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Classification of fibroglandular tissue
distribution in the breast based on
radiotherapy planning CT
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Abstract

Background: Accurate segmentation of breast tissues is required for a number of applications such as model
based deformable registration in breast radiotherapy. The accuracy of breast tissue segmentation is affected by the
spatial distribution (or pattern) of fibroglandular tissue (FT). The goal of this study was to develop and evaluate
texture features, determined from planning computed tomography (CT) data, to classify the spatial distribution of
FT in the breast.

Methods: Planning CT data of 23 patients were evaluated in this study. Texture features were derived from the
radial glandular fraction (RGF), which described the distribution of FT within three breast regions (posterior, middle,
and anterior). Using visual assessment, experts grouped patients according to FT spatial distribution: sparse or non-
sparse. Differences in the features between the two groups were investigated using the Wilcoxon rank test.
Classification performance of the features was evaluated for a range of support vector machine (SVM) classifiers.

Results: Experts found eight patients and 15 patients had sparse and non-sparse spatial distribution of FT,
respectively. A large proportion of features (>9 of 13) from the individual breast regions had significant differences
(p <0.05) between the sparse and non-sparse group. The features from middle region had most significant
differences and gave the highest classification accuracy for all the SVM kernels investigated. Overall, the features
from middle breast region achieved highest accuracy (91 %) with the linear SVM kernel.

Conclusion: This study found that features based on radial glandular fraction provide a means for discriminating
between fibroglandular tissue distributions and could achieve a classification accuracy of 91 %.
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Background
Radiotherapy is used to reduce the risk of local recur-
rence in early-stage breast cancer patients who have
undergone breast-conserving surgery (BCS) [1]. The
challenges of radiotherapy for early breast cancer are
evolving from improving the basic survival rates to that
of improving the quality of life of the survivors whilst
maintaining local control. Partial Breast Irradiation (PBI)
aims to irradiate only the volume of breast tissue sur-
rounding the tumour bed (the region at higher risk of
recurrence) rather than the whole breast to minimize

radiation induced side effects [2]. The tumour bed target
is defined during radiotherapy treatment planning using
a computed tomography (CT) scans of the patient, usu-
ally in the supine position. A major challenge in PBI is
the daily, or weekly, change in position, size and shape
of the target region, which may lead to uncertainty in
target localization prior to irradiation. To account for
uncertainty in target localization a margin of normal tis-
sue is included in the irradiated volume which increases
the likelihood of side effects.
This could be addressed using adaptive radiotherapy,

based on biomechanical modelling of breast tissue [3].
Biomechanical modelling requires accurate segmentation
of breast tissue into its constituent components: fibro-
glandular tissue (FT) and adipose tissue [3, 4]. Juneja et al.
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[3] demonstrated that the accuracy of breast tissue seg-
mentation was affected by the spatial distribution of FT;
accuracy was poorer in patients with sparsely distrib-
uted FT than in patients with non-sparsely distributed
FT. It should be noted that the FT distribution is a
physically different characteristic from the breast dens-
ity or fibroglandular composition (FC). FC is the per-
centage of breast tissue that is fibroglandular, while FT
distribution represents how the fibroglandular tissue is
spatially distributed in the breast. Figure 1 illustrates
different distributions (sparse and non-sparse) of FT in
CT images acquired in two patients.
An automatic method is needed to assess FT distribu-

tion of the treated breast to identify breast cancer pa-
tients for whom the adaptive radiotherapy (ART) may be
suitable. The radial glandular fraction (RGF) [5] is a con-
venient method to characterize the radial distribution of
fibroglandular tissue. Previously, a study showed that
RGF of the middle breast region was potentially useful
for discrimination between fibroglandular tissue distri-
butions [6]. The current study extends this work, using
the same dataset, to evaluate RGF from other breast re-
gions and to investigate RGF for classification of fibro-
glandular tissue distributions. The aim was to develop
and evaluate a set of texture features, or metrics, derived
from RGF, for their ability to classify the fibroglandular
tissue (FT) distributions in the breast for breast ART.
RGF was adapted for supine radiotherapy planning CT
images. The ability of these features to classify FT distri-
bution was tested against expert opinion. Classification
performance was evaluated using the support vector ma-
chine with four different mapping kernels.

Methods
Patient dataset
The study datasets comprised planning CT scans of 23
patients. Datasets were originally collected for a com-
parison of prone and supine positioning for breast radio-
therapy [7, 8] which was approved by the Royal Marsden
Committee for Clinical Research and the National

Health Service Regional Ethics Committee (London-Sur-
rey Borders REC). Written informed consent was ob-
tained from all the patients for participation in the
study. Patients had undergone breast conservation sur-
gery, during which time up to six pairs of surgical clips
were placed to define the excision cavity boundaries.
The patients received CT imaging for radiotherapy plan-
ning (from cervical vertebra 6 to below the diaphragm).
FT distributions of the patients’ breast were visually
assessed by an observer (EH) and grouped into non-
sparse FT group (Group 1) and sparse FT group (Group 2).
The grouping was reviewed and agreed by a consult-
ant radiation oncologist specializing in breast radio-
therapy [3].

Radial Glandular function (RGF)
The radial glandular fraction (RGF) presented by Huang
et al. [5], was developed using coronal images acquired
using breast CT with patients positioned prone. The pa-
tient datasets used in this study were axial CT images,
acquired with patients positioned supine, which is stand-
ard practice for all the patients undergoing breast radio-
therapy treatment. These data were processed to
produce a breast orientation equivalent to that used by
Huang et al. [5] using the following steps: (1) segmenta-
tion of the whole breast from the axial CT images using
clinician outlining, and (2) transformation, resampling
and rotation, using bilinear interpolation were applied to
the segmented breast to obtain the desired image orien-
tation. Prior to rotation the whole breast 3D data were
re-sampled, to produce cubic voxels (1x1x1 mm3). The
re-sampled breast was rotated about the superior-
inferior axis by the acute angle formed between
anterior-posterior axis and a line passing through the
nipple and perpendicular to chest-wall, see Fig. 2.
For an image i, the breast radius, R, was calculated by

equating the total area of breast tissue to the area of a
circle (Fig. 3a). RGFi(r) of image i, was the fraction of
pixels marked as FT on a circle with relative radial dis-
tance, r, and its center at the image center of mass

Fig. 1 Sample fibroglandular distributions in the breast, middle-breast CT images: a Breast with sparse distribution of fibroglandular tissue, b
Breast with non-spare distribution of fibroglandular tissue
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(Fig. 3b). The relative radial distance, r, is the circle ra-
dius divided by the breast radius R. For each image, one
hundred values of r were considered. The whole breast
was evenly divided into three regions (Fig. 3c): the pos-
terior breast (region 1), the middle breast (region 2), and
the anterior breast (region 3). The RGFs of the three
breast regions were calculated by averaging the RGFi(r)
over five images centered on slice s (s1, s2, or s3). A
fibroglandular tissue segmentation method recom-
mended by a previous study [3] was utilized in the
current study.

RGF features
RGF gives the proportion of fibroglandular tissue in the
breast as a function of relative radius, it may be consid-
ered a graphical representation of the FT distribution.
For classification of the spatial distribution of fibrogland-
ular tissue, metrics describing this distribution are
needed. The RGF was characterized using the features
listed in Table 1 and presented in Fig. 4. These features,
explained below, were investigated in order to classify
breast fibroglandular tissue distribution of individual pa-
tients. These features were: mean value and standard

deviation of the 100 RGF values for the corresponding
relative radial distances, slope of the linear fit of RGF
values versus relative radius (r), radial position (r) of the
maximum RGF value, the minimum value of RGF, the
maximum value of RGF, the difference in the maximum
and minimum values of RGF, mean of RGF values for
which relative radial distance was less than or equal to
0.5 (mean of inner 50 %), mean of RGF values for which
relative radial distance was greater than 0.5 (mean of
outer 50 %), the difference in the mean of inner and
outer 50 %, mean of the highest 10 % of RGF values
(mean of highest 10 %), mean of the lowest 10 % of RGF
values (mean of lowest 10 %), and the difference in the
mean of highest and lowest 10 %.

SVM classifier
The support vector machine (SVM) [9, 10], a widely-
used classifier, was used to evaluate the classification
performance of the RGF features. The SVM constructs a
maximum-margin hyper-plane in the high dimensional
input feature space, linearly separating the data points
into two classes ensuring the maximum gap between the
classes. Though linear, this decision-boundary can be

Fig. 2 Pre-processing of supine breast data: a Original scan with vector showing orientation of center of breast; b Rotated image with center of
breast at 0° to the vertical direction; c Coronal slice through b

Fig. 3 Description of radial glandular fractions (RGF) measurement: a Coronal CT image (processed, see Fig. 2): white circle encompasses the
whole breast, and blue dotted circle is an example circle with relative radius (r) for which RGF(r) is calculated; b RGF of the slice in a; c. Breast is
evenly divided into three regions: posterior (region 1), middle (regions 2), and anterior (region 3) middle slices s1, s2, and s3, respectively
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rendered arbitrarily-convoluted with respect to the input
space via the kernel-trick, in which inner-product rela-
tions within the SVM optimization function are replaced
by kernel functions, replicating the effect of a feature
mapping. In this study, four kernels were chosen for
evaluation within the SVM to cover a representative

range of behaviors; polynomial, radial basis function and
sigmoid kernels map the features into Hilbert spaces
with differing characteristics, while the linear kernel
equates to retaining the existing feature space and the
radial basis function kernel maps into an infinite dimen-
sional Hilbert space thereby guaranteeing linear class
separability on the training data. The sigmoid kernel de-
rives historically from work on Neural Networks, and
exhibits an inherent quasi-classification-like aspect that
differentiates it from the other kernels. It should be
noted that it is not possible to say a priori which kernel
will be better.
Classification performance for a group of features was

measured with leave-one-out cross-validation for all four
mapping kernels: linear, polynomial of order 3, radial
basis function (RBF) with sigma value of 1 and sigmoid.
The overall C parameter for the SVM was 1. Leave-one-
out cross-validation used a single observation from the
original data as the validation set, and the remaining ob-
servations as the training set. This was repeated such
that each observation in the original data was used once
as the validation set.

Analysis
For each patient dataset, the texture features, listed in
Table 1, were calculated and evaluated for their ability to
classify the FT spatial distribution. RGF features of the
three breast regions for these patient groups were evalu-
ated. The differences in the fibroglandular composition
(FC) (percentage of FT) of the breast in the two groups
were compared using the Wilcoxon rank sum test. For
each feature, the two group means were calculated and
compared using the Wilcoxon rank sum test to investi-
gate their discriminative power. Four SVM classifiers

Table 1 Radial glandular fraction (RGF) features evaluated for the classification of the distribution of fibroglandular tissue

Texture featurea Feature number

Mean RGF 1

Standard deviation of RGF 2

Slope of linear regression of RGF vs. r 3

Radial position of maximum RGF 4

Minimum RGF 5

Maximum RGF 6

Difference in maximum and minimum 7

Mean of radially inner 50 % RGF 8

Mean of radially outer 50 % RGF 9

Difference in means of radially inner and outer 50 % RGF 10

Mean of highest 10 % RGF 11

Mean of lowest 10 % RGF 12

Difference in means of maximum and minimum 10 % RGF 13
aFeatures were calculated using RGF values (100) and the corresponding relative radial distances (r)

Fig. 4 Example of radial glandular fraction (RGF) features (as listed in
Table 1) that were evaluated for the classification of the fibroglandular
distribution: (1) mean value and (2) standard deviation of the 100 RGF
values, (3) slope of the linear fit of RGF values versus relative radius, (4)
radial position (r) of the maximum RGF value, (5) the minimum value
of RGF, (6) the maximum value of RGF, (7) the difference in the
maximum and minimum values of RGF, (8) mean of RGF values for
which relative radial distance was less than or equal to 0.5 (mean of
inner 50 %), (9) mean of RGF values for which relative radial distance
was greater than 0.5 (mean of outer 50 %), (10) the difference in the
mean of inner and outer 50 %, (11) mean of the highest 10 % of RGF
values (mean of highest 10 %), (12) mean of the lowest 10 % of RGF
values (mean of lowest 10 %), and (13) the difference in the mean of
highest and lowest 10 %
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with different mapping kernels were used to evaluate the
classification performance of the 13 RGF features to-
gether. Classification performance was evaluated for the
features from each of the three individual breast regions
and all the regions combined together. Performance ac-
curacy was calculated as a percentage of true identifica-
tions (both sparse and non-sparse) out of total
identifications.

Results
Expert ranking found 15 patients with non-sparse FT
distribution and eight with sparse FT distribution. There
was no statistically significant difference in the FC (per-
centage of fibroglandular tissue) of breasts between the
two groups (p = 0.50).

Radial glandular fraction (RGF)
The group means (averaged over all patients in a group)
RGF for the three breast regions for the two groups (non-
sparse and sparse) are presented in Fig. 5. The variation of
RGF with radius differed qualitatively between the two
groups in all three breast regions (Fig. 5). For group 1 (non-
sparse group) mean RGF varied with relative radius, such
that RGF was highest at the center (r = 0) and lowest at the
periphery (r = 1) of the breast. While for the sparse breast,
the variability in the RGF with relative radius was small. In
both the groups, the anterior region had the highest average
RGF value near the center of the breast (r = 0).

RGF feature analysis
The differences in the texture features between the two
groups for posterior, middle and anterior breast regions
are given in the box plots in Figs. 6, 7 and 8, respectively.
The middle region had the largest proportion (10 of 13) of
features with the most significant differences (p <0.001)
between groups. The anterior and posterior region had 9
and 10 features, respectively, with statistically significant
differences (p <0.05). RGF features from the middle re-
gions had the highest discriminative power followed by
posterior and anterior regions.
The features with significant difference (p <0.05) be-

tween groups were: mean value (mean of RGF) and
standard deviation of the 100 RGF values for the corre-
sponding relative radial distances, slope of the linear fit
of RGF values versus relative radius (r), radial position
(r) of the maximum RGF value, the maximum value of
RGF, the difference in the maximum and minimum
values of RGF, mean of RGF values for which relative ra-
dial distance was less than or equal to 0.5 (mean of inner
50 %), the difference in the mean of inner and outer
50 %, mean of the highest 10 % of RGF values (mean of
highest 10 %), and the difference in the mean of highest
and lowest 10 %.

SVM classifier
RGF feature classification performance for individual
breast regions and all the regions combined and for

Fig. 5 Mean radial glandular fraction (averaged across all patients in a group) (RGF) are plotted for the three breast regions: (posterior: 1, middle: 2,
and anterior: 3) for the two groups: non-sparse and sparse
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linear, polynomial, radial basis function (RBF), and sig-
moid SVM kernels are given in Fig. 9. For all four SVM
kernels, the middle breast region gave the highest classi-
fication accuracy (percentage of true identifications). It
should be noted that the middle region was found to
have the highest discriminative power, as shown in
Figs. 6, 7 and 8. For all regions, the linear kernel gave
the highest accuracy and gave 91.3 % in the middle re-
gion. The polynomial and sigmoid kernels gave 66 % ac-
curacy for all the breast regions. The accuracy of linear

and RBF kernels varied with breast regions, from 62 to
91 %.

Discussion
In this study, various texture features were evaluated to
assess the spatial distribution of fibroglandular tissue
(FT) in the breast. Results showed that the features de-
rived from the radial glandular fraction (RGF) provide a
means for discriminating between non-sparse and sparse
groups. The study of the classification performance of

Fig. 6 Texture features from the posterior region. Box plots of texture features from the posterior region for two groups: non-sparse and sparse.
In each box, median is marked by a central mark (red), the 25th and 75th percentile are the edges of the box (blue), and error bars represent the
range. Features which had significant differences (p <0.05) are highlighted in grey

Fig. 7 Texture features from the middle region. Box plots of texture features from the middle region for two groups: non-sparse and sparse. In
each box, median is marked by a central mark (red), the 25th and 75th percentile are the edges of the box (blue), and error bars represent the
range. Features which had significant differences (p <0.05) are highlighted in grey
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these features using support vector machine (SVM) clas-
sifier gave promising results with accuracy as high as
91 %.
RGF features from the middle regions had the highest

discriminative power. This is most likely due to the
breast tissue architecture in the three regions. The anter-
ior region had the lowest discriminative power between
the groups. This may be because it is close to the nipple
and a greater portion of fibroglandular tissue is located
in the center of the anterior region of the breast in all
cases [5]. Discriminative power within the posterior

region may be decreased due to the smaller proportion
of fibroglandular tissue compared to the middle region.
Sparseness of the FT distribution is of interest for the

purpose of segmenting breast tissues and developing
models for use in adaptive breast radiotherapy, as dis-
cussed in the introduction. Moreover, the availability of
a means of quantifying the FT distribution can facilitate
further studies. For example, studies of the association
of the FT distribution with secondary breast cancer risk
and radio-toxicity risk. To the best of our knowledge, no
other study has ever studied texture features to classify
the sparseness of FT based on CT data.
Tissue distribution patterns have been widely investi-

gated on mammograms [11–14]. Li et al. [12] studied
power spectrum analysis features on mammograms to
differentiate between high-risk BRCA1/BRAC2 mutation
carriers and low-risk women, and found statistically sig-
nificant differences (p <0.0001). Manduca et al. [14] eval-
uated the association of various breast tissue texture
features with the risk of breast cancer using mammo-
grams of 768 women. They found features which pre-
dicted breast cancer risk at a similar magnitude as
mammographic percentage density. Nie et al. [15], using
breast magnetic resonance imaging (MRI), investigated
features such as circularity, convexity, irregularity, and
compactness to characterize morphology of FT distribu-
tion into intermingled (sparse) and central patterns
(non-sparse).
A large proportion of features (9 to 10 out of 13)

based on RGF from the individual breast regions had
significantly different (p <0.05) values for the non-sparse
and sparse groups. It should be noted that, the results

Fig. 8 Texture features from the anterior region. Box plots of texture features from the anterior region for two groups: non-sparse and sparse. In
each box, median is marked by a central mark (red), the 25th and 75th percentile are the edges of the box (blue), and error bars represent the
range. Features which had significant differences (p <0.05) are highlighted in grey
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for the middle region are the same as previously re-
ported [6]. The RGF features were further investigated,
for their classification performance using the support
vector machine. The classification performance of the
RGF features set was evaluated for three individual
spatial regions and all the regions combined. It was
found that the features from the middle breast provide
most accurate classification of FT distributions. However
a study needs to be performed to identify the best of
combination of features for the task and improve classi-
fication accuracy.
This study investigated four commonly used SVM ker-

nels for classification to cover a representative range of
behavior. Each has advantages and disadvantages entirely
specific to the classification problem and it is not pos-
sible to determine a priori which kernel would be most
applicable in advance. In our evaluation, the fact that the
linear SVM performs best of the tested kernels suggests
that the input feature space is already sufficiently rich
with good linear class separation without requiring map-
ping into an alternative Hilbert space.
Furthermore, classification accuracy was measured

using leave-one-out cross-validation within the same
dataset; to better evaluate the performance an independ-
ent test data is required. The data used in the study had
a small number of cases, consisting of 15 non-sparse
and eight sparse FT distributions. Also, the ground truth
was based was based on one expert’s opinion. To quan-
tify and minimize observer bias more than one expert
would be required and possibly repeat ranking sessions.
Because image quality can vary between datasets, the in-
fluence of image quality on FT classification should also
be investigated.

Conclusion
This study evaluated texture features derived from, the
recently developed, RGF for classification of the spatial
distribution of FT. Texture features, based on the radial
glandular fraction are suitable for the classification of FT
and gave accurate classification. Features derived from
the middle breast region had the highest differentiating
power.
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