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Abstract

Background: Ultrasound is considered a reliable, widely available, non-invasive, and inexpensive imaging technique
for assessing and detecting the development phases of cancer; both in vivo and ex vivo, and for understanding the
effects on cell cycle and viability after ultrasound treatment.

Methods: Based on the topological continuity characteristics, and that adjacent points or areas represent
similar features, we propose a topological penalized convex objective function of sparse coding, to recognize
similar cell phases.

Results: This method introduces new features using a deep learning method of sparse coding with topological
continuity characteristics. Large-scale comparison tests demonstrate that the RAW can outperform SIFT GIST
and HoG as the input features with this method, achieving higher sensitivity, specificity, F1 score, and accuracy.

Conclusions: Experimental results show that the proposed topological sparse coding technique is valid and
effective for extracting new features, and the proposed system was effective for cell recognition of microscopy
images of theMDA-MB-231 cell line. This method allows features from sparse coding learning methods to have
topological continuity characteristics, and the RAW features are more applicable for the deep learning of the
topological sparse coding method than SIFT GIST and HoG.
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Background
Knowledge of cell viability, the cytoskeletal system, cell
morphology, cell migration, tumor cell inhibition rate,
and cell cycle (interphase, prophase, metaphase, and
anaphase) are important for understanding various dis-
eases, notably cancer [1, 2]. Changes in the cell cycle
before and after drug treatment are useful for effective
drug discovery research [3]. Critical to such measure-
ments is the accurate recognition of mitotic cells in a
cell culture via automated image analysis. Hundreds of
thousands of living cells are recorded in time-lapse
phase-contrast microscopy images or microscopy video
for research studies in cancer biology and biomaterials
engineering [4].

Breast cancer has accounted for approximately 30 % of
all female cancers diagnosed in the European Union,
and is the leading cause of female cancer deaths. Over
85,000 women (many in their reproductive and econom-
ically productive years) have succumbed to the disease
[5, 6]. Traditional methods for cell recognition in mi-
croscopy images still have several limitations, although
much progress has been made. However, some processes
of irregular appearance, such as cell death, cytoskeletal
and cell morphology changes, cell migration, and cell
cycle are difficult to follow. Learning the complex rela-
tionships of the multiple states induces high computa-
tional complexity and drives the system far from the
goal of real-time recognition. Hence, because of the
complexity of cell behaviors and morphological vari-
ance, existing automatic systems remain limited when
dealing with large volumes of time-lapse microscopy
images [7, 8]. At the same time, sparse modeling is one
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of the most successful recent signal processing para-
digms, and topological features are better represented
as the adjacent and similar points or areas have been
extracted from the features of all points or areas. Top-
ology of the topology sparse coding mainly simulates
and describes a phenomenon and characteristics so that
the adjacent neurons of the human cerebral cortex can
extract a similar feature. Topological maps have features
wherein adjacent points or areas correspond to adjacent
points or areas in feature space, and adjacent points or
areas tend to respond to similar features. Feature prefer-
ence varies smoothly across the cortex, that is to say,
adjacent points or areas represent similar features. These
are the topological continuity properties [9].
Aapo Hyvärinen and Patrik O. Hoyer [10] have shown

that this single principle of sparseness can also lead to
emergence of topography and complex cell properties.
Rodolphe Jenatton [11] considered an extension of this
framework where the atoms are further assumed to be
embedded in a tree. This is achieved using a recently
introduced tree-structured sparse regularization norm,
which has proven useful in several applications. The pro-
cedure has a complexity linear, or close to linear, in the
number of atoms, and allows the use of accelerated
gradient techniques to solve the tree-structured sparse
approximation problem at the same computational cost as
traditional ones, using L1 norm. However, this method has
no continuity properties for the same cell phase for differ-
ent cells, and the gradient method applied here is not
normal, because the L1 norm of the non-differentiable at
point zero.
In this paper, we propose a recognition method based

on topological sparse coding. First, cell shape informa-
tion is obtained using binarization [12]. The detected
cells are then segmented via a seeded watershed algo-
rithm [13]. After segmentation, a favorite matching plus
local tree matching approach is used to track the
dynamic behaviors of cell nuclei [14]. After obtaining
segmented nuclei ROIs (regions of interest), each cell is
represented by a region feature. Based on these results,
we have designed a topological penalized convex objective
function to induce sparsity and consistency constraints for
dictionary learning and sparse decomposition. Finally, a
support vector machine (SVM) classifier is utilized for
model learning and prediction. This approach can be used
to analyze the behavior of cells as extracted from a time-
lapse microscopy video. For instance, we have used this
analysis to identify cell phase and cell cycle progress in
MDA-MB-231 cells.

Methods
The MDA-MB-231 cell line from the American Type Cul-
ture Collection (ATCC), frozen by the Cornell University
Weill Medical College of The Methodist Hospital Research

Institute was used. All experimental research reported in
this manuscript consisted of in vitro experiments.
Images were acquired every 2 min for 12 h and 22 min,

giving a total of 373 images per hole that were then
exported from Simple PCI as 16 bit uncompressed TIFF
files to 8 GB network attached storage (NAS) arrays for
processing. Figure 1 shows the microscopy images the
MDA-MB-231 cells.
First, cell shape information is obtained by binarization.

The detected cells are then segmented via a seeded water-
shed algorithm. After segmentation, a favorite matching
plus local tree matching approach is used to track the
dynamic behaviors of the cell nuclei.
A pixel-wise intensity feature (Raw) represents the

global intensity distribution of one image and implicitly
contains its appearance characteristics. Histogram of
Oriented Gradients (HoG) [15], Generalized Search
Tree (GIST) [16], and Scale Invariant Feature Trans-
form (SIFT) [17] are features that are widely used to
represent shape characteristics, local structural infor-
mation, and local visual saliency, respectively. For com-
parison, we extracted the pixel-wise intensity feature
and three representative visual features from every
nuclei [18]. After obtaining feature vectors that include
information on shape and texture, they are input into
deep learning process. After obtaining segmented nu-
clei ROIs (regions of interest), each cell is represented
by a feature vector including 54 elements for the RAW,
converting each candidate into a feature vector that
implicitly represents the characteristics of the mitotic
cell [19]. In this paper, we input the feature vectors into
a topological sparse coding process.

Given a new sample and its feature x x∈R
d

� �
, The

value of “d” is the vector xi of the matrix x has “d” elements.
The goal of sparse coding is to decompose it over a diction-
ary A, such that x =As + r, a set of N data points × in the
Euclidean space Rd is written as the approximate product
of a d × k dictionary A and k × N coefficients s, r is the
residual. Least squares estimation (LSE), a similar model
fitting procedure, is usually formulated as a minimization
of the residual sum of squares to get an optimal coefficient
s. However, LSE often poorly preserves both low prediction
error and the high sparsity of coefficients [20]. Therefore,
penalization techniques have been widely researched to
improve on it. Considering the constraints of sparsity and
consistency for decomposition, we designed a topological
objective function for the system as follows:

J A; sð Þ ¼ As ‐xk k22þλ
X

i; all group

ffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT

p
: ð1Þ

where ‖s ‖2
2 = ∑i‖ si ‖2

2, the si is the i-th row vector of the
coefficient s, where V is the grouping matrix, where the
group contains all of the elements of the learning set.
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For example, if V is 3*3 grouping matrix method, and one
group begins from the 1-st row and 2-nd column, so theffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s212 þ s213 þ s214 þ s222 þ s223 þ s224 þ s232 þ s233 þ s234

p
:

Small mini-batches, that is to say, we have taken learning
sets into several small learning sets. Because the si is the i-
th row vector of the coefficient s, the si

T is the column vec-
tor, V is the grouping matrix, so V{s_i}{s_i}^t is a value, and
then the

ffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT

p
in the J(A,s) is the ‖s ‖1, and we have

reserved the main values of the vector used by L1 norm. So
the objective functions are described as “topological penal-
ized.” The objective function in Equation (1) consists of
two parts, the first term penalizes the sum-of-squares

difference between the reconstructed and original sample;
the second term is the sparsity penalty term that is used
to guarantee the sparsity of the feature set through a
smaller coefficient λ values. The gradient method is not
valid at point zero because L1 norm is not differentiable at
point zero. We then use

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT þ ε

p
that defines a

smoothed topographic L1 sparsity penalty on s in sparse
coding instead of

ffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT

p
on the L1 norm smoothing,

where ε is a constant.
J (A, s) is not convex if J (A, s) only includes the first term

and second term, but given A, the minimum of J(A,s) to
solve s is convex [21, 22]; similarly, given s, minimizing

Fig. 1 Microscopy image of MDA-MB-231 cell lines. The 4 continuous images of the position 1 with sound of pressure 1Mpa for the each time
00:00:02,00:02:02,00:04:02, 00:06:02
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J(A,s) to solved A is also convex, so we add the third
term, the weighted decay term with weighted decay
coefficients γ into the J (A, s) and then the
optimization computation may use the gradient tech-
niques. In order to achieve the following purposes:
only a few coefficients values of matrix A are far
greater than 0, nor that most coefficients are greater
than 0. In order to solve this problem, we can make a
constraint on the values of s, C is a constant.

min J A; sð Þ ¼ As ‐xk k22þλ
X

i; all group

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VsisiT þ ε

p
þ γ Ak k22

s:t sk k22≤C
ð2Þ

Assuming there are enough mitotic cell training samples
such that dictionary Α is over-complete, it is clear that a
new mitotic cell image can be faithfully represented by a
linear combination of mitotic bases contained in A.

However, in reality, it is impossible to enumerate all mi-
totic cases for the training set. Under the sparse coding
scheme, each candidate × is represented as a linear com-
bination of bases in matrix Α by coefficient s. Therefore,
s explicitly reflects the relationship between x. d the
bases and it can be utilized as the characteristic rep-
resentation for classification. If the iterative algo-
rithm is executed on large data sets, iteration should
take a long time and this algorithm also takes a long
time to reach convergence results. So we choose to
run the algorithm on a mini-block, so that we can
improve the speed of iteration and improve the con-
vergence speed.

To optimize the cost function, we follow these steps:

1: Randomly initialize the A function
2: Repeat the following steps until convergence:

Fig. 2 Comparison with topological sparse coding deep learning or not. Red lines represents the algorithm have the deep learning step of topology
sparse coding, green lines represent the algorithm don't have the deep learning step of topology sparse coding. From left to right of the first row are:
RAW as input characteristics, SIFT as input characteristics. From left to right of the second row are: GIST as input characteristics, HoG as input characteristics
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2.1: Randomly select small mini-batches of the
learning sets.
2.2: s←ATx; sr;c←

sr;c
Ack k where sr,c is the r-th feature of

the c-th sample and Ac is the c-th base vector of
matrix A (This is an iteration, all have taken place in
the mini-batches).
2.3: Calculate s by minimizing J (A, s) according to
equation 2 with gradient techniques (we have
calculated the cost function J using gradient descent
method (deflector for extreme values of the
function), and we have obtained the s used stable
point when we have fixed the A).
2.4: Obtain A such that J (A, s) is minimized
according to s with gradient techniques (We have
calculated the cost function J using gradient descent
method (deflector for extreme values of the

function). We have obtained the A used stable point
when we have fixed the s).

After these steps, we obtain the topological characteris-
tic feature vectors from the same cell phase. These feature

Fig. 3 Comparison with topological sparse coding deep learning or not. Red lines represents the algorithm has the deep learning step of
topology sparse coding, green lines represent the algorithm does not have the deep learning step of topology sparse coding. From left to right
of the first row are: sensitivity, specificity, precision. From left to right of the second row are:, F1 score, accuracy
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vectors may be classified with the SVM classifier. The fol-
lowing diagram is the overview diagram of the algorithm.

The basic procedure for applying SVM to cell phase
recognition is as follows [23]. First, the input vectors are
linearly or non-linearly mapped into a feature space
(possibly with a higher dimension) by selecting a rele-
vant kernel function. In this paper, the kernel func-

tion k x; x′ð Þ ¼ x ‐ x′k k2
δ is used. Then, within this feature

space, an optimized linear division is sought by con-
structing a hyper-plane that separates the samples into
four classes (interphase, prophase, metaphase, and ana-
phase) with the least errors and maximal margin. The
SVM training process always seeks a globally optimized
solution and avoids over fitting [23], hence, SVM has
the ability to deal with a large number of features.

Results and discussion
We took the first 240 images of the data set as the learn-
ing set and the other 133 images for the test set. This
generated a learning set consisting of 19521 nuclei and
test set consisting of 10881 nuclei, where we were
mainly concerned with the cell cycle phase (interphase,
prophase, metaphase, and anaphase). After computation
on matrix A with gradient techniques, the dimensionality

Fig. 4 Comparison of each type input characteristics.The left figure is algorithm have the deep learning step of topology sparse coding; and the
right figure is algorithm don't have the deep learning step of topology sparse coding

Table 1 Error rate for different approaches

Mairal et al.
[13]

Mairal et al.
[13]

reWL1 RAW+TSC+SVM

approaches (unsupervised) (supervised) [28]
(WL1)

approache in the
paper

Error rate 12.02 % 7.93 % 9.71 % 7.21 %

Wang et al. BMC Medical Imaging  (2015) 15:46 Page 6 of 8



of x. the experiments are 54 × 19521, the dimensionality
of Α in the experiments are 54 × 121, the dimensionality
of s. the experiments are 121 × 19,521.
To demonstrate the superiority of the proposed method

for mitotic cell recognition, we evaluated the sensitivity
and specificity of our experimental results. We compared
the performances on the same test set for mitotic cell rec-
ognition. Let TP, TN, FP, and FN stand for the number of
true positive, true negative, false positive, and false
negative samples, respectively, after the completion of
cell phase identification. Sensitivity is defined as: (TP/
(TP + FN)), and is a statistical measure of how well-
classified the positive cells are. Specificity reflects the
ability to identify negative cells correctly and is defined as
(TN/(TN + FP)). Precision is (TP/(TP + FP)), accuracy is
((TP + TN)/(TP + FN + FP + TN)), and the F1 score ((2 ×∁
precision × sensitivity)/(precision + sensitivity)) represents
the overall performance of both. These are commonly-used
quantitative metrics to evaluate the performance of mitotic
cell recognition. λ and γ are again trade-off parameters
controlling the balance between the reconstruction quality
and sparsity [24, 25], when comparing the performance of
different dictionary learning strategies with four visual fea-
tures and different configurations, λ and γ were set to 0.1
[26, 27] and C is set to 1.
From Fig. 2, for each index of the RAW and HoG

features, including sensitivity specificity precision F1
score accuracy, the classification performance with
topological sparse coding deep learning was better than
with none.
From Fig. 3, for precision F1 score and accuracy in-

dexes of the RAW SIFT GIST and HoG features, the
classification performance with topological sparse coding
deep learning was better than with none.
From left part of Fig. 4, for each index including

sensitivity specificity precision F1 score accuracy,
under the condition of topological sparse coding deep
learning, the classification performance used RAW
feature as input feature is better than SIFT GIST and
HoG features. The right part of the Fig. 4 has the same
results; that is the classification performance used
RAW feature as input feature is better than SIFT
GIST and HoG features with no deep learning. The
HoG feature performs poorer than RAW SIFT and
GIST. It was thought that HoG would be the least ac-
curate because it is not very suitable for deformable
object representation in this case.
The extracting features method of topological sparse

coding with topological continuity characteristics is feas-
ible and effective for deep learning. The index of RAW
with deep learning is higher than the others, implying
that a pixel-wise intensity feature (RAW) represents the
global intensity distribution of one image and implicitly
contains its appearance characteristics. In addition, the

RAW features are more applicable for deep learning of
the topological sparse coding method than the SIFT,
GIST, and HoG features.
Finally, we have compared our results with Mairal et al.’s

unsupervised and supervised approaches [13], and sparse
the coding for reWL1 [28]. The best results of these ap-
proaches are shown in Table 1. Our error rate is signifi-
cantly better compared to theirs. However, it should be
noted that we have used the RAW feature in all our
experiments.

Conclusions
In this paper, we proposed a topological penalized convex
objective function of sparse coding for the recognition of
cell cycles, based on the fact that topology of the topology
sparse coding mainly describes a phenomenon and char-
acteristics that the adjacent neurons of the human cere-
bral cortex can extract a similar feature. This method has
made the new features from the deep learning methods of
sparse coding to have topological continuity characteris-
tics. Large-scale comparison tests demonstrate that the
RAW can outperform SIFT GIST and HoG, achieving
higher sensitivity, specificity, F1 score, and accuracy. That
is to say, the proposed topological sparse coding technique
is valid and effective for the extracting of new features,
and the RAW features are more applicable for the deep
learning of the topological sparse coding method than
SIFT GIST and HoG.
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