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Abstract

Background: For optimizing and evaluating image quality in medical imaging, one can use visual grading
experiments, where observers rate some aspect of image quality on an ordinal scale. To analyze the grading
data, several regression methods are available, and this study aimed at empirically comparing such techniques,
in particular when including random effects in the models, which is appropriate for observers and patients.

Methods: Data were taken from a previous study where 6 observers graded or ranked in 40 patients the image

quality of four imaging protocols, differing in radiation dose and image reconstruction method. The models tested
included linear regression, the proportional odds model for ordinal logistic regression, the partial proportional odds
model, the stereotype logistic regression model and rank-order logistic regression (for ranking data). In the first two
models, random effects as well as fixed effects could be included; in the remaining three, only fixed effects.

Results: In general, the goodness of fit (AIC and McFadden'’s Pseudo R?) showed small differences between the
models with fixed effects only. For the mixed-effects models, higher AIC and lower Pseudo R? was obtained, which
may be related to the different number of parameters in these models. The estimated potential for dose reduction
by new image reconstruction methods varied only slightly between models.

Conclusions: The authors suggest that the most suitable approach may be to use ordinal logistic regression, which
can handle ordinal data and random effects appropriately.
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Background

When evaluating medical imaging methods, the most
relevant performance measures of a procedure are re-
lated to its ability to produce correct answers to a diag-
nostic problem. This is typically done with concepts
such as sensitivity, specificity and receiver operating
characteristic (ROC) analysis. When developing a new
method, however, it is often necessary to fine-tune nu-
merous parameters that need to be specified in modern
imaging equipment in order to obtain as much diagnos-
tic information as possible at the minimum cost in radi-
ation dose (effective dose) to the patient. In this
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optimization process, a common approach is to perform
visual grading experiments, where a group of observers
(e.g. radiologists) assess the fulfillment of certain well-
defined image quality criteria using an ordinal scale [1].
As the data are given on an ordinal scale, the data analysis
methods should be chosen accordingly, using techniques
that are appropriate for such data. Still, a number of stud-
ies have been published where ordinal data from visual
grading experiments are analyzed with ANOVA and simi-
lar linear models, although these build on assumptions of
interval scale data, homoscedasticity and so forth.

In earlier publications, our group has proposed to use
ordinal regression models in these situations to compare
alternative imaging procedures [2]. Using such models,
and an assumption of the relationship between the ef-
fective dose to the patient and the image quality, it is
also possible to estimate the potential for dose reduction
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that may be expected when a new technique is intro-
duced [3]. Based on an experiment where both the im-
aging technique and the effective dose are varied, the
estimated dose reduction is obtained from the ratio be-
tween two regression coefficients in the regression equa-
tion. Since two of the experimental factors, the patient
and the observer, are not interesting per se, but can be
seen as samples from two underlying populations, it may
be appropriate to treat them as random effects, which
can also be done with ordinal regression models [4].

In addition to the most common form of ordinal regres-
sion, the proportional odds model [5], alternative ap-
proaches for analyzing ordinal data with regression models
include the partial proportional odds model [6] and the
stereotype logistic model [7]. These do not seem to have
been applied to visual grading data before. In addition, ran-
dom effects models have not been systematically compared
to models with only fixed effects. Finally, it is not known to
what extent the results of ordinal regression models differ
from those of the simpler linear models.

Thus, the aim of the present study was to review re-
gression models potentially suitable for analyzing visual
grading studies and to empirically compare them on
already available data, in particular to study the effect of
including random effects in the model.

Material and methods

Data

The data used were taken from a previously published
study on image quality and radiation dose in brain Com-
puted Tomography (CT) which evaluated two new re-
construction algorithms, i.e. methods for creating images
from the acquired raw data [8]. It has been suggested
that new reconstruction algorithms (in particular itera-
tive algorithms) may improve image quality to such an
extent that the radiation dose to the patient may be re-
duced without impairing the image quality, which other-
wise occurs when the radiation dose is reduced. Six
neuroradiologists evaluated image quality in images ac-
quired from 40 patients, each of whom underwent two
consecutive brain CT examinations with two different
effective dose levels. Images from all 80 examinations
were reconstructed using four different image recon-
struction methods: the traditional filtered back projec-
tion algorithm using the full dose (CTDI,,) of 57 mGy
(fd), which served as the reference, the same algorithm
using a reduced dose of 40 mGy (rd), and two different
levels of iterative reconstruction algorithms (id2 and id4),
also using the reduced dose. In the visual evaluation, each
observer individually graded three image quality cri-
teria — gray-white-matter discrimination (GW), basal
ganglia delineation (BG) and general image quality
(GQ) - using a four-grade ordinal scale ranging from
1 (poor) to 4 (excellent). In addition, each observer
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ranked each set of four reconstructions, i.e. sorted the
four image stacks in order from 1 (best) to 4 (worst)
for each of the image quality criteria.

Thus the grading data comprises 3 image quality
scores (GWscore, BGscore and GQscore) and 3 image
quality ranks (GWrank, BGrank and GQrank) for each
imaging protocol, observer and patient. As there were 6
observers and 40 patients, and we considered 4 imaging
protocols (nd, rd, id2 and id4), the dataset consists of
6 x40 x 4 =960 observations. The data were stored in
Stata format, and Stata 13.1 (StataCorp, College Station,
TX, USA) was used for all analyses.

The ethical approval of the acquisition of data for the
original publication [8] was given by the regional re-
search ethics committee in Lund, Sweden (decision nr.
2010/594, date Nov. 11, 2010). Written informed con-
sent was obtained from each patient before examination,
and the study was performed in compliance with the
Helsinki Declaration.

Analysis of absolute grading scores

In this section, different regression models will be dis-
cussed. In all models, the response variable is GWscore,
which is treated as an interval scale variable. We assume
that the influence of dose is best modeled via the logarithm
of the dose rather than the dose itself [2]. Thus, there are
five covariates in the regression models: log(CTDI), id2,
id4, patient and observer, the two last of which are nom-
inal, whereas id2 and id4 are dummy variables indicating
whether an iterative reconstruction method was used.

Regression models with fixed effects

We suppose in this section that all covariates are fixed ef-
fects in the regression models. We start the analysis with
the most fundamental regression model, i.e. the linear re-
gression model, and will then discuss the logistic regres-
sion models, which are the main concern of this paper.

Linear model In a linear regression model, it is sup-
posed that the relationship between the dependent vari-
able and the vector of regressors is linear; thus the
model takes the following form:

GWscore = f3, + B, log(CTDI) + B, id2 (1)
+ﬁ3 id4 +/3)4,p +ﬁ5¢o +e

where Bs are the regression coefficients, and € is an
error term from the population. This was achieved with
the following Stata command:

regress GWscore logCTDI id2 id4 i.patient i.observer

Ordinal logistic regression The ordinal logistic regres-
sion model (proportional odds model) is used when the



Saffari et al. BMC Medical Imaging (2015) 15:49

dependent variable is ordinal. The cumulative probability
of this regression model can be expressed in this form:

o
Y -2 3 4

P(GWSCOVESi |x) = m , 1
ePoi

or

P(GWscore<i |x)
1-P(GWscore<i |x)
=By-Bx.i=2, 3, 4

logit(P(GWscore<i|x)) = log

(3)

where x is the vector of covariates, Bo; is a parameter
that depends on i, and ' (transposed ) is the coeffi-
cient vector which is constant for all i. According to
equations (2) and (3), there is only one set of coefficients
(B in the ordinal logistic regression model, and due to
the same relationship between each pair of outcome
groups, the ordinal logistic model will make the parallel
regression assumption [7, 9]. Since only the fy; differ
across values of i =2, 3, 4, the three regression lines are
all parallel. The following Stata command was used for
this model:

ologit GWscore logCTDI id2 id4 i.patient i.observer

Partial proportional odds model In situations where
the parallel regression assumption is violated, the ordinal
logistic regression model is no longer an appropriate
model. In this case, an alternative may be the partial
proportional odds model, in which some of the S coeffi-
cients can be the same for all values of i, while others
can differ (y;). Thus, this model is represented in the fol-
lowing form:

1

P(GWscore > ilx) = ; e
( %) 1+ebutbx+y.T

=2, 3
(4)
or

logit (P(GWscore > i|x)) = ,BOi—/)"x—y;T ,i=2,3
(5)

where x and T are the covariates. This model is more
difficult to interpret than the ordinal logistic regression
model, since there will be many more parameters to
consider and some effects might be statistically insignifi-
cant due to the increased number of parameters [6, 10].
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We have used the gologit2 command in Stata for this
model as follows:

xi : gologit2 GWscore logCTDI id2 id4 id4 i.observer
i.patient, pl(i.patient ) difficult

Stereotype logistic model An alternative model is to
consider the response variable as categorical, rather than
ordinal, i.e., we are unsure of the relevance of the order-
ing in the response variable in this case. Also, a multi-
nomial logistic regression model may be suggested when
the assumptions of the proportional odds model are not
satisfied. Thus, the stereotype ordinal regression model
can be considered as imposing ordering constraints on a
multinomial model, which is a form of ordinal regression
model. Unlike ordered logistic models, stereotype logis-
tic models do not impose the proportional-odds as-
sumption [6, 11]. A full multinomial model can be
represented by:

exp ()
Zj;z exp (ﬂOt _ﬁ,tx) ,

where s=2, 3, 4, and By =0 and By=0. In the multi-
nomial logistic model, the number of parameter vectors
to estimate is m-1, where m is the number of levels in
the response variable. Based on the restriction on the
multinomial model by the stereotype logistic model, the
number of parameter vectors is between one and min
(m-1, p), where p is the number of covariates [12]. Thus,
replacing Ss= ¢ f5, the stereotype ordinal regression
model can be written as follows:

exp (Bo,— .8 %)
S0 exp(Bo- b x)

where fBgo = =0. This was achieved with the following
Stata command:

P(GWscore = s|lx) =

(6)

P(GWscore = slx) =

7)

slogit GWscore logCTDI id2 id4 i.patient i.observer

Regression models with random effects

In this section, it is supposed that three covariates in-
cluding log(CTDI), id2 and id4 are considered as fixed
effects and two covariates including patient and observer
are specified as crossed random effects. The basic con-
cept of a random effects model is that the variation
across entities is assumed to be random and uncorre-
lated with the covariates, unlike the fixed effects model.
The mixed linear model as well as the mixed-effects or-
dered logistic regression model will be discussed to
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analyze the data when there are both fixed and random
effects in the model.

Mixed linear model The simplest model to analyze a
data set with both fixed effects and random effects is a
mixed linear model, which can be written in the follow-
ing form:

GWscore = flx + bz + ¢, (8)

where x is the model matrix for id2, id4 and nd as fixed
effects, z is the model matrix for patient and observer as
random effects,  is the vector of fixed-effects coeffi-
cients, b is the vector of random-effects coefficients, and
X is an error term [13]. We have used the mixed com-
mand in Stata for a mixed linear model including
crossed random effects as follows:

mixed GWscore id2 id4 logCTDI || _all
: R.observer||_all : R.patient

Mixed-effects ordered logistic regression A model
that can handle random effects where the response vari-
able is ordinal is the mixed-effects ordered logistic re-
gression [14]. In contrast to the ordinal logistic model,
the model with random effects has the form:

exp (at -B x,','—u;z,'j)

P(GWscore <t |y, 2z;) = 1 =2,3,
( score;j |x, Z/) 1+ eXp(txt*ﬁ'xi/*uiZi;)
9)
or
logit P(GWscore <t |x;j,z;) = a-Bxj-uwzy, (10)

where z; refers to a vector of covariates for the random
effects (patient and observer) and wu; is the vector of
random-effects coefficients [14]. In Stata, the meologit
command can be used for the ordinal logistic regression
model with crossed random effects as follows:

meologit GWscore logCTDI id2 id4 || _all
: R.observer|| _all : R.patient

Goodness of fit The metrics used to compare the
methods were the pseudo R* and Akaike’s information
criterion (AIC). The Pseudo R also called McFadden’s
R?, [15], defined by

log L(M
Ry — 1- 08 LMrr) (11)
lOg L (M intercept)
is one of several approximations of the R* for linear re-
gression. None of these are interpreted as the R* for lin-
ear regression, and they all give different result [16]. An
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advantage of the McFadden R? in addition to its simple
definition, is that it can be used for all models estimated
by maximum likelihood. Since all models used in this
study are based on maximum likelihood, the McFadden
R? is calculated in the same way for all models, and they
can therefore be compared with respect to R The model
with the largest R* is the one that best fits the data.

However, for comparing models differing in the num-
ber of parameters, AIC [17] is more suitable:

AIC — -2 long\Z[VIk) +2p

(12)

The most common alternative to AIC is the Bayesian
information criterion (BIC). However, BIC takes the
number of parameters (the degrees of freedom) into ac-
count in a way that makes it less appropriate than AIC
for selecting between models with different number of
parameters. The model with the smallest AIC value is
considered to be the best [17].

Estimation of potential for dose reduction To esti-
mate the dose reduction (in percent) that might come
about by the application of id2 and id4, we have used
the technique proposed in our earlier publication [3],
which relates the effect of replacing the reconstruction
method to that of changing the effective dose. This in-
volves forming the ratio between two regression coeffi-
cients and computing the confidence limits of the final
expression using the delta method [18]. The required
Stata commands to be applied after fitting the regres-
sion model are as follows:

nlcom (dosereduction_idQ . I-exp (— (_b[id2] /_b[logCTDI]) > )

nlcom (dosereduction_idé! . I-exp (— (7b[id4] /_bllogC TDI}) ) )

Analysis of ranking data
Rank-order data differ in certain respects from grading
data where each case is graded on the same absolute scale.
One way of understanding ranking is to regard it as a se-
quence of choices. Then, there is gradually less freedom in
the choice of grades, since the earlier choices constrain
the available ranks for subsequent cases to those not used
previously. This motivates the introduction of dedicated
regression techniques for situations with rank-order data.
All regression models discussed in the previous section
(including the linear model, ordinal logistic regression,
partial proportional odds model, stereotype logistic model,
mixed linear model and mixed-effects ordered logistic re-
gression) can be applied to the data in which the response
variable is GWrank. Besides these regression models,
the rank-ordered logistic regression model can be an
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appropriate model since there is some extra informa-
tion about the ranking of outcomes.

We define the response of respondent i by the vector
Yi= Wi o0 yi])', where y;; denotes the rank that individual
i gives to item j. Let GWrank; =1 represent the event
that respondent i most prefers alternative j. This leads to
the following expression for the probability that item j is
most preferred by individual i:

€xp (x;/’),)
Zizl e€xp (xltﬁt)

where S={B1,....,5} and B; is considered as zero for
identification [19]. We have used the rologit command
in Stata, which is specifically designed for ranking data,
as follows:

P(GWmnk,»,» =1 |xij) =

rologit GWrank logCTDI id2 id4 , group(groupid)

where groupid is an identifier variable that links the al-
ternatives. Since the default for the rologit command is
that higher values represent more attractive alternatives,
we have recoded the GWrank variable to have a higher
value indicating better quality. In this case, the Stata
output is the same as when the reverse option in rologit
is used, which specifies that in the preference order, a
higher number means a less attractive alternative in the
original data [10].
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Results

Absolute scores

The results of the different regression models for
GWscore, BGscore and GQscore are presented in Tables 1,
2 and 3, respectively. The intercepts are excluded from
the reported results in these tables due to different
parameterization of the regression models. The analyses
have been made using fixed effects models as well as
fixed and random effects models, as explained in the
previous section. All regression coefficients are statisti-
cally significant at the 0.01 level, except when contrast-
ing categories 1 & 2 with category 3 (highest image
quality) in the second panel with the partial proportional
odds model for id2 with GWscore (Table 1), and for both
id2 and id4 with BGscore and GQscore (Tables 2 and 3).
The confidence intervals of the coefficients are reported
in parentheses in Tables 1, 2 and 3.

In the linear model (regress), the regression equation
of GWscore can be obtained using the coefficients re-
ported in Table 1. The relationship between the covari-
ates and the response variable is assumed to be linear,
and an increase in the independent variables — i.e. in-
creasing the effective dose as well as replacing the stand-
ard reconstruction with id2 or id4 - results in an
increase in the GWiscore, since the signs of all regression
coefficients are positive.

In the ordinal logistic model (ologit), a log(CTDI) coef-
ficient of 8.825 implies that a doubling of the CTDI for

Table 1 Estimated parameters, goodness-of-fit statistics and estimated dose reduction for GWscore

Model Coefficient Goodness-of-fit Dose reduction
logCTD!I id2 id4 AIC Pseudo R*  id2 id4
Est. P-value Est. P-value Est. P-value
regress® 1459 <0.001 0.158 <0.001 0.208 <0.001 04160 10.29 % 1331 %
(1.244,1.674) (0.082, 0.234) (0.132,0.284) (6.14 %, 14.43 %) (937 %, 17.24 %)
ologit? 8.825 <0.001 0.966 <0.001 1.271 <0.001 112435 04172 1037 % 1341 %
(7.354, 10.295) (0512, 1.419) (0.812, 1.730) (6.35 %, 14.39 %) (960 %, 17.23 %)
gologit2® = 9.487 <0.001 1.262 <0.001 1.465 <0.001 1184.56 04342 1245 % 1431 %
(7.213,11.761) (0682, 1.842) (0.873, 2.058) (744 %, 17.46 %) (9.25 %, 19.37 %)
gologit2® =3 8.165 <0.001 0.521 0.172 0.985 0.008 6.18 % 1137 %
(6.143, 10.189) (—.227,1.269) (0260, 1.711) (—=1.62 %, 13.98 %) (4.87 %, 17.86 %)
slogit® 17447 <0.001 1.887 <0.001 2433 <0.001 112327 04201 10.25 % 13.05 %
(14.460, 20.435) (1.028, 2.746) (1.555,3.310) (6.35 %, 14.15 %) (9.23 %, 16.80 %)
mixed® 1459 <0.001 0.158 <0.001 0.208 <0.001 122530 0.2748 10.29 % 1331 %
(1.244, 1.673) (0.082, 0.234) (0.132, 0.284) (6.14 %, 14.43 %) (9.38 %, 17.24 %)
meologit® 8433 <0.001 0.922 <0.001 1.213 <0.001 121596 0.2751 10.36 % 134 %

(6.685, 10.180)

(0452, 1.392)

(0.735, 1.692)

(6.21 %, 14.51 %)

(949 %, 17.32 %)

95 % confidence limits of each estimate given in parentheses

regression model with fixed effects only

Pregression model with fixed and random effects
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Table 2 Estimated parameters, goodness-of-fit statistics and estimated dose reduction for BGscore
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Model Coefficient Goodness-of-fit Dose reduction
logCTD!I id2 id4 AIC Pseudo R*  id2 id4
Est. P-value Est. P-value Est. P-value
regress® 1.329 <0.001 0.129 0.001 0.183 <0.001 - 0.3645 9.26 % 12.88 %
(1.113, 1.546) (0.052, 0.206) (0.107, 0.260) (4.58 %, 13.94 %) (8.50 %, 17.26 %)
ologit® 8.249 <0.001 0.760 0.001 1.071 <0.001 1135.11 0.3705 8.80 % 1217 %
(6.766, 9.732) (0321, 1.200) (0623, 1.520) (444 %, 13.17 %) (8.00 %, 16.35 %)
gologit2? 7.804 <0.001 0.883 0.001 1431 <0.001 1190.70 0.3915 10.69 % 16.76 %
=2 (5.807, 9.801) (0.368, 1.398) (0.877, 1.986) (5.18 %, 16.21 %) (10.97 %, 22.55 %)
gologit2? 7.842 <0.001 0.505 0.261 0408 0.369 6.24 % 5.07 %
=3 (5.577,10.107) (—.376, 1.387) (—481, 1.298) (=3.27 %, 15.76 %) (—4.86 %, 15.00 %)
slogit® 15.378 <0.001 1337 0.001 2.036 <0.001 1124.99 0.3791 833 % 1240 %
(12340, 1842) (0.577, 2.098) (1.246, 2.826) (4.17 %, 1248 %) (830 %, 16.50 %)
mixed® 1.329 <0.001 0.129 0.001 0.183 <0.001 1224.58 0.2207 9.26 % 12.88 %
(1.114,1.545) (0.053, 0.206) (0.107, 0.260) (4.59 %, 13.93 %) (8.51 9%, 17.26 %)
meologit® 7.806 <0.001 0.736 <0.001 1.031 <0.001 121693 0.2230 9.00 % 12.38 %
(6.733, 8.879) (0327, 1.146) (618, 1.445) (4.52 %, 13.48 %) (8.09 %, 16.67 %)

95 % confidence limits of each estimate given in parentheses
regression model with fixed effects only
Bregression model with fixed and random effects

one of the image stacks in the comparison would lead to
a huge increase by a factor of 28%%° = 453.513 in the odds
for a higher score for that stack. The coefficient regres-
sion for id2 and id4 are 0.966 and 1.271, respectively,
and they can be interpreted to the odds being multiplied
by %% =2.627 and e'?”" = 3.564, respectively, when the

corresponding iterative reconstruction method is used
instead of the standard method.

For the partial proportional logistic model (golo-
git2), the first panel contrasts GWscore=1 with cat-
egories 2 and 3, whereas the second panel contrasts
with category 4. Hence, positive coefficients indicate

Table 3 Estimated parameters, goodness-of-fit statistics and estimated dose reduction for GQscore

Model Coefficient Goodness-of-fit Dose Reduction
logCTD!I id2 id4 AIC Pseudo R*  id2 id4
Est. P-value Est. P-value Est. P-value
regress’ 1424 <0.001 0.158 <0.001 0.175 <0.001 - 03560 1053 % 1157 %
(1.217, 1.630) (0.085, 0.232) (0.102, 0.248) (646 %, 14.59 %) (7.58 %, 15.56 %)
ologit? 9.626 <0.001 1.011 <0.001 1.133 <0.001 1060.25 03573 9.97 % 11.10 %
(8.020, 11.232) (0.547, 1.476) (0.665, 1.600) (6.13 %, 13.17 %) (7.32 %, 14.88 %)
gologit2? 8627 <0.001 1.092 <0.001 1484 <0.001 1113.99 0.3816 11.89 % 15.80 %
=2 (6519, 10.735) (0.558, 1.625) (0.924, 2.044) (6.74 %, 17.03 %) (1048 %, 21.12 %)
gologit2® = 9.652 <0.001 0.964 0.073 0.387 0.507 9.50 % 393 %
(6.915, 12.388) (-0.091, 2.019) (-0.756, 1.529) (1.29 %, 17.72 %) (—6.76 %, 14.61 %)
slogit® 18523 <0.001 1.867 <0.001 2.148 <0.001 1061.13 0.3594 9.59 % 10.95 %
(15.277,21.769) (0.997, 2.738) (1.275, 3.022) (5.80 %, 13.38 %) (7.23 %, 14.67 %)
mixed® 1424 <0.001 0.158 <0.001 0.175 <0.001 111997 0.1857 10.53 % 11.57 %
(1.218, 1.630) (0.085, 0.231) (0.102, 0.248) (647 %, 14.59 %) (7.58 %, 15.55 %)
meologit® 9.179 <0.001 0.967 <0.001 1.085 <0.001 1123.66 0.1853 10.00 % 11.15 %

(7.031,11.328)

(0468, 1.467)

(0.578, 1.592)

(6.03 %, 13.98 %)

(7.25 %, 15.05 %)

95 % confidence limits of each estimate given in parentheses
regression model with fixed effects only
Pregression model with fixed and random effects
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that higher values on the independent variable make
it more likely that the respondent will be in a higher
category of GWscore than the current one.

Since the stereotype model (slogit) is a type of an or-
dinal logistic regression model, the interpretation of its
coefficients is similar to the ordinal logistic model. For
the id2 and id4 variables, the odds of the highest image
quality versus lowest image quality increased by a factor
of e"*¥=6.6 and e*** =11.4, respectively, holding all
other variables constant. As discussed in the previous
section, there is another parameter in the stereotype
model and that is ¢. Since the response variable has
only three categories in this case, it is supposed that
$0=0, ¢=1, and the estimate of ¢; is equal to 0.431.
Since we have ¢y < ¢, < ¢, we conclude that the stereo-
type logistic model confirms that the subjective assess-
ment of the dependent variable is indeed ordered, and
the groups (GWscore categories) are distinguishable.

For the mixed linear model (mixed), the regression co-
efficients are similar to the linear regression model with
fixed effects (regress) and the only difference is that the
patient and observer variables have been considered as
random effects in the mixed linear model.

Also the regression coefficients of the mixed-effects
ordered logistic regression (meologit) are very close to
the ordinal logistic regression model (ologit). The esti-
mates of the variance of the random intercept at the ob-
server and patient level are 0.689 and 4.478, respectively.

The goodness-of-fit statistics (AIC and Pseudo R?) of
all regression models are also given in Tables 1, 2 and 3.
In Tables 1 and 2 the slogit model, and in Table 3 the
ologit model, present the smallest AIC among all fixed
effects models, although the differences are small. The
gologit2 model represents the largest Pseudo R? among
all fixed effects models in Tables 1, 2 and 3.

The estimated potential for reduction of the CTDI set-
tings (dose reduction) for GQscore, BGscore and GQscore
are reported in Tables 1, 2 and 3, respectively. The confi-
dence limits of the dose reductions, calculated using the
delta method, are also presented. The proposed percent-
age of dose reduction for id2 (around 10 %, with confi-
dence intervals around (6 %, 14 %), for GWscore) is very
similar for all regression models in Table 1, except for
the partial proportional odds model. This is also true for
the estimated percentages of dose reduction for id4
(around 13 %, with a confidence interval around 9 %,
17 %). The results thus indicate smaller dose reductions
for id2 than for id4, although the confidence intervals
overlap to a large extent.

To compare the effect of id2 with id4 on the response
variable, we restricted the analysis to observations using
id2 or id4 and considered only one covariate (id2) in the
regression models. The estimates thus obtained and
their confidence intervals are reported in Table 4 for
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Table 4 Parameter estimation of id2 versus id4

Model GWscore GQscore BGscore
Est. P-value  Est. P-value  Est. P-value
regress’ —0.050 0.199 -0.017 0.641 -0.054 0.141
(=0.126, 0.026) (-0.087, 0.054) (=0.126, 0.018)
ologit® -0.322 0164  -013 0.603 -0374 0127
(=0.775, 0.131) (—0.621, 0.361) (—0.854, 0.107)
gologit2? —-0.215 0.488 —0.393 0.185 —0.596 0.046
=2 (-0.823, 0.392) (=0.975, 0.189) (-1.182,-0010)
gologit2®  —0472 0.182 0629 0228 0.104 082
=3 (=1.166, 0.221) (—=0.394, 1.653) (=0.788, 0.996)
slogit® -0.592 0194  -0408 0281 -0.743 0052
(—1.485, 0.301) (=1.150, 0.334) (—1.491, 0.005)
mixed® —0.050 0.176 -0.017 0.640 —0.054 0.14
(=0.122, .022) (-0.087, 0.053) (=0.126,0.018)
meologit® —03217 0164 —0126 0598 —0336  0.152
(=0.775, 0.131) (—0.597, 0.344) (=0.794, 0.123)

95 % confidence limits given in parentheses
regression model with fixed effects only
Pregression model with fixed and random effects

GWscore, BGscore and GQscore. It was found that the
coefficients are all statistically insignificant at the 0.01
level.

Ranking data

The rank-ordered logistic regression model was applied
with GWrank, which represents the ranked order be-
tween the four imaging protocols, as the response vari-
able. The regression coefficients, goodness-of-fit
statistics and the estimates of dose reduction for linear
models (fixed effects and mixed effects), ordinal logistic
regression models (fixed effects and mixed effects) as
well as the rank-ordered logistic model are reported in
Table 5. All regression coefficients are statistically sig-
nificant at the 0.01 level. The rank-ordered logistic
model, which is designed specifically for analyzing rank-
order data, presents the best performance among all
models in terms of the goodness-of-fit measures (AIC
and Pseudo R?). Unlike the results of GWscore, the esti-
mated dose reduction figures for id2 (around 18 %) were
greater than for id4 (around 15 %) while working with
GWrank. The corresponding finding was also made for
BGrank and GQrank. (Tables 6 and 7) In all cases,
though, there was considerable overlap of the confidence
intervals.

Discussion

In the present study, we did not find any dramatic differ-
ences in the results between the tested regression
models. Overall, the goodness-of-fit statistics in Tables 1,
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Table 5 Estimated parameters, Goodness-of-fit statistics and dose reduction of GWrank
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Model Coefficient Goodness-of-fit Dose Reduction

logCTDI id2 id4 AIC Pseudo R*  id2 id4

Est. P-value Est. P-value Est. P-value
regress’ 4482 <0.001 0.850 <0.001 0.696 <0.001 - 0.0959 1727 % 1438 %

(3.981, 4.983) (0673, 1.027) (0.518,0.873) (14.44 %, 20.11 %) (11.44 9%, 17.32 %)
ologit? 9.247 <0.001 1.780 <0.001 1.531 <0.001 2462.68 0.1138 1751 % 15.26 %

(8.126, 10.368) (1428, 2.132) (1.168, 1.894) (14.99 %, 20.02 %) (1251 %, 18.01 %)
rologit® 5.537 <0.001 1.232 <0.001 0.932 <0.001 1303.66 0.1493 19.95 % 1549 %

(4.734, 6.340) (0.969, 1.495) (0.666, 1.197) (17.06 %, 22.84 %) (12.24 %, 18.74 %)
mixed® 4482 <0.001 0.850 <0.001 0.696 <0.001 2670.66 0.0000 1727 % 1438 %

(3.995, 4.970) (0677, 1.023) (0.523, 0.869) (14.51 %, 20.04 %) (11.51 %, 17.24 %)
meo\ogitb 9.267 <0.001 1.751 <0.001 1.549 <0.001 2452.89 0.0320 1722 % 15.40 %

(8.991, 9.543) (1416, 2.086) (1.214, 1.885) (14.36 %, 20.07 %) (1243 %, 1836 %)

95 % confidence limits of each estimate given in parentheses
“regression model with fixed effects only
Pregression model with fixed and random effects

2 and 3 were similar in magnitude for all the tested
models, with the exception of the Pseudo R* values for
the mixed effects models (mixed and meologit), which
were considerably lower than for the models with fixed
effects only. This is most likely due to the different num-
bers of parameters in the models. However, also with
AIC, which is supposed to compensate for differences in
the number of fitted parameters, slightly worse fit was
found for the models including random effects.

The original study using the same data [8] applied a
linear mixed model, corresponding to the analysis here
described by the command mixed. The findings were ba-
sically the same in the new analysis, with significant dif-
ferences between the normal dose reconstructions and
all other schemes, as well as significant effects of the it-
erative algorithms applied to reduced-dose data, for all

the tested image quality criteria. In this study, we also
added the estimation of potential dose reductions, which
is important for clinical application of the results.

As for the regression coefficients, their values from
the linear models should not be directly compared with
those from the logistic models, due to entirely different
principles for parametrization. It may be noted, though,
that the addition of random effects in the linear models
(mixed vs. regress) had no effect on the coefficient esti-
mates and hardly any on the confidence limits. Among
the logistic models, the most striking finding was the
fact that with gologit2, different estimates were obtained
when contrasting the two best categories than when
contrasting the two worst categories (second vs. first
gologit2 panel in Tables 1, 2 and 3). This suggests that
the proportional odds assumption may not have been

Table 6 Estimated parameters, Goodness-of-fit statistics and dose reduction of BGrank

Model Coefficient Goodness-of-fit Dose Reduction
logCTD!I id2 id4 AIC Pseudo R>  id2 id4
Est. P-value  Est. P-value  Est. P-value
regress® -4.812 <0.001 -0.863 <0.001 -0.683 <0.001 - 0.1141 1641 % 13.24 %
(=5.299, —4.324) (=1.035, —0.690) (-0.856, =0.511) (13.82 %, 19.00 %) (10.53 %, 15.95 %)
ologit® -9.793 <0.001 -1.734 <0.001 —1424 <0.001 2420.57 0.1297 16.23 % 1353 %
(=10916, —8671) (=2.081, —1.387) (—1.780, —1.067) (13.80 %, 18.65 %) (10.86 9%, 16.20 %)
rologit® -5344 <0.001 —-0.881 <0.001 -0.836 <0.001 1308.64 0.1461 15.20 % 14.48 %
(=6.116, =4.571) (=1.117. -0.645) (—=1.081, -0.592) (12.01 %, 1840 %) (11.10 %, 17.87 %)
mixed® —4.812 <0.001 —-0.862 <0.001 —0.683 <0.001 2617.17 0.000 1641 % 13.24 %
(—5.286, —4.337) (—1.030, —0.694) (—-0.851, -0.515) (13.88 %, 18.94 %) (10.60 %, 15.88 %)
meo\ogitb -10.460 <0.001 —1.861 <0.001 —1.545 <0.001 2355.74 0.0086 16.30 % 1373 %
(=10.633, —10.288) (=2.144, =1.579) (—1.846, —1.245) (14.01 %, 18.59 %) (11.24 %, 16.23 %)

95 % confidence limits of each estimate given in parentheses

regression model with fixed effects only
bregression model with fixed and random effects
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Table 7 Estimated parameters, Goodness-of-fit statistics and dose reduction of GQrank

Model Coefficient Goodness-of-fit Dose Reduction

logCTD!I id2 id4 AIC Pseudo R*  id2 id4

Est. P-value  Est. P-value  Est. P-value
regress’ —4671 <0.001 -0.817 <0.001 —0463 <0.001 - 0.1134 16.04 % 943 %

(—5.158, —4.183) (—.989, —.644) (-0.635, —0.290) (13.36 %, 18.73 %) (644 %, 1242 %)
ologit? -9433 <0.001 -1.691 <0.001 -1.033 <0.001 242797 0.1269 1641 % 1037 %

(-=10.550, -8.317) (=2.039, —1.343) (1395, -0.672) (13.93 %, 18.38 %) (7.39 %, 13.36 %)

rologit® —4.766 <0.001 -0.709 <0.001 -0576 <0.001 1337.79 0.1270 13.81 % 11.38 %

(=5.516, —4.015) (=0.940, —0477) (—0.823, —0.328) (1023 %, 17.40 %) (7.35 %, 1541 %)
mixed® —4671 <0.001 -08167  <0.001 -04625  <0.001 261945 0.0000 16.04 % 943 %

(—5.145, —4.196) (—0.985, —0.648) (0631, —0.294) (1342 %, 18.66 %) (6.51 %, 12.34 %)
meo\ogitb -9.380 <0.001 -1.680 <0.001 -1.027 <0.001 2367.96 0.0105 16.40 % 1337 %

(9506, —9.255) (—1.956, —1.405) (-1.331, -0.723) (13.91 %, 18.89 %) (745 %, 13.29 %)

95 % confidence limits of each estimate given in parentheses
“regression model with fixed effects only
Pregression model with fixed and random effects

appropriate for these data. To test this, the commonly
recommended procedure is to apply Brant’s test [20].
Unfortunately, the Stata implementation of Brant’s test
(which only works with ologit) does not allow nominal
or random effects, so we were not able to carry out a
formal test of this assumption. Also, when comparing
the logistic models ologit and meologit, the addition of
random effects had only a minute effect on the esti-
mates. It should be kept in mind that when there are
two crossed random effects in the model (in this case
patient and observer), the integration method used by
Stata is Laplacian integration, in which the parameter
estimates are biased. In the variance components, the
bias of the estimates tends to be more prominent than
in the estimates of the fixed effects due to the Laplacian
approximation [14].

For all the tested models (except gologit2 at the highest
level), the regression coefficients had larger values for
id4 than for id2, which was expected from previous
knowledge about the algorithms, with id4 differing more
from the standard algorithm than id2. The confidence
intervals, though, overlapped to a large extent. The dif-
ference between id4 and id2 was also not significant
when tested formally (Table 4).

More interesting from an application point of view are
probably the estimates of potential dose reductions.
Here all the regression models that summarize the dif-
ferent image quality levels gave similar results for the
three image quality scores, with somewhat larger esti-
mates for id4 than for id2, as expected, but widely over-
lapping confidence intervals. For gologit2, contrasting
the highest quality levels gave smaller estimates than
contrasting the lowest levels for both id4 and id2. A pos-
sible interpretation is that it will be more difficult to
maintain the probability of producing images of excellent

quality by applying the new reconstruction algorithms
while reducing the radiation dose than to maintain the
probability of producing images of clinically acceptable
quality. Thus, the somewhat different results for the two
levels seem, to some extent, to answer different research
questions. The fact that, in general, non-significant results
were obtained when contrasting the highest quality levels
may be related both to the weaker effect at this level and
to a loss of power when more parameters are estimated
from the same data.

When analyzing the rank-order data (Tables 5-7),
the regression model specifically designed for this
type of data, rologit, yielded much better fit (lower
AIC and higher Pseudo R?). A surprising finding was
that with the ranking data, larger effects, and thus
larger dose reduction estimates, were found for id2
than for id4. The difference was even greater with
rologit. However, again the two confidence intervals
overlap.

Broadly speaking, the results of our comparison did
not give any clear-cut empirical evidence for selecting
the most appropriate regression model for analyzing vis-
ual grading data in medical imaging, except for choosing
rologit when analyzing rank data. Thus, the selection of
model must be based on other considerations.

The use of linear models for analyzing ordinal scale
data is generally discouraged in statistical textbooks.
Also, on theoretical grounds, it is commonly recom-
mended to handle variables such as patient and observer
in our study as random effects, since they both represent
samples from larger populations. This would speak in
favor of the meologit approach when analyzing absolute
scores. The greatest problem of this model appears to be
the proportional odds assumption (parallel regression
assumption), which may well have been violated by our
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data. Using instead gologit2 might resolve this problem,
but at the expense of more complex results that are less
straightforward to interpret. Still, there are situations
where the relevant research questions may motivate this
more complex model. It is more difficult to weigh the
importance of handling violations of the proportional
odds assumption (gologit2) against correctly controlling
random effects (meologit). Also for slogit, the results are
more complex and possibly difficult for an applied re-
searcher to interpret. The main finding from slogit in
our study was the confirmation of the ordinal structure
that had been defined beforehand.

Conclusions

In conclusion, a number of logistic regression methods
are available for handling ordinal data from visual grad-
ing experiments in medical imaging. Our study did not
provide any empirical support for selecting a different
regression model than the one we would recommend on
theoretical grounds, i.e. the ordinal logistic regression
model with mixed effects, which is appropriate for hand-
ling random effects when the response variable is or-
dinal. For rank-order data, the rank-ordered logistic
regression model appears to be most appropriate, since
this model can handle the rank-order data correctly and
because of its better performance in terms of the
goodness-of-fit among the tested regression models.
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