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Abstract

Background: Prostate cancer is one of the most common forms of cancer found in males making early diagnosis
important. Magnetic resonance imaging (MRI) has been useful in visualizing and localizing tumor candidates and with
the use of endorectal coils (ERC), the signal-to-noise ratio (SNR) can be improved. The coils introduce intensity
inhomogeneities and the surface coil intensity correction built into MRI scanners is used to reduce these
inhomogeneities. However, the correction typically performed at the MRI scanner level leads to noise amplification
and noise level variations.

Methods: In this study, we introduce a new Monte Carlo-based noise compensation approach for coil intensity
corrected endorectal MRI which allows for effective noise compensation and preservation of details within the
prostate. The approach accounts for the ERC SNR profile via a spatially-adaptive noise model for correcting
non-stationary noise variations. Such a method is useful particularly for improving the image quality of coil intensity
corrected endorectal MRI data performed at the MRI scanner level and when the original raw data is not available.

Results: SNR and contrast-to-noise ratio (CNR) analysis in patient experiments demonstrate an average improvement
of 11.7 and 11.2 dB respectively over uncorrected endorectal MRI, and provides strong performance when compared
to existing approaches.

Discussion: Experimental results using both phantom and patient data showed that ACER provided strong
performance in terms of SNR, CNR, edge preservation, subjective scoring when compared to a number of existing
approaches.

Conclusions: A new noise compensation method was developed for the purpose of improving the quality of coil
intensity corrected endorectal MRI data performed at the MRI scanner level. We illustrate that promising noise
compensation performance can be achieved for the proposed approach, which is particularly important for
processing coil intensity corrected endorectal MRI data performed at the MRI scanner level and when the original raw
data is not available.

Background
Prostate cancer (PCa) is one of the most commonly
diagnosed cancers among North American men, encom-
passing an estimated 14 % and 24 % of all new cancer
cases in the United States and Canada respectively. In
2014, an estimated 233,000 American and 23,600 Cana-
dian men are expected to be diagnosed with PCa and of
those cases, 29,480 and 4,000 are expected to result in
death [1, 2]. Prostate specific antigen (PSA) blood assay
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and digital rectal exams are exams used for screening
PCa. High PSA levels indicate high PCa risk. The use
of PSA is controversial and often inadequate as it over-
detects clinically insignificant prostate cancer, resulting
in a high degree of over-treatment. Treatment of prostate
cancer with radiation or surgery carries significant risk
of life altering side effects such as sexual dysfunction,
urinary and rectal incontinence and thus should not
be undertaken unless necessary [3, 4]. After a positive
screening, the next step is systematic transrectal ultra-
sound (TRUS) guided biopsy which involves systematic
regional sampling of the prostate with typically 8 or more
samples being taken. This is invasive and uncomfortable
and suffers from sampling error as the tumors are not
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easily visible with TRUS. As such, it is important to con-
sider detection alternatives. Magnetic Resonance Imaging
(MRI) has been shown to be a viable alternative as it can
visualize the cancer and has a good negative predictive
value for significant cancer, helping avoid unnecessary
biopsy and reduction of sampling error.
MRI has become a commonly used diagnostic imag-

ing tool for detecting PCa due to its improved contrast
between cancer and background healthy tissue in a tomo-
graphic view. Better signal-to-noise ratio (SNR) can be
achieved using a localized surface receiver coil placed
directly over the body region of interest (ROI) to increase
the magnetic sensitivity. Placed on the skin surface, these
surface coils are relatively far from the centrally located
prostate (i.e. > 10 cm). Alternatively, endorectal coils
(ERCs) placed in the rectum are within a few millime-
ters of the prostate gland. With both surface and ERCs,
the signal decreases farther away from the coil and conse-
quently introduces intensity inhomogeneities. ERCs have
recently been shown to offer a diagnostic advantage [5] in
the detection of prostate cancer compared to surface coils
at 3 T. As such, there remains a strong interest in utiliz-
ing ERC despite the discomfort associated with insertion
of the endorectal balloon. For lower field systems oper-
ating at 1.5 T, an ERC is helpful in achieving significant
improved SNR ( 10-fold) [6] and performance that is supe-
rior to 3 T MRI with phased-array coils (PAC) [7]. The
results demonstrated no significant visualization differ-
ence between the two approaches, although according to
Beyersdorff et al. [7] ERCs exhibited improved SNR. Thus,
the use of ERCs remains a particular interest at 1.5 T
as well. Conversely, the ERC’s inhomogeneous sensitiv-
ity results in high intensities at the prostate’s peripheral
zone nearest the coil and decreases in intensity near the
upper region of the central gland, making visualization,
delineation and diagnosis difficult [8].
Due to physiological limitations, ERCs are designed to

be small, which causes inhomogeneous signal distribu-
tion. To counterbalance this, MRI scanners are equipped
with coil intensity correction techniques that improve
images through a post-reconstruction or a pre-calibration
correction technique. Built-in MRI pre-calibration cor-
rection approaches are often preferred for MRI acquired
using ERCs when compared to post-reconstruction tech-
niques as they provide more accurate bias field estimates
which leads tomore reliable correctedMRI images. A pre-
calibration correction approach proposed by Liney et al.
[9] uses a series of proton-density (PD) weighted images
acquired prior to the acquisition to generate the bias
field estimate to be used for correction during the actual
acquisition. This approach has been realized in commer-
cial systems such as Phased array UnifoRmity Enhance-
ment (PURE - General Electric (GE)), Prescan Normalize
(Siemens), CLEAR (Philips) and NATURAL (Hitachi).

One of the consequences of using such intensity correc-
tion approaches is it creates a spatial dependence on back-
ground noise (which is uniformly distributed [9, 10] prior
to correction). This results in increasing noise levels as we
move away from the coil in the corrected images, which
is particularly visible in regions distant from the coil [10].
An example is shown in Fig. 1 where the regions outside
the red ellipse indicate low SNR regions where noise has
been intensified as a result of pre-calibrated intensity bias
correction. One approach to addressing this noise ampli-
fication is to perform multiple acquisitions and average
over the acquired data. However, such an approach is very
prohibiting and not feasible in a clinical setting given that
the imaging time increases significantly to perform mul-
tiple acquisitions, which reduces the number of patients
that can be scanned, as well as the fact that such an
approach increases the possibility of motion artifacts due
to patient motion during long imaging sessions. As such,
a post-processing approach to address this noise amplifi-
cation due to pre-calibration correction of coil intensity
for endorectal MRI would be very beneficial, given its
widespread use. This is particularly useful for retrospec-
tive studies where the original raw data is not available and
only the coil intensity corrected data is accessible.
MRI noise is an issue under active research [11, 12]. It

amounts to difficult analysis and hinders post-processing
approaches such as segmentation and registration
[13–18]. Raw MRI data is complex (both real and imag-
inary components) and represented in the frequency
domain with additive Gaussian noise. Transforming this

Fig. 1 An example of amplified noise in low SNR regions (ie. regions
outside the red ellipse) following a pre-calibrated intensity bias
correction approach. Exam was performed on a 1.5 T system using a
Hologic endorectal receiver coil
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complex data to the spatial domain renders the magnitude
data to be Rician distributed [14, 19, 20]. The data distri-
bution is also dependent upon the SNR, where low SNR
regions (mainly described by noise only) can be modeled
as Rayleigh distributed [20, 21] and high SNR regions as
Gaussian distributed [14, 20, 22]. Moreover, the signal-
dependent nature of noise in the intensity corrected
images introduces challenges to noise compensation.
Taking the characteristic distributions of MRI data

into consideration, noise can be compensated. Numer-
ous approaches have been proposed usingMRImagnitude
data to compensate for noise, using a variety of meth-
ods including total variation [23–25], analyzing multi-
ple scales using wavelet denoising [26–28], via non-local
means [13, 22, 29–31] and linear minimum mean-square
estimators (LMMSE) [14, 32]. These approaches combine
a mixture of techniques to handle the particular nature
of MRI noise: spatial-adaptation to the noise variance
[11, 24, 29, 33], Rician distribution [24, 25, 28, 29, 34]
and accounting for signal-dependent bias when using a
Gaussian assumption [11, 27–29].
In this study, a new approach called Adaptive Coil

Enhancement Reconstruction (ACER) is introduced that
is suitable for coil intensity corrected endorectal MR
images. ACER reconstructs noise-compensated endorec-
tal MR magnitude images using a stochastic Bayesian
estimation framework. A spatially-adaptive Monte Carlo
sampling approach is introduced to estimate the poste-
rior distribution using a Rician model. The Monte Carlo
posterior estimation is modified to model the Rician-
nature of MRI magnitude data. Moreover, the SNR pro-
file of the specific ERC used is incorporated into the
posterior estimation by integrating a learned parametric
non-stationary Rician model. The model is learned using
maximum likelihood estimation based on the data and
specifications of the ERC. The posterior estimate is then
used to form a noise-suppressed reconstruction using
Bayesian least-squares estimation. Given the pressures of
acquiring MRI data more quickly, the proposed approach
offers an alternative to obtain increased SNR by post-
processing retrospective coil intensity corrected data for
improved visualization.

Methods
In this section, the problem is formulated and the process
of how the noise-compensated image is reconstructed is
discussed.

Problem formulation
The acquired MRI magnitude image, V, can be expressed
as the following relationship [35]:

V (s) = G(s) + N(s) (1)

where s is the pixel location, G is the noise-compensated
reconstruction and N is the non-stationary noise.

Knowing the noise process N, Eq. 1 can be reformu-
lated as an inverse problem where the noise-compensated
reconstruction G can be found. Bayesian least-squares
estimation [36–38] is used to estimate G that minimizes
the expected squared estimation error. This formulation
is shown below:

Ĝ(s) = argmin
Ĝ(s)

E
(
(G(s) − Ĝ(s))2|V (s)

)
= argmin

Ĝ(s)

(∫
(G(s) − Ĝ(s))2p(G(s)|V (s))dG(s)

)
(2)

Taking the derivative of Eq. 2:

∂

∂Ĝ(s)

∫
(G(s) − Ĝ(s))2p(G(s)|V (s))dG(s) =∫

{−2(G(s) − Ĝ(s))p(G(s)|V (s))dG(s)}
(3)

Then setting the derivative in Eq. 3 to zero:∫
G(s)p(G(s)|V (s))dG(s) =

∫
Ĝ(s)p(G(s)|V (s))dG(s)

= Ĝ(s)
∫

p(G(s)|V (s))dG(s)

= Ĝ(s)
(4)

Simplifying to:

Ĝ(s) =
∫

G(s)p(G(s)|V (s))dG(s)︸ ︷︷ ︸
E(G(s)|V (s))

(5)

In Eq. 5, G(s) can be estimated using the conditional
mean of G(s) on V (s), E(G(s)|V (s)), or the mean of
the posterior distribution, p(G(s)|V (s)). An estimate of
the posterior distribution, p(G(s)|V (s)), can be calculated
using a spatially-adaptive importance-weighted Monte-
Carlo sampling approach. The approach is adapted to
account for the non-stationary Rician characteristics of
MRI magnitude data. This is explained in more detail in
the next section.

Spatially-adaptive Rician distributed Monte Carlo Posterior
estimation
MRI magnitude data is Rician distributed, following:

f (x|ν,�)= x
�2 exp

(
− (

x2+ν2
)

2�2

)
I0

(xν
�2

)
, x>0; ν,�≥0, (6)

where � and ν are parameters that control the distri-
bution’s scale and skew and I0 is the modified Bessel
function of the first kind with order zero. As a result
of coil intensity correction, the data’s Rician distribution
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becomes spatially-dependent and results in the following
distribution, where x > 0; ν,� ≥ 0:

f (x|ν(s),�(s)) = x
�(s)2

exp
(−(x2 + ν(s)2)

2�(s)2

)
I0

(
xν(s)
�(s)2

)
(7)

This distribution can be accounted for in estimating the
posterior distribution via an importance-weighted Monte
Carlo sampling approach [39]. The approach forms �,
a set of samples and importance weights selected from
a search space, η. Pixels, sk , are selected in a region
around a pixel of interest, s0, and from these samples, a
subset are collected randomly using an instrumental dis-
tribution, Q(sk|s0), such as a uniform distribution. For
each randomly drawn pixel, sk , an acceptance probability,
α(sk|s0) (Eq. 8), is calculated which indicates the prob-
ability that the neighbourhood of sk is similar to the
neighborhood of s0:

α(sk |s0) =
∏

j
x(j)

�̂(s0)2
exp

(−(x(j)2+ν(j)2)
2�̂(s0)2

)
I0

(
x(j)ν(j)
�̂(s0)2

)
∏

j λ
(8)

where x(j) = hk[ j] and ν(j) = h0[ j]. The terms hk[ j] and
h0[ j] denote the jth pixels in the neighbourhoods around
sk and s0. The variable λ normalizes α(sk |s0) so that in the
case the neighbours of sk are duplicates of s0, α(sk|s0) = 1.
The variables �̂(s0) is the estimated scale, for the pixel of
interest, s0 (its estimation is explained in more detail in
the following section). This acceptance probability is used
to determine if the sample sk is a realization of the pos-
terior p(G(s)|V (s)) and should be accepted into the set
�. The acceptance probability reformulates the Rician-
distributed statistics to handle the non-stationarity of the
coil-intensity corrected MRI data when deciding whether
a pixel is accepted or rejected. To use the acceptance prob-
ability, a random value u is first generated from a uniform
distribution. Then, the pixel sk is accepted into the set �

if u ≤ α(sk|s0), otherwise it is rejected. The process of
selection and acceptance is continued until N samples are
accepted into �. The posterior distribution estimate can
then be calculated using a weighted-histogram [39]:

p̂(G(s)|V (s)) =
∑

j∈� α(sj|s0)δ(G(s) − V (sj))
Z

(9)

where δ() is the Dirac delta function and Z is a normal-
ization term to enforce

∫
p̂(Gj|Vj) = 1. The posterior

distribution can then be used to calculate the noise-
compensated reconstruction Ĝ(s) using Eq. 5.

Non-stationary unified ERC parametric model
To estimate the posterior distribution p(G(s)|V (s)) in a
spatially-adaptive manner, the scale parameter of each
pixel of interest, �̂(s0), is estimated using maximum like-
lihood estimation,

θ̂ML = argmax
θ

f (x|θ) (10)

where x are the observed intensities in V (s) and θ are
the parameters to be estimated: in this case, the scale
parameter, �̂(s0). To refine the scale estimation, an exist-
ing SNR profile, defined as γ (θ), which is characteristic to
a given ERC, is fitted. Given an ERC, an SNR profile can be
mapped to characterize the change in SNR as a function
of distance from the ERC surface. Literature has shown
that the ERC SNR profile differs from a rigid and inflat-
able coil, however both coils share a common trend where
there is an SNR gain nearest the coil surface which dimin-
ishes with distance [40–42]. Considering the SNR depth
profile from posterior to anterior of a rigid coil, a sharp
increase in SNR of 3 to 5 times the normal SNR is demon-
strated at the ERC surface. This increase is followed by a
decrease through the peripheral zone and central gland.
Despite the quick decline in SNR, the peripheral zone still
experiences a gain in SNR of 1.5 to 3 times. The con-
tinual decrease then finds the central gland with only a
fraction of the SNR [40–42]. An inflatable coil has demon-
strated a weaker response with less SNR increase near
the coil. In addition to the variation between SNR pro-
files for inflatable and rigid ERC, ERC brands have their
own characteristic profiles which can be determined by
measuring phantoms. Two SNR profiles were modeled in
this study using the findings from Venugopal et al. [40] for
two ERCs: a Hologic rigid ERC and a Medrad inflatable
ERC. The inflatable and rigid ERC SNR profiles demon-
strate a 1 and 5-fold improvement in SNR at the ERC
surface respectively with an exponential drop leading to
a final abrupt drop. The full algorithm, Adaptive Coil
Enhancement Reconstruction (ACER), is summarized in
Algorithm 1.

Algorithm 1 ACER Algorithm Summary:
1. Perform model fitting to estimate the local scale map,
�̂(s), using the ERC’s SNR profile
2. Using the instrumental distribution,Q(sk |s0), select a sub-
set of pixels randomly from the neighbourhood of the pixel
of interest s0 in V
3. Calculate the acceptance probability, α(sk |s0), for each sk
in the of subset selected pixels in step 2.
4. Select a random value, u, from a uniform distribution
if u <= α(sk |s0) then

The pixel, sk , is considered a realization of p̂(G(s)|V (s))
and is accepted into the set �

else
The pixel, sk , is not a realization of p̂(G(s)|V (s)) and is
discarded

end if
5. Calculate the posterior distribution as a weighted his-
togram using α(sk |s0) for all sk in � (Eq. 9)
6. Use posterior distribution to calculate Ĝ(s0) (Eq. 5)
7. Repeat steps 2 – 6 for each pixel in V
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Fig. 2 Left: Uncorrected uncropped T2 slice. A noise band (red) is present due to PURE correction which amplifies the noise around the cushion
used to stabilize the phantom during imaging. Right: Corresponding slice cropped for processing to include only the ROI with selected regions
(blue and red) for SNR and CNR calculation on phantom DWI and T2

Experiments
To interpret the performance of the proposed approach,
clinical patient data and phantom data were used. Clinical
patient and phantom endorectal T2 (spin-spin relax-
ation time) and axial diffusion-weighted MRI (DWI) cor-
rected with the pre-calibration coil intensity correction
approach by GE called Phased array UnifoRmity Enhance-
ment (PURE) was collected at Sunnybrook Health
Sciences Center. Two types of coils were used to acquire
the data: an inflatable Medrad eCoil ERC and a rigid
Hologic ERC. The data was collected using a GE Discov-
eryMR750 3 TMRI for phantom data (inflatable coil only)
and a GE Signa HDxt 1.5 TMRI for patient data (collected
with both rigid and inflatable ERCs).
The proposed approach was compared against three

other MRI denoising approaches: 1.) an optimized
variance-stabilizing transformation for Rician distribu-
tions (ROVST) [19], 2.) noise removal by a multi-
resolution adaptive non-local means approach (ANLM)
[29] and 3.) a linear minimum mean squared error
estimator (LMMSE) [32]. The ROVST, LMMSE and
ANLM codes used for comparison were provided by their

Table 1 Phantom endorectal T2 data collection protocol

Parameter Setting

Coil Medrad eCoil ERC

NEX 1

TE 107 ms

TR 3,200 ms

DFOV 16 × 16 cm

pixel spacing 0.3 mm

slice thickness 3 mm

respective authors. All approaches were implemented
using MATLAB and the parameters were selected to
provide a reasonable balance between prostate detail and
noise compensation in the background. The experimen-
tal setup for the phantom and patient experiments are
described in more detail in the following sections.

Phantom experimental setup
For phantom experiments, a multi-modality prostate
training phantom from Computerized Imaging Reference
Systems Inc (CIRCS Model 053) was used. The phantom
is contained within a 12 × 7.0 × 9.5 cm clear container
made of acrylic. The container has two openings for the
probe (front - 3.2 cm diameter and rear - 2.6 cm diam-
eter). Located inside the container is a prostate replica
composed of high scattering Blue Zerdine (5.0× 4.5× 4.0
cm) that is placed in a water-like background gel with little
backscatter attenuation (≤ 0.07 dB/cm-MHz). Within the
prostate itself, there are three 0.5 − 1.0 cm lesions placed
hypoechoic to the prostate. The urethra and rectal wall are
made of low scattering Zerdine with diameter of 0.70 cm
and dimensions 6.0 × 11 × 0.5 cm respectively.

Table 2 Clinical endorectal DWI data collection protocol

Parameter Setting

Coil Medrad eCoil ERC

b-values 0 s/mm2, 1000 s/mm2

NEX 1

TE 72 ms

TR 10,000 ms

DFOV 16 × 16 cm

pixel spacing 0.6 mm

slice thickness 3 mm
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Table 3 Clinical endorectal T2 data collection protocol

Parameter Setting

NEX 0.5

TE 100 – 107 ms (median: 104 ms)

TR 3,400 ms

DFOV 16 × 16 cm

pixel spacing 0.3 mm

slice thickness 3 mm

This phantom was then placed in a tub of water to
increase signal amplification and placed between cushions
to elevate and stabilize the phantom during acquisition
and to improve the realism of the phantom. The phan-
tom was then imaged with the inflatable Medrad Prostate
eCoil MR endorectal coil using T2 MRI and DWI. Both
T2 and DWI MRI were acquired with the built-in pre-
calibration correction approach PURE using one excita-
tion with a 3 T GE Discovery MR750. The three phantom
data sets were acquired using 1) DWI b = 0 s/mm2, 2)
DWI b = 1000 s/mm2 and 3) T2 and the central slice
selected for experimentation. As a result of PURE correc-
tion, the cushion in these slices are emphasized by a noise
band shown in Fig. 2 for T2. To focus on the phantom
itself, these slices were cropped.
The T2 data collection protocol using the GE Discov-

ery MR750 scanner used for phantom imaging is based
on a standard clinical endorectal DWI data collection pro-
tocol used at the Sunnybrook Health Sciences Centre,
and described in detail in Table 1. Furthermore, the DWI
data collection protocol using the GE Discovery MR750
scanner used for phantom imaging is a standard clinical
endorectal DWI data collection protocol used at the Sun-
nybrook Health Sciences Centre, and described in detail
in Table 2. Central slices from each modality were then
considered for SNR and CNR.

Patient experimental setup
The second experiment evaluates the image reconstruc-
tion performance of the various tested approaches on
endorectal T2 axial MRI with PURE within a clinical

scenario. The data was collected and then selected for this
study retrospectively using a GE Discovery 1.5 T Signa
HDxt MRI scanner, a Medrad eCoil inflatable ERC or
a Hologic rigid ERC. Institutional research ethics board
approval was obtained from the Research Ethics Board of
Sunnybrook Health Sciences Centre and patient informed
consent for this study was obtained. For the purpose of
evaluating imaging reconstruction performance, fourteen
patient cases were used in this study. Eleven patients
were imaged using an inflatable Medrad coil and the cen-
tral slices were selected for analysis. Three patients were
imaged using a rigid Hologic coil and three slices were
selected from each volume and considered as a sepa-
rate case. The patients ranged in age from 54 − 79 years
with a median age of 72 years. The T2 data collection
protocol using the GE Discovery 1.5 T Signa HDxt MRI
scanner used to perform patient imaging is a standard
clinical endorectal T2 data collection protocol used at
the Sunnybrook Health Sciences Centre, and described
in detail in Table 3. The central slices from each patient
case were assessed using SNR, CNR and edge preservation
and 3 cases were selected to be qualitatively assessed via a
subjective scoring method.

Results and discussion
Following the experimental setup, a number of quan-
titative and qualitative analysis methods were executed
to evaluate the performance of the proposed approach
against the state-of-the-art techniques.

Phantom experiment
For the phantom experiments, the noise suppression
approaches were compared using signal-to-noise ratio
(SNR), contrast-to-noise ratio (CNR) and visual analysis.
P-values were also calculated to determine the statistical
significance of the SNR and CNR results. The null hypoth-
esis used was that the proposed ACER approach had no
improvement for a subjective metric as compared to a
given correction approach. P-values were calculated for
a two-tailed normal distribution with a statistical signifi-
cance level of 5 %.

Fig. 3 Noise suppressed T2 phantom experiment results: A background region (blue) and a prostate region (red) are shown where the SNR and CNR
were calculated in the uncorrected (UC) slice. ACERmaintains a good balance between noise compensation in smooth regions while retaining edges
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Table 4 Phantom SNR analysis of a selected prostate region (in
dB with highest measures in bold). ACER proved to have the
greatest SNR improvement in the prostate regions. ANLM
showed an inaccurate noise variance estimate which led to less
significant SNR improvement

Case ACER ROVST LMMSE ANLM UC

DWIb=0 27.0 26.8 26.7 26.2 26.1

DWIb=1000 27.3 27.5 26.9 25.9 25.7

T2 27.2 26.7 26.9 26.7 26.7

Avg./Std. 27.2/0.15 27.0/0.43 26.8/0.12 26.3/0.40 26.2/0.50

Due to the known homogeneity of the phantom, for
quantitative analysis, SNR and CNR were calculated for
two regions: one region on the phantom farthest away
from the coil and a second region on the prostate itself.
These regions are shown in Fig. 3 in the uncorrected
image in blue and red respectively. SNR and CNR (in
decibels) were calculated as follows:

SNR = 20 log
x̄
σ
, CNR = 20 log

|x̄A − x̄B|
σ

(11)

In the SNR equation, the parameter, x̄, defines the mean
value of the region and σ signifies the standard deviation
of the region. The SNR metric used in this study is based
on the region-of-interest (ROI) approach commonly used
in clinical practice [43, 44]. In CNR, x̄A and x̄B, denote
the mean values of the selected background and prostate
regions respectively and σ is the standard deviation of the
background region which is more indicative of the noise
process.
The final SNR and CNR results are shown in Tables 4,

5, and 6 with visual results for the T2 phantom case in
Fig. 3. All approaches demonstrated improvement upon
the uncorrected (UC) slice with the proposed approach,
ACER, having the highest average SNR in the selected
background and prostate regions. The uncorrected (UC)
slice refers to the slice with no application of any algo-
rithm. ROVST and LMMSE proved to have the next
best SNRs in the two regions however, considering the
visual results, noise was under or overcompensated with
deterioration of structure. In the case of DWI at b =

Table 5 Phantom SNR analysis of a selected background region
(in dB with highest measures in bold). ACER proved to have the
greatest SNR improvement in the background regions. ANLM
showed an inaccurate noise variance estimate which led to less
significant SNR improvement

Case ACER ROVST LMMSE ANLM UC

DWIb=0 33.2 32.0 31.6 30.9 30.6

DWIb=1000 27.5 27.6 26.4 26.0 25.9

T2 29.2 27.0 27.6 27.0 26.9

Avg./Std. 30.0/2.9 28.9/2.7 28.5/2.7 27.9/2.6 27.8/2.5

Table 6 Phantom CNR analysis based on the selected
background and prostate regions (in dB with highest measures in
bold). ACER demonstrated the greatest improvement in CNR
illustrating its capacity to augment the detail within the prostate

Case ACER ROVST LMMSE ANLM UC

DWIb=0 27.1 25.9 25.4 24.7 24.5

DWIb=1000 20.9 21.0 19.7 19.4 19.4

T2 19.7 17.6 18.1 17.5 17.5

Avg./Std. 22.6/3.9 21.5/4.1 21.1/3.8 20.5/3.7 20.4/3.6

1000 s/mm2, where noise was more prominent and con-
trast was already low, ROVST had greater SNR metrics
over ACER however, at the cost of structure preserva-
tion. Finally, ANLM exhibited the least SNR improvement
in both selected regions, indicating an inaccurate noise
estimate.
CNR analysis (Table 6) showed that ACER had the high-

est average CNR. ROVST had the second highest aver-
age CNR and ANLM with the least improvement. These
results indicate ACER’s ability to increase the contrast
between the background and prostate regions, thereby
improving the visibility of detail within the prostate.
P-values (Table 7) were also calculated for the SNR and

CNR results to verify the statistical significance of the dif-
ferences between the average SNR and CNR compared
to ACER. ACER demonstrated statistical significance for
SNR and CNR compared to all other methods except for
ROVST, in which it was shown that the improvements
of ACER over ROVST is statistical insignificant for SNR
and CNR.
The noise suppressed T2 phantom slices for each

approach are shown in Fig. 3. The proposed method
demonstrates the best noise compensation while enhanc-
ing the detail contrast within the prostate. LMMSE and
ROVST also compensate for noise however at the cost of
visible structure and edge blurring.

Patient experiment
The noise suppression approaches were then compared
using patient data by analyzing SNR, CNR (Eq. 11), edge
preservation (Eq. 12) and subjective scores. P-values were
also calculated to determine the statistical significance
of the SNR and CNR results. Here, the null hypothe-
sis used was that a given approach had no improvement

Table 7 The p-values for the metrics measured for the phantom
experiments compared to the proposed ACER method. Values
below 0.05 are shown bolded which indicate the average score
across the cases has statistical significance

Metric UC ROVST LMMSE ANLM

SNR 0.004 0.15 0.02 0.005

CNR 0.02 0.23 0.01 0.02
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Table 8 The patient experiment SNR of a background region are
shown (largest values are shown in bold). ACER demonstrates an
average increase of 11.7 dB for SNR over the uncorrected (UC)
slice which has no noise suppression applied

Case ACER ROVST LMMSE ANLM UC

1 34.2 22.6 31.5 23.1 19.4

2 26.8 21.7 25.7 21.1 18.5

3 33.1 34.7 32.2 26.6 19.6

4 32.3 36.3 34.8 27.7 20.2

5 34.1 33.4 32.5 26.7 22.1

6 34.8 31.6 33.1 26.5 19.9

7 34.1 33.2 33.3 25.7 22.3

8 32.6 36.2 33.9 27.3 19.5

9 33.6 35.0 34.5 27.4 19.6

10 34.0 37.0 35.7 27.6 19.6

11 33.0 27.9 25.4 21.0 13.8

12 26.5 23.5 20.3 20.1 13.2

13 28.1 28.2 19.0 22.3 13.3

14 22.8 24.9 20.4 21.4 13.7

15 25.9 23.9 18.4 20.7 13.2

16 25.4 25.6 21.5 21.5 14.1

17 24.8 25.7 19.6 21.4 13.4

18 19.2 13.1 16.8 15.0 12.8

19 18.7 13.3 16.0 15.5 12.6

20 12.9 11.9 13.8 13.0 11.7

Avg./Std. 28.3/6.1 27.0/7.6 25.9/7.3 22.6/4.3 16.6/3.5

Table 9 The patient experiment CNR of two regions are shown
(largest values are shown in bold). ACER demonstrates an
average increase of 11.2 dB for CNR over the uncorrected (UC)
slice which has no noise suppression applied

Case ACER ROVST LMMSE ANLM UC

1 37.0 25.3 34.5 25.8 22.1

2 31.3 26.2 30.7 25.7 23.0

3 36.1 37.7 35.3 29.6 22.6

4 30.6 34.6 33.3 26.0 18.4

5 29.1 28.4 27.6 21.7 17.2

6 30.9 27.9 29.5 22.7 16.1

7 33.6 32.7 32.9 25.2 21.8

8 35.6 39.2 37.0 30.3 22.5

9 34.6 36.0 35.7 28.5 20.7

10 33.0 36.2 35.1 26.7 18.8

11 36.1 41.0 39.2 34.0 26.8

12 26.8 23.8 20.7 20.4 13.5

13 24.8 24.9 15.9 19.0 10.0

14 22.3 24.5 20.3 21.1 13.4

15 26.6 24.6 19.4 21.4 13.8

16 24.7 24.9 21.2 20.9 13.5

17 24.0 25.0 19.3 20.7 12.6

18 17.9 11.7 15.5 13.6 11.4

19 18.3 12.8 15.7 15.1 12.2

20 10.6 9.5 11.5 10.6 9.3

Avg./Std. 28.2/6.9 27.3/8.6 26.5/8.5 22.9/5.6 17.0/4.9

Table 10 The p-values for the metrics measured for the patient
experiments. Values below 0.05 indicate the average score for all
slices corrected by each approach represents statistically
significant change from the uncorrected slices. All approaches
have p-values below 0.05

Metric ACER ROVST LMMSE ANLM

SNR 4.56E-11 1.30E-07 8.96E-09 8.93E-10

CNR 1.54E-11 1.30E-07 5.99E-09 8.88E-10

for a subjective metric as compared to the uncorrected
image. P-values were calculated for a two-tailed normal
distribution with a statistical significance level of 5 %.
For the SNR and CNR assessment, a high noise,

structure-free region in the background was selected sim-
ilar to the phantom experiments. A second homogeneous
region with higher intensity was then selected for CNR
calculation. The results are shown in Tables 8 and 9
where all approaches improved upon the background
SNR of the uncorrected slice. In the case of background
SNR, ACER had the highest average SNR with ROVST

Table 11 Patient experiment edge preservation results: ANLM
has the highest average edge preservation (EP) metrics as a result
of insufficient noise suppression. ROVST and LMMSE demonstrate
lower average metrics as a result of overcompensation. ACER
defines an optimal balance between noise suppression and edge
preservation which enhances visualization with the second
highest EP metrics

Case ACER ROVST LMMSE ANLM

1 0.977 0.994 0.982 1.000

2 0.936 0.982 0.954 0.996

3 0.953 0.875 0.932 0.979

4 0.956 0.840 0.847 0.954

5 0.846 0.832 0.836 0.957

6 0.933 0.881 0.907 0.980

7 0.895 0.884 0.890 0.979

8 0.971 0.863 0.930 0.975

9 0.896 0.861 0.881 0.963

10 0.954 0.869 0.903 0.976

11 0.923 0.792 0.938 0.973

12 0.970 0.867 0.872 0.981

13 0.960 0.896 0.902 0.984

14 0.985 0.923 0.921 0.987

15 0.935 0.838 0.860 0.969

16 0.952 0.868 0.868 0.978

17 0.973 0.903 0.906 0.984

18 0.957 0.986 0.957 0.999

19 0.980 0.993 0.981 1.000

20 0.974 0.992 0.971 1.000

Avg./Std. 0.946/0.03 0.897/0.05 0.912/0.04 0.981/0.01
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in second. The visual results for ROVST and LMMSE
demonstrated that in regions far away from the ERC, noise
was effectively removed however, at the cost of detail
within the prostate. ACER and ANLM were more effec-
tive in retaining the prostatic detail, with ACER having
an average improvement over the uncorrected slice of
11.7 dB. Similar to the background SNR results, ACER
had the highest average CNR with ROVST in second.
ACER demonstrated an average 11.2 dB improvement
over the uncorrected slice in CNR. Subsequent p-value
analysis (Table 10) showed the average improvement over
the uncorrected slices for each approach was statistically
significant with p-values of less than 0.05.
The edge preservation (EP) measurement evaluates

image edge degradation. The EP measurement compares
the noise-free reconstruction with the uncorrected image
and can be calculated as follows [45]:

ϒ =
�

(
�2V − �2V

)
·
(
�2Ĝ − �2Ĝ

)
√

�
(
�2V − �2V

)2 · �
(
�2Ĝ − �2Ĝ

)2 (12)

where �2V and �2Ĝ are the Laplacian of the inten-
sity bias corrected image and noise-free reconstruction
respectively using a 3 × 3 filter. The parameters, �2V
and �2Ĝ, are the mean values of a neighbourhood around
�2V and �2Ĝ. An image where there is perfect EP results
in a measurement of ϒ = 1. This refers to the technique’s

ability to retain the structure and edges of the image. For
the purpose of this study, since noise can be recognized
as edges or details, the EP metric is calculated for the
prostate gland only using a user defined mask. This region
was selected for high SNR and high importance for detail
preservation.
Considering the EP of the noise compensation

approaches (Table 11), ANLM had the highest average
EP with ACER having the second highest. In the real
T2 cases, noise was more prominent than compared to
the phantoms and as a result, more compensation was
required to suppress the noise. This led to overcompensa-
tion in other regions where detail is important. Following
the conclusions made in the phantom experiment,
ROVST and LMMSE led to over suppression of noise and
a lower EP measurement. ANLM however, had better EP
for all but one case, as a consequence of its insufficient
noise compensation. Due to the strong presence of noise
in these slices, the Laplacian operator of the EP metric
realized noise as edges. The insufficient noise suppres-
sion by ANLM resulted in structure preservation in the
prostate, however also retained noise in regions of low
SNR. This was demonstrated by the lower average back-
ground SNR compared to ACER. ACER proved to have a
suitable balance of noise suppression and EP as a result of
the non-stationary unified ERC parametric model used.
The EP analysis is further supported by the visual results

shown in Figs. 4, 5 and 6. LMMSE and ROVST are able

Fig. 4 Case 12: A central T2 MRI slice from a patient imaged using a Hologic rigid ERC with moderate noise compensated by various approaches.
ACER maintains the detail within the prostate while compensating for the background noise



Lui et al. BMCMedical Imaging  (2015) 15:43 Page 10 of 15

Fig. 5 Close-up views of background (left column) and prostate (right column) regions for Case 12. The selected regions are shown in Fig. 8

to apply moderate noise suppression in the background
regions where signal is low, however nearest the coil the
prostate details are difficult to visualize due to overcom-
pensation. ANLM is more effective in retaining the detail
within the prostate region however at the cost of retaining
the noise farther away from the ERC at high noise levels.
ACER strikes an optimal balance between detail preserva-
tion within the prostate where signal is higher and effec-
tively suppresses noise in the regions with low signal. This
correction allows for improved visibility for diagnosis.

Image analysis and subjective interpretation
To appropriately assess the quality of the noise compensa-
tion approaches, a blind subjective scoring system similar
to the evaluation system proposed byWalsh et al. [46] was
used. In this system, the scorers were unaware of which
approach was applied on the compensated data presented
to them. A central slice from three volumes was selected
and evaluated by seven evaluators ranging in experience.
They are listed below from most to least experience:

• MH, 16 years of clinical radiology experience with
specialization in genitourinary cancers and 11 years
of experience interpreting prostate MRI

• LM, 7 years of clinical radiology experience with
specialization in cancer imaging

• FK, 5 years of prostate MRI research experience
• HC, 1.5 years of clinical radiology experience
• AM, 1.5 years of clinical imaging research experience
• JK, 2 months of clinical prostate MRI experience
• KC, 50 hours of clinical prostate MRI experience

To collect the subjective scores, the noise-suppressed
and uncorrected versions of three slices were presented
to the evaluators in an unknown and random sequence.
Based on the individual slice, they were asked to assess
the reconstruction based on the following criteria: con-
trast, sharpness, lack of noise and fitness for purpose.
These criteria can be scored using the following terms:
very poor, poor, satisfactory, good or very good. For the
sake of our evaluation, we assigned these scores from 1 to
5, with 1 being very poor and 5 being very good. The rank
sums (Eq. 13), median and F-pseudosigma scores (Eq. 14)
across all slices and evaluators were calculated and are
shown in Tables 12, 13 and 14. Histograms of each scor-
ing criterion and the frequency of each score across all
evaluators is included in Fig. 7.
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Fig. 6 Case 3: A central T2 MRI slice from a patient imaged using a Medrad inflatable ERC compensated by various approaches. LMMSE and ROVST
suppress noise in the background, consequently blurring details within the prostate. ACER effectively compensates the noise in low signal regions
while taking advantage of the high signal near the coil. ANLM maintains similar detail preservation however retains some noise

The rank sum, SR, is the total of all subjective scores by
all the evaluators for a particular criterion.

SR =
N∑
i=1

M∑
j=1

Sij, (13)

where N is the number of evaluators and M is the num-
ber of slices evaluators evaluated and Sij are the individual
scores of each evaluator for each slice. The total rank sum
can then be used to determine whether in general the eval-
uators decided a particular criterion was high or low for a
given approach.
The next metric considered is the F-pseudosigma, Fσ ,

which is a measurement of variance and is calculated
using:

Fσ = IQR
1.349

, (14)

Table 12 The rank sum subjective score values (with highest
scores shown in bold): ACER has the highest rank sum for
contrast and lack of noise

Scoring Criterion ACER ROVST LMMSE ANLM UC

Contrast 63 61 47 60 62

Sharpness 58 48 21 65 68

Lack of noise 80 76 76 72 62

Fitness for purpose 70 54 27 70 65

where IQR is the interquartile range. A smaller F-
pseudosigma denotes a more precise score.
Considering the histograms (Fig. 7), rank sum

(Table 12), median (Table 13) and F-pseudosigma
(Table 14) metrics for contrast, ACER had the highest
rank sum with a median score of satisfactory. It also had
the smallest F-pseudosigma which indicates there was
little variation between all scores. For the sharpness cri-
terion, it was interesting that the uncorrected image had
the largest rank sum with ANLM having the next highest
rank sum. ACER, ANLM and uncorrected tied with the
highest median scores of satisfactory however also had
the highest F-pseudosigmas indicating large variation in
opinion. It was unanimous however that LMMSE had very
poor sharpness and was found to be less sharp than the
uncorrected slices. For the lack of noise criterion, ACER

Table 13 The median subjective score values (with the highest
scores shown in bold): ACER and ANLM demonstrated the same
median scores as UC except for lack of noise where all
approaches improved upon UC

Scoring Criterion ACER ROVST LMMSE ANLM UC

Contrast 3 3 2 3 3

Sharpness 3 2 1 3 3

Lack of noise 4 4 4 4 3

Fitness for purpose 3 2 1 3 3



Lui et al. BMCMedical Imaging  (2015) 15:43 Page 12 of 15

Table 14 The F-pseudosigma subjective score values (with the
lowest scores shown in bold): With the exception of the
unanimous decision that LMMSE had poor sharpness, most of
the criteria for the approaches had high variance indicating large
inconsistencies in opinion implying that personal preference has
a large impact upon the approach

Scoring Criterion ACER ROVST LMMSE ANLM UC

Contrast 0.37 0.74 0.74 0.74 1.48

Sharpness 0.93 0.74 0.00 0.93 0.93

Lack of noise 0.93 0.93 1.48 0.74 0.19

Fitness for purpose 0.93 0.74 0.74 0.74 1.48

again had the largest rank sum with a median score of
good. All correction approaches had high rank sums and
median scores of good however again, F-pseudosigmas
hinted at large variance in opinion. This may have been
caused by the large number of evaluators and the variance

in noise level between cases. Finally, ACER and ANLM
had the highest rank sums for fitness for purpose with a
median score of satisfactory. LMMSE and ROVST were
found to be unfit for the purpose in comparison to uncor-
rected slices. It is intriguing to point out that evaluators
found that the uncorrected slices were just as sufficient
for analysis as ACER and ANLM however there was large
variance in opinion with large F-pseudosigma scores.

Visual analysis
Visual results for two different cases are shown in Figs. 4
and 6 for a Hologic rigid ERC and a Medrad inflatable
ERC respectively. The results demonstrate ACER’s abil-
ity to retain prostate detail with effective compensation
of background noise using different ERCs with different
SNR characteristics. In Fig. 4, it is evident that LMMSE
and ANLM are able to reduce the noise in the background

Fig. 7 Subjective scoring histograms for the compared approaches. The y-axis depicts Frequency (0 to 22) and the x-axis depicts the subjective
score (1 to 5)
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regions however with noise still visibly present. ROVST
does a better job at compensating for noise however
upon closer inspection of Fig. 4 in regions specified by
Fig. 5 for a background and prostate region (Fig. 8) it
is apparent that the level of detail is compromised for
these approaches. ROVST and LMMSE approaches were
unable to preserve the tissue texture within the prostate,
demonstrating oversmoothing in the prostate in order to
compensate for the high level of noise in the background.
In contrast, ANLMwas able to retain the detail within the
prostate however showed some noise in the background.
ACER successfully balances the noise reduction and the
detail preservation by incorporating the ERC SNR profile
as well as the non-stationary characteristics of the MRI
data. Similar conclusions can be made when consider-
ing the performance of the approaches for the inflatable
ERC case (Fig. 6). In this example, the ANLM applies
insufficient noise compensation and shows evidence of
noise. ROVST and LMMSE suppress the noise however at
the cost of removing detail in the prostate. Again, ACER
exhibits apt noise compensation while retaining tissue
texture and details.

Timing analysis
The various MRI compensation approaches were also
analyzed based on their computation times. Tests were
completed on a 3.10 GHz AMD Athlon(tm) II X3 445
processor with 4.00 GB of RAM. The various approaches
were not optimized for timing performance. The timing
analysis is shown for the patient data in Table 15. The
LMMSE approach demonstrated the fastest computation

Fig. 8 Selected background and prostate regions (shown on the
uncorrected image) for closer inspection in Fig. 5

Table 15 Computation times for each approach on the real T2
endorectal MRI shown in seconds. Shortest computation times are
shown bolded. LMMSE had the shortest average computation
time with 0.13 s while ANLM had the longest average
computation time with 1060 s

Case ACER ROVST LMMSE ANLM

1 370 9.82 0.17 1170

2 265 8.22 0.12 1090

3 256 8.33 0.13 1310

4 270 8.43 0.13 1340

5 268 8.47 0.11 1310

6 274 8.34 0.12 1280

7 299 8.32 0.12 1330

8 361 8.43 0.13 1330

9 295 8.5 0.12 1240

10 285 8.42 0.12 1210

11 272 8.31 0.12 1210

12 276 7.22 0.19 923

13 275 6.99 0.11 888

14 274 6.85 0.12 848

15 273 7.03 0.12 846

16 273 6.99 0.12 789

17 272 7.06 0.14 871

18 272 7.28 0.13 753

19 272 7.34 0.14 693

20 273 7.28 0.12 690

Avg./Std. 284/28.7 7.88/0.77 0.13/0.01 1060/234.7

times with an average computation time of 0.13 s while
ANLM exhibited the slowest computation time with
an average calculation time of 1060 s. The proposed
approach, ACER, showed middle range performance with
an average computation time of 284 s.

Conclusion
In this study, a novel noise compensation approach for coil
intensity corrected endorectal MRI images is presented.
Adaptive Coil Enhancement Reconstruction (ACER) uses
a spatially-adaptive Monte Carlo sampling approach to
estimate the Rician-distributed posterior in MRI images
to reconstruct the noise compensated image. ACER takes
advantage of the known SNR characteristics of an ERC to
develop a non-spatial unified ERC parametric model that
models the SNR profile presented by the ERC. This allows
for effective noise suppression and detail preservation in
the prostate. This approach to noise compensation for coil
intensity corrected endorectal MRI images is particularly
useful for retrospective studies where the original raw data
is not available and only the coil intensity corrected data is
accessible. Experimental results using both phantom and
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patient data showed that ACER provided strong perfor-
mance in terms of SNR, CNR and edge preservation when
compared to a number of existing approaches. Future
work involves extending ACER to automatically estimate
the SNR profile of the ERC, thus eliminating the necessity
for the ERC SNR profile, investigating the effect and effi-
cacy of ACER on improving the quality of multi-sequence
endorectal modalities such as correlated diffusion imag-
ing [47], as well as investigating the extension of ACER for
endorectal compressed sensingMRI [48]. Furthermore, as
future work it would be of great interest to perform amore
comprehensive study in the effects of noise compensation
on resolution, as well as utilize other metrics for quality
assessment such as signal-to-noise ratio computed based
on multiple acquisitions for a more thorough assessment
of image quality.
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