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Abstract

Background: In thalassemia patients, R2* liver iron concentration (LIC) measurement is a common clinical tool for
assessing iron overload and for determining necessary chelator dose and evaluating its efficacy. Despite the
importance of accurate LIC measurement, existing methods suffer from LIC variability, especially at the severe iron
overload range due to inclusion of vessel parts in LIC calculation. In this study, we build upon previous Fuzzy
C-Mean (FCM) clustering work to formulate a scheme with superior performance in segmenting vessel pixels from
the parenchyma. Our method (MIX-FCM) combines our novel 2D-FCM with the existing 1D-FCM algorithm. This
study further assessed possible optimal clustering parameters (OP scheme) and proposed a semi-automatic (SA)
scheme for routine clinical application.

Methods: Segmentation of liver parenchyma and vessels was performed on T2* images and their LIC maps in 196
studies from 147 thalassemia major patients. We used manual segmentation as the reference. 1D-FCM clustering
was performed on the acquired image alone and 2D-FCM used both the acquired image and its LIC data. To
execute the MIX-FCM method, the best outcome (OP-MIX-FCM) was selected from the aforementioned methods
and was compared to the SA-MIX-FCM scheme. We used the percent value of the normalized interquartile range
(nIOR) to its median to evaluate the variability of all methods.

Results: 2D-FCM clustering is more effective than 1D-FCM clustering at the severe overload range only, but inferior
for other ranges (where 1D-FCM provides suitable results). This complementary performance between the two
methods allows MIX-FCM to improve results for all ranges. OP-MIX-FCM clustering error was 2.1 + 2.3 %, compared
with 10.3+99 % and 7.0+ 11.9 % from 1D- and 2D-FCM clustering, respectively. SA-MIX-FCM result was comparable to
OP-MIX-FCM result, with both schemes showing ability to decrease overall nlQR by approximately 30 %.

Conclusion: Our proposed 2D-FCM algorithm is not as superior to 1D-FCM as hypothesized. In contrast, our MIX-FCM
method benefits from the best of both methods to obtain the highest segmentation accuracy at all ranges. Moreover,
segmentation accuracy of the practical scheme (SA-MIX-FCM) is comparable to segmentation accuracy of the reference
scheme (OP-MIX-FCM). Finally, we confirmed that segmentation is crucial to improving LIC assessments, especially at
the severe iron overload range.
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Background

Thalassemia major patients require lifelong regular blood
transfusions, which cause tissue iron overload and can
lead to serious complications if excess iron from the trans-
fusions is not properly managed [1, 2]. Magnetic reson-
ance imaging (MRI), which measures transverse relaxation
rates (R2*), has become a convenient clinical tool to assess
and monitor iron overload, especially in the heart and liver
[3—6]. In a clinical setting, relaxivity measurements from
the liver are converted based on biopsy results into liver
iron concentration (LIC) data [7—10], which can then be
used to determine necessary chelator dose and evaluate its
efficacy [11-14]. As such, longitudinal iron overload
studies benefit greatly from reliable and precise LIC
measurements.

Liver R2* measurement consists of two stages: MR ac-
quisition, which is well established, and post-processing
analysis, which consists of various implementation
methods without a standard dominant approach. Differ-
ences among analysis techniques include fitting together
of criteria and models, and selection of region of interest
(ROI) [15, 16]. Nevertheless, intra- and inter-observer
variability has been reduced using an analysis method
described previously [15, 17]. The method employs a
median R2* calculated using pixel-wise criteria [5, 15, 17]
with a constant-offset mono-exponential (C-EXP) model
[18]. The ROI is selected as the entire liver with the obvi-
ous major vessels excluded, but some unavoidable compo-
nents still remain as part of the LIC calculation. Such
inclusion increases reported LIC variation, especially at
the high LIC level due to considerable difference between
the R2* of the vessels and the heavily overloaded paren-
chyma. Exclusion of such vessel parts from the calculation
should, therefore, be greatly desired in the monitoring the
chelator efficacy, especially at the high iron overload range
[14, 17]. A posteriori segmentation of vessel pixels from
the parenchyma can yield more robust estimates of
LIC distribution and can further reduce reported LIC
variation. Manual segmentation, however, is a time-
consuming process and is prone to inter-observer variabil-
ity. Therefore, automatic (without any user interaction) or
semi-automatic (partial user interaction) segmentation is
preferred, especially for routine clinical tasks.

Several such segmentation methods have been sug-
gested by employing T2* thresholding [19-21] or image
segmentation method [17, 22]. The latter method is
based on Fuzzy C-Mean (FCM) clustering concept, which
is suitable for clinical tasks because multiple clusters can
be automatically assigned for each data element, in-
creasing tolerance for variations and noise [23-26].
However, intensity inhomogeneity (bias field) can still
cause erroneous segmentation and overlapping tissue
classes. Various methods to minimize the bias field
problem have been suggested [27-29], generally including
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an additional feature using smooth non-parametric gain
fields.

Positano et al. [17] investigated FCM-based segmenta-
tion to improve liver R2* assessment. Their results
showed the advanced FCM algorithm with gain-field
correction on the acquired intensity (AI) images to pro-
vide the best outcome (100 % exclusion of vessels and
70 % inclusion of the parenchyma), as compared with
various alternative algorithms. However, the advanced
algorithm still relies on hardware information (e.g., ef-
fects of RF-coil-induced MR intensity inhomogeneity),
limiting the general applicability of this approach. Thus,
an algorithm providing a similar outcome without rely-
ing on such specific information would be preferable.

In this study, we propose a new 2D-FCM clustering al-
gorithm using both Al and LIC to segment vessels from
parenchyma based on the conventional FCM algorithm
without any gain field models. Our method is based on
the hypothesis that LIC data should improve clustering re-
sult because its value depends mainly on iron concentra-
tion, thus reducing bias field effects on Al images. The
effect of which should facilitate implementation for gener-
alized use in a clinical setting. Moreover, the 2D-FCM
method should improve clustering accuracy, as compared
with using only AI data (1D-FCM). The MIX-FCM
method, which derives its results from the best possible
clustering outcome from both 1D- and 2D-FCM results,
was also evaluated. This study also assessed possible opti-
mal clustering parameters (OP scheme) and proposes a
semi-automatic (SA) scheme for routine clinical use.

Design and methods

Study group

The study used liver T2* MR images and LIC maps cor-
responding to 196 studies from 147 thalassemia major
patients (60 males and 87 females; aged 20.3 + 11.4 years)
performed during the March 2009 to July 2011 study
period. The protocol for this study was approved by the
Siriraj Institutional Review Board (SIRB), Faculty of
Medicine Siriraj Hospital (Si708/2014). Written informed
consent was obtained from adult participants and from a
parent or guardian of pediatric patients. R2* measurement
results were grouped according to LIC levels [30] tabu-
lated from biopsy results, as reported by Wood, et al. [9],
as follows: normal (LIC < 3 mg/g dw, n =27), mild (3 mg/
g dw < LIC <7 mg/g dw, n = 38), moderate (7 mg/g dw <
LIC < 15 mg/g dw, n = 40), and severe (LIC > 15 mg/g dw,
n=91). To facilitate the investigation of clinically over-
loaded livers only, normal LIC-level cases were excluded,
leaving a total of 169 studies in the investigation.

MRI and interpretation
Liver MR images were performed on a 1.5 T Achieva-XR
Quasar-Dual-Gradient System (Philips Medical Systems,
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Best, The Netherlands) using a five-element cardiac
phase-array coil. We used a common method of liver R2*
measurement, as described in previous reports [15, 31]. In
brief, the acquisition part included a breath-hold multi-
echo fast gradient-recalled-echo sequence using 20 echo
times (TEs = 1.07-16.30 ms with 0.8 ms increments) from
a mid-hepatic slice. The analysis phase consisted of pixel-
wise fitting using the C-EXP model [5, 15, 22]. R2* values
were calculated within a large manually-defined ROI of
the entire liver parenchyma, excluding the major blood
vessels [15, 22, 31]. R2* results were then calculated to
LIC values, which were then reported as median and
interquartile range (IQR) [9, 31]. To evaluate variability of
the LIC measurement, #IQR was determined by normaliz-
ing IQR to its median:

_ (Q3-Qy) %100
HQR(%) ==
Where Q; and Q3 represent the first and third quar-
tiles of LIC data inside the ROIL.

Segmentation of liver parenchyma and cessels
Segmentation of vessels from parenchyma pixels was
performed only inside user-defined ROIs. MATLAB
Toolbox (MathWorks, Inc., Natick, MA, USA) was used
for all analytical operations. Manual segmentation was
based on thresholding and basic morphological opera-
tions by a medical expert on a TE image with a high-
contrast signal between the parenchyma and vessels, as
well as the corresponding LIC map. These manual seg-
mentation results served as reference (ground truth)
data for evaluation and comparison against all FCM
clustering methods.

FCM is a pixel-wise iterative algorithm that aims to
partition data by minimizing an objective function. The
standard FCM objective function [23, 25] for segmenting
input data of # pixels into C clusters is:

C n C
Tm(u,v) = ZZMZ’ d? (xj7 v,-) subject to Zuij =1

=1 j=1 =1

and u; € [0,1]

Where dz(xj, v;) is the Euclidean distance (IIxj—villz)
between data point x; and centroid v; of the i cluster;
and u; is the membership of data x; in the i cluster.
The parameter m is the fuzzy factor, which controls the
fuzziness of partition results (m>1). Furthermore, if
allow X to be a kx » input data matrix, then k is the di-
mension of the feature vectors (ie., dimension of input
data) for each x; and # is the number of feature vectors
(i.e., number of image pixels).

We used FCM to segment the parenchyma and vessels
(C=2) and set m to the commonly used value of 2 [27].
There were two types of input data investigated. One
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involved only Al values (k=1, 1D-FCM) and the other
used both AI values and the corresponding LIC map
(k=2, 2D-FCM), as shown in Fig. la. Therefore, the in-
put data were x; = (x;7£) and x; = (x; 7z, %j,11c) for 1D- and
2D-FCM, respectively, where j was a 2D image coordinate
and TE and LIC denoted the Al value of the TE image and
its LIC value, respectively. For both input data types, FCM
outcomes were dependent on the selected TE image.
Clustering results also depended on the defuzzified (mem-
bership) threshold (13), which assigns each pixel to a spe-
cific cluster. Therefore, to determine the optimum TE and
threshold (OP scheme), we applied fifty threshold levels
between 0 and 0.98 with 0.02 increments. As a result, OP
scheme selects the best outcome or the most accurate
clustering result (as compared to manual segmentation)
from a total of 1,000 (ie., 20 TEs and 50 #3) FCM out-
comes for each data input from both 1D- and 2D-FMC re-
sults (Fig. 1a). Moreover, the MIX-FCM method was also
evaluated based on selection of the best clustering out-
come from both results.

To quantitatively validate FCM clustering results
compared to manual segmentation (ground truth), we
employed tissue segmentation accuracy (7SA) [26],
based on the dice coefficient [24], defined as follows:

2N ;i * 100
St re
TP x100

~ ((FP+TP)+ (TP+EN))/2

Where N, denotes the number of pixels that are cor-
rectly assigned to tissue i by FCM clustering and N
and N,,; are the total number of pixels assigned to tissue
i in the clustering result and the reference (manual seg-
mentation), respectively. Thus, TSA percentage is the set
of true-positives (7P) divided by the average of the size
of the clustering result (false-positives (FP) + TP) and the
size of the ground truth set (false-negatives (EN) + TP).
To further quantitatively delineate clustering results
from both the parenchyma and vessels, we defined a
Dy, value, which quantifies proximity of FCM segmen-
tation to the perfect outcome (ground truth), as follows:

DTSA (%) = \/(100_TSAliver)2 + (100_T‘S'Avessels)2

The lower the Dygy value, the more accurate the FCM
clustering result (i.e., perfect clustering corresponds to
Dygq=0). The OP scheme for the 1D- and 2D-FCM
methods identifies the best outcome from the lowest of
the two Drgy values, which are derived from all possible
TE input and membership thresholds. The OP-MIX-FCM
scheme, on the other hand, identifies the result from the
lowest Drs4 value of these two methods (Fig. 1a).

In addition, a semi-automatic (SA) scheme (Fig. 1b),
which aims for a practical implementation, was also
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Fig. 1 Diagrams of OP (a) and SA (b) schemes. Optimum (OP) scheme defines the best segmentation result from all possible clustering
outcomes, as compared to manual segmentation. Semi-automatic (SA) scheme defines a TE input automatically from its RNR,., and allows user
to manually select the best outcome and an appropriate membership threshold from pre-calculated images of both FCM types

proposed and investigated. In the SA scheme, one FCM
variable (TE input) was selected automatically, while the
other (membership threshold) was chosen manually by
the user. We propose selection of one variable (as op-
posed to two) to be more practical for the user in prac-
tical clinical application. The scheme calculates the
signal range to noise ratio (RNR), which is defined as
the difference between the largest and smallest signal in-
tensity inside the ROI to the standard deviation of noise
signal from each TE image. The TE input to the SA-1D-
and SA-2D-FCM calculations is then chosen from the
image with the maximum RNR (RNRp,,). The MIX-
FCM method is also used in this scheme. The user,
therefore, needs to choose the best outcome and mem-
bership thresholds (which have the same number of
levels as in the OP scheme) from the pre-calculated im-
ages of both FCM types. Consequently, there will be 50
outcomes (50 u3) for each SA-1D- and SA-2D-FMC out-
put from which the user may select. The SA-MIX-FCM
scheme, thus, serves as a practical implementation alter-
native, while the OP-MIX-FCM scheme serves best as
the optimal outcome or reference alternative.

Statistical analysis

MATLAB Statistics Toolbox was used for all statistical
analysis. Paired Student’s t-test and Mann—Whitney U test
were used for parametric and non-parametric evaluations

between two data sets of Drs, and nIQR, respectively. For
all statistical analysis, p<0.05 was considered as the
threshold for statistical significance. Coefficient of vari-
ation (CV), signifying level of agreement, was calculated
from the mean (bias) + 1.96 standard deviation (SD) of the
differences between each method pair and then divided by
their mean, resulting in a percentage. CV was used to
evaluate levels of agreement of n/QR between manual-
segmentation and all FCM-segmentation results.

Results

In this study, FCM clustering from the parenchyma was
found to be more accurate than from the vessels (Table 1).
The 2D-FCM method was significantly more accurate
than thelD-FCM method for vessel segmentation only,

Table 1 Mean + SD of TSA values

Method ~ OP scheme SA scheme

Parenchyma (%) Vessels (%) Parenchyma (%) Vessels (%)
1D-FCM 983+1.7 89.8+9.8 96.9+23 81.7£11.0
2D-FCM 986+3.3 932+114 976+48 889+ 13.9
MIX-FCM 99.7 +04 979423 988+ 1.1 929+55

Mean + SD of TSA values from parenchyma and vessel classes of 1D-, 2D-, and
MIX-FCM clustering for both OP and SA schemes. This shows the 2D-FCM
method to be significantly more accurate than 1D-FCM for vessel segmentation
only, while MIX-FCM method yields a superior result over both individual
component methods and for both anatomic segmentations
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while MIX-FCM vyielded a superior result to both individ-
ual methods in both anatomical clusters. For both OP and
SA schemes, vessel segmentation accuracy (7SA) of 2D-
FCM clustering was significantly better than that of 1D-
FCM (t-test: p=0.004 and p<0.001, respectively), but
there was no significant difference in the parenchyma (¢-
test: p = 0.384 and p = 0.142, respectively). MIX-FCM clus-
tering of both schemes was far superior (¢-test: p < 0.001)
to that of its individual component methods for both
segmentation outputs. Moreover, TSA results from both
OP-MIX-FCM and SA-MIX-FCM schemes were not sta-
tistically different (¢-test: p <0.001) for both anatomical
clusters. Thus, the MIX-FCM algorithm improves seg-
mentation accuracy, compared with using either the pro-
posed method or the existing method alone. In addition,
segmentation accuracy of the practical scheme (SA-MIX-
FCM) was comparable to that of the reference scheme
(OP-MIX-ECM).

From Table 2, the segmentation error (Dzs,) from the
OP and SA schemes of the MIX-FCM method for all
LIC levels were 2.1+23 % and 7.2+5.6 % (t-test: p<
0.001), respectively. The Dzsy from the OP and SA
schemes of the 1D- and 2D-FCM methods for all LIC
levels were 10.3+9.9 % and 185+ 11.2 % (f-test: p<
0.001), and 7.0+11.9 % and 11.4+14.6 % (t-test: p=
0.002), respectively. For both schemes, higher LIC levels
increase Drgs of 1D-FCM, while 2D-FCM yields a high
Dygs for moderate LIC levels. In contrast, MIX-FCM
from both schemes can reduce Drg4, as compared to ei-
ther 1D- or 2D-FCM alone, and yields low Drg, for all
LIC levels.

Figures 2 and 3 demonstrate the benefit of the MIX-
FCM method from the OP and SA schemes, respect-
ively. For both schemes, the first row shows a case for
which 2D-FCM clustering provides a better segmenta-
tion result than 1D-FCM (Drg4: 0.05 vs. 28.6 % and 0.16
vs. 29.7 %, respectively). The second row shows the op-
posite result, in which Dzg, for 1D-FCM is better than
for 2D-FCM (2.0 vs. 57.5 % and 8.4 vs. 59.3 %, respect-
ively). Thus, the MIX-FCM method selects the 2D-FCM

Table 2 Mean + SD of Dy, values

Scheme Method  LIC levels
Mild Moderate  Severe All

OP 1D-FCM 09+15 45+81 169+78 103+99
2D-FCM 52+102 11.1+90 59+132 70+119
MIX-FCM 0815 22+29 26+21 21+23

SA 1D-FCM 98+4.7 133+82 246+£10.7 185+112
2D-FCM 1404137 184+153 72+134 114+146
MIX-FCM  97+47  101+48 49453 72£56

Mean + SD (%) of Drss values from1D-, 2D-, and MIX-FCM clustering by LIC
level for both OP and SA schemes. MIX-FCM method delivers significantly
lower error rates than either of its component parts alone
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result for the first case (D7g4 = 0.05 and 0.16 %) and the
1D-FCM result for the second case (Dzg4=2.0 and
8.4 %) for the OP and SA schemes, respectively. This il-
lustrates how MIX-FCM achieves high clustering accur-
acy, compared with the accuracy of using each method
alone. Using the cases presented in Fig. 2, Fig. 4 presents
scatter plots which confirm that 2D-FCM clustering is
more successful in the first case (Fig. 4b) than in the sec-
ond case (Fig. 4d), with manual segmentation (Fig. 4a
and c representing the first and second cases, respect-
ively) serving as the reference. While the 2D-FCM
method can yield better segmentation results than the
1D-FCM method, especially at high LIC levels, the data
distribution limits clustering accuracy overall.

Figures 5 and 6 describe the segmentation errors of
the FCM methods, relative to TE (OP scheme) and RNR
(SA scheme), respectively. The optimal TEs, defined
from the minimum Dgzg4 values, occurred on images
corresponding to a TE of 5.8 and 11.5 ms for 1D- and
2D-FCM, respectively (Fig. 5g and h). However, the Drgu
values were not significantly different (z-test: p = NS)
from the adjacent TE data. Moreover, higher LIC levels
led to lower TE values, corresponding to images produ-
cing minimum D7y results (Fig. 5a-f). TEs from the OP
scheme had values of 5.8 +4.3 and 11.5 + 6.1 ms for 1D-
and 2D-FCM, respectively. The SA scheme, on the other
hand, defined the TE input from the RNR_., (Fig. 6).
The minimum Dzg, values occurred at the highest RNR
values for both FCM methods at all LIC levels, but the
values were not significantly different (t-test: p = NS)
from the neighboring RNR data. TEs from the SA
scheme had a value of 8.2+5.2 ms. As such, the input
selection from the SA scheme should also provide mini-
mum Drygy values similar to those of the OP scheme. In
this study, the mean + SD of the TE values of the OP-
MIX-FCM and SA-MIX-FCM schemes were 10.2 + 6.3
and 8.2 £ 5.2 ms, respectively, without statistical differ-
ence (t-test: p=NS). As a result, the TE selection from
the SA scheme is comparable to that of the reference
scheme.

The other FCM clustering variable, membership thresh-
olds, were also investigated. Thresholds from the OP
scheme had values of 0.81 +0.13 and 0.53 £ 0.24 for 1D-
and 2D-FCM,, respectively, but did not show a relationship
with LIC values. Results from 1D- and 2D-FCM member-
ship selection in the OP scheme are the same as user se-
lection in the SA scheme. Moreover, the mean + SD of the
threshold selection from the OP- and SA-MIX-FCM
schemes were comparable (0.58 + 0.28 vs. 0.60 + 0.26, re-
spectively), implying similar selection by the reference
scheme and the user. For example, Fig. 7 presents the
same two cases as presented in Fig. 2, with various mem-
bership thresholds. In the first case, the user selected a re-
sult from SA-2D-FCM at 0.60 threshold (Fig. 7h), and in
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OP-ID-F(M OP- 2D FCM

Fig. 2 Example images from OP scheme. Example liver images, LIC, and segmentation results from two cases, with each row corresponding to a
case. The first column (a and f) and second column (b and g) are theacquired image and the corresponding LIC map, respectively. Manual (c and
h), OP-1D-FCM (d and i), andOP-2D-FCM (e and j) clustering results are shown in the 3rd, 4th, and 5th columns, respectively. The colormap scale

F TE=27ms

_

bar for the LIC map is displayed below the images in mg/g dw (dry weight). 2D-FCM clusteringoutperformed 1D-FCM in the first case, with
opposite performance results in the second case.

the second case from SA-1D-FCM at 0.94 threshold
(Fig. 70), which are the same thresholds as in the reference
scheme. In summary — to obtain an optimal result, the
FCM input variables, namely the TE values and the mem-
bership threshold, must be appropriately selected, in
which case the SA scheme will identify input selections
similar to those of the reference scheme.

LIC values reported by their medians obtained from
non-segmented and segmented images were similar
(17.9+10.6 vs. 18.3 £10.8 mg/g dw, respectively; ¢-test:
p=NS). As such, LIC values can withstand the outlier

effect caused by vessel data. In contrast, LIC variations
or the nIQR after excluding vessel data were significantly
lower by around 30 % (16.4 + 7.9 % (segmented) vs. 23.2 £
9.2 % (non-segmented); U test: p <0.001) (Table 3). The
nIQR reductions from replacing non-segmented images
with segmented images were approximately 14 % (14.4 +
4.6 vs. 16.8 4.8 %; U test: p=0.0330) at the mild LIC
level, 16 % (18.8+54 % vs. 224 +8.1 %; U test: p=
0.0205) at the moderate LIC level, and 38 % (16.2 +9.6 %
vs. 26.3+9.7 %; U test: p <0.001) at the severe LIC level.
Put another way, inclusion of vessel data in the LIC

T2* Image

D TE=1.9ms

SA- lD F(M

FIE THEE IE T
L § " L] 2 ] 2 L} § " " » ] b ]

Fig. 3 Example images from SA scheme. Example images from SA scheme using the same cases used in Fig. 2. The first column (a and d) is the
acquired image while the 2nd (b and e) and 3rd (c and f) columns are theSA-1D-FCM and SA-2D-FCM clustering results, respectively.

SA-2D-FCM
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Fig. 4 Scatter plots of normalized Al and LIC data. The scatter plots show normalized Al and LIC data from manual (left) and 2D-FCM (right)
segmentations from the same cases used in Fig. 2. Empty and filled dots represent vessel and parenchyma populations, respectively, with 2D-FCM
centroids denoted by black triangles. The 2D-FCM clustering result was similar to the manual result in the first case, but different in the second case
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calculation will overestimate the distribution of iron in
liver parenchyma by almost 38 % at the severe overload
range. The exclusion of vessels can, therefore, further im-
prove assessment of LIC measurement. Although all three
of the FCM clustering methods from the OP scheme re-
sulted in similar #IQR values when compared with the
manual method, their CVs of n/QR were markedly differ-
ent. 1D-FCM had the highest CV (14.9 %), compared with
CVs of 5.2 and 2.4 % for the 2D- and MIX-FCM methods,
respectively. However, both 1D- and 2D-FCM methods
suffer from high CVs at the severe overload range (21.0
and 6.7 %, respectively). The SA-MIX-FCM scheme
achieved an acceptable CV (4.1 %), as compared to refer-
ence (24 %). Overall, MIX-FCM clustering of both
schemes yielded results that match the reference (manual
segmentation) to a suitable degree, while individual results
from 1D- and 2D-FCM clustering were found to be less
accurate and less reliable, especially at the severe overload
range.

In summary, as compared with the basic (1D-FCM)
and proposed (2D-FCM) methods, the OP-MIX-FCM
scheme yielded a significantly (t-test: p <0.001) lower
segmentation error (10.3+9.9 % and 7.0+ 11.9 vs. 2.1 £
2.3 %, respectively) and CV of nIQR (14.9 % and 5.2 vs.

2.4 %, respectively). The SA-MIX-FCM scheme delivered
an outcome (segmentation error: 7.2+5.6 %; CV of
nIQR: 4.1 %) comparable to that of the reference OP-
MIX-FCM scheme.

Discussion

Typically, calculated LIC values from the entire liver
ROI include some vessel data, but reporting by their me-
dians can reduce outlier data caused by the vessel parts
[5, 15, 17, 22]. Their IQRs, on the other hand, are over-
estimated due to this vessel data (especially at the severe
LIC range) [17], which reduces the reliability and preci-
sion of the measurement. Segmentation of the vessels
increases measurement precision yielding only iron distri-
bution in the liver parenchyma, but manual segmentation
is time consuming and introduces user dependencies, ren-
dering it unsuitable and impractical in a clinical setting.

In this study, we propose a new FCM (2D-FCM) algo-
rithm based on a combination of Al and LIC values for
vessel segmentation. We found that it effectively im-
proves segmentation accuracy, as compared with con-
ventional FCM (1D-FCM), at the severe overload range.
It is, however, less accurate at the other ranges. The 2D-
FCM method is, therefore, not entirely superior to 1D-
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FCM. Alternatively, we propose the MIX-FCM method,
which showed ability to substantially improve segmentation
accuracy with lower CV of nIQR at all iron overload
ranges. This study also investigated a semi-automatic
(SA-MIX-FCM) scheme that can be practically imple-
mented for clinical application and that provides a
segmentation outcome comparable to that of the ref-
erence (OP-MIX-FCM).

In this study, the 1D-FCM method from the OP
scheme had the highest error (17 %) at the severe over-
load range. This result eventuated from the optimal (the
minimum Dzgyu) clustering parameters (i.e., the optimal
TE image and membership threshold), and yet still
yielded very poor performance. This result is likely ex-
plained by the bias field and artifacts that are detrimen-
tal to intensity-based classification methods, such as
FCM [23-25]. Instead of using gain field correction to
improve performance, as reported in previous studies
[17, 27, 28], we performed 2D-FCM, which resulted in
7 % segmentation error (OP scheme). 2D-FCM segmen-
tation, as compared with 1D-FCM, was found to be
more accurate at the severe overload range and less ac-
curate at the other two ranges (Table 2). The improve-
ment is the result of the high contrast between the
parenchyma and vessels in the LIC data (Fig. 2e), which
can reduce the bias field effect of the AI values. In

contrast, 2D-FCM is less effective at the other two
ranges due to low contrast between the two anatomical
classes in the LIC data. Additionally, there are some
cases in which 2D-FCM clustering results with very high
segmentation errors (more than 30 %) are likely caused
by a non-spherical shape and a population concentration
of Al values and LIC map (Figs. 2j and 4d). This popula-
tion characteristic renders 2D-FCM clustering less ef-
fective, because the algorithm defines the classification
based on the minimum Euclidean (spherical) distance
between each data point and the centroid of the cluster
groups [23, 24]. At the severe level, the high contrast of
LIC data can minimize such a non-spherical effect
(Figs. 2e and 4b). On its own, the 2D-FCM algorithm is
not always preferable to the standard 1D-FCM method.
In our study, using a fixed TE and membership thresh-
old input as suggested by Positano, et al. [17] did not
produce an optimal clustering result. Their report sug-
gested using the last TE image and a threshold of 0.5 for
FCM clustering to obtain segmentation errors of ap-
proximately 50 and 30 % for input data without and with
gain field correction, respectively. The advice to use the
last TE image holds true only in the mild overload
range, which has the lowest error around that TE (Fig. 5a
and b). For the moderate and severe overload ranges,
however, this image choice does not provide optimal
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results, because minimum error can be acquired from
an earlier TE image (Fig. 5c-f). Regarding membership
threshold, a fixed threshold of 0.5 is reasonable for 2D-
FCM (0.53), but too low for 1D-FCM (0.81); so, a variable
threshold should provide better clustering results than a
fixed threshold. In our study, if the same fixed TE and
threshold were applied, the error would have been 55 and
25 % (data not shown) for the 1D-FCM and 2D-FCM, re-
spectively. This error rate is substantially higher than the
best outcomes from the OP scheme of 10.3 and 7 %,
respectively.

From our study, the optimal combined scheme (OP-
MIX-FCM) yielded a classification error of only about
2 %. This low error rate was attributed to the comple-
mentary effect of the 1D- and 2D-FCM methods, in
which the latter method reduces the bias field effect,
thus impairing the former method at the severe overload
range, while the detrimental effect of the non-spherical
shape population and low contrast in the LIC data at the
other two ranges is mitigated by using 1D-FCM results.
As a result, MIX-FCM is vastly more practical in a clin-
ical setting, as compared to the use of each method
alone.

Our proposed practical implementation (SA scheme)
of the MIX-FCM method is based on a finding from the
optimal FCM input parameters, which showed an

inverse relationship between optimal TE images and LIC
values. This finding was then integrated into the SA
scheme to automatically select the TE image input based
on RNR,,,, value. Membership threshold, on the other
hand, did not show any such clear relationship, so user
selection continues to be required. The SA scheme does
fit the criteria for a practical implementation, because it
only requires the user to select appropriated member-
ship thresholds from both the 1D- and 2D-FCM
methods and then chose the desired output (the SA-
MIX-FCM). We also found that the SA-MIX-FCM
scheme can achieve segmentation accuracy comparable
to that of OP-MIX-FCM.

We also found that LIC values calculated from non-
segmented and segmented images to be statistically in-
significant, which confirms the benefit of reporting LICs
by their median, as found in previous studies [5, 15, 17, 22].
The nIQRs from former images, in contrast, are significant
higher. This holds true, especially at the severe overload
range, due to the considerable difference in LIC values be-
tween vessel and parenchyma. Exclusion of such vessels as
in the later images, therefore, can help to improve preci-
sion of measurement, which relates only to iron distribu-
tion from the liver parenchyma. This should improve
assessment of LIC measurement in both longitudinal
studies and clinical trials.
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Fig. 7 1D- and 2D-FCM images of SA scheme from various membership thresholds. 1D- and 2D-FCM images ofSA scheme from the same cases
used in Fig. 2 show segmentation results from membership thresholdsof 0.20, 0.40, 0.60, 0.80, and 0.94. SA-1D-FCM (a-e) and SA-2D-FCM (f-)
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respectively. Note: User select membership threshold (u) of 0.60 on 2D-FCM image (h) for the first case and0.94 on the 1D-FCM image (o) for the

second case.

This study was limited by the following factors and
circumstances. First, due to the generally young age of
our thalassemia patients, no diffuse or focal liver dis-
eases were observed in our study. Inclusion of these
pathologies would very likely alter our FCM clustering
results. Further studies are needed to investigate the ef-
fects of comorbidities on FCM clustering results. Next,
ECM clustering errors may be underestimated due to
bias resulting from manual segmentation, which was
performed by only one expert who was also familiar with
the FCM clustering technique. A blinded experiment
should be performed to minimize potential bias. Finally,

Table 3 Mean + SD of n/OR values

Type nlQR (%)

Mild Moderate Severe All
None 168+4.8 224+8.1 263197 232+92
Manual 144+ 46 188+54 162+96 164+79
OP-MIX-FCM 144 +45 188+53 162+£95 164+78
SA-MIX-FCM 144+45 18854 16.2+96 164+79

Mean + SD of nlQR values obtained for non-segmented images and images
segmented by manual, OP-MIX-FCM, and SA-MIX-FCM schemes. Results are
tabulated by LIC level and demonstrate that all segmentation types yield
similar variations (n/QR), all of which are substantially lower than those
corresponding to non-segmented images

we only investigated a standard FCM algorithm without
gain field correction, because the standard routine
already existed in the MATLAB commercial software
that we used for analysis and we aimed for a simple im-
plementation that could be generally applied in a clinical
setting. Nevertheless, our 1D- and 2D-FCM clustering
results using the same FCM variables are comparable to
1D-FCM results without and with gain field correction
reported from another study [17]. Accordingly, add-
itional study should focus on testing our SA scheme in a
large number of cases in routine clinical usage and, fur-
ther, investigate its intra- and inter-observer variability.
Our SA scheme should also be further investigated re-
garding automatic selection criteria for TE image input.
Such an investigation may reduce segmentation error to
a level similar to that of the optimal (OP) scheme.

Conclusions

Our proposed 2D-FCM clustering method, as compared
with the 1D-FCM method, improves accuracy of seg-
mentation only at the severe overload range. Our
proposed MIX-FCM scheme, however, substantially im-
proves segmentation accuracy at all ranges and has the
lowest CV of nIQR among all methods. The proposed
SA-MIX-FCM scheme can be practically implemented
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in a routine clinical setting and provides a segmentation
outcome comparable to the reference (OP-MIX-FCM)
scheme. Implementation should reasonably be expected to
improve LIC assessments, especially at the severe overload
range, and would benefit thalassemia patients, particularly
with regard to monitoring efficacy of the chelator.

Abbreviation

Al: Acquired Image; C-EXP: Constant-offset mono-EXPonential model;

Drss: Segmentation Error from both vessel and parenchyma clusters;

FCM: Fuzzy C-Mean; IQR: Inter-Quartile Range; LIC: Liver Iron Concentration;
MRI: Magnetic Resonance Imaging; nlOR: Normalized Interquartile Range;
OP: Optimal scheme; RNR: Range to Noise Ratio; RNR ., Maximum of Range
to Noise Ratio; ROI: Region of Interest; SA: Semi-Automatic scheme;

TSA: Tissue Segmentation Accuracy.
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