1
hLR_DT 95.0 96.7 95.8
hLR_NB 95.0 96.7 95.8
hSVM_LR 95.6 96.7 96.1
hSVM_DT 929 96.7 94.7
hSVM_NB 929 100.0 96.3
hNB_LR 929 96.7 94.7
hNB_DT 929 96.7 94.7
hNB_SVM 98.6 783 87.3

Classification methods used in the experiments. Regularized Logistic Regression
(RLR), Support Vector Machine (SVM), Decision Tree (DT), Naive Bayes (NB), combined
DT+RLR (hDT_RLR), DT+SVM (hDT_SVM), DT+NB (hDT_NB), LR+SVM (hLR_SVM),
LR+DT (hLR_DT), LR+NB (hLR_NB), SYM+LR (hSVM_LR), SYM+DT (hSVM_DT),
SVM+NB (hSVM_NB), NB+LR (hNB_LR), NB+DT (hNB_DT), NB+SVM (hNB_SVM)
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Table 7 Comparison of the performance of the proposed
method based iris segmentation and LAC model and the key
point-based detection using LAC

Key point-based Our approach
Mouth 91.0% 93.1%
Forehead 89.0 % 95.0 %
eye 85.1 % 90.3 %
Overall H-B 90.1 % 93.7 %
Conclusion

In this paper, we present a novel approach to quantita-
tively classify and assess facial paralysis in facial images.
Iris segmentation and LAC-based key point detection are
employed to extract the key features. The symmetry of
facial images is measured by the ratio of the iris area and
the vertical distances between key points in both sides of
the face. Our Hybrid classifier provides an efficient quan-
titative assessment of the facial paralysis. One limitation of
the proposed method is that it has a greater sensitivity to
facial images, having significant natural bilateral asymme-
try. However, our iris segmentation and key point-based
method has several merits that are essential for our real
application. Specifically, iris features describe the changes
of the iris exposure while performing some facial expres-
sions. They reveal the significant difference between the
healthy side and the severe palsy side when raising eye-
brows with both eyes directed upward, and can model the
typical changes in the iris region.

Furthermore, iris-based features combined with key
point-based features are insensitive to the illumination as
our proposed method utilizes the key advantage of both
localized active contour and the most cited algorithm
for iris detection, the Daugman’s integro-differential
operator.
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