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Abstract

Purpose: Comparison of imaging measurement devices in the absence of a gold-standard comparator remains a
vexing problem; especially in scenarios where multiple, non-paired, replicated measurements occur, as in
image-guided radiotherapy (IGRT). As the number of commercially available IGRT presents a challenge to determine
whether different IGRT methods may be used interchangeably, an unmet need conceptually parsimonious and
statistically robust method to evaluate the agreement between two methods with replicated observations.
Consequently, we sought to determine, using an previously reported head and neck positional verification dataset,
the feasibility and utility of a Comparison of Measurement Methods with the Mixed Effects Procedure Accounting for
Replicated Evaluations (COM3PARE), a unified conceptual schema and analytic algorithm based upon Roy’s linear
mixed effects (LME) model with Kronecker product covariance structure in a doubly multivariate set-up, for IGRT
method comparison.

Methods: An anonymized dataset consisting of 100 paired coordinate (X/ measurements from a sequential series of
head and neck cancer patients imaged near-simultaneously with cone beam CT (CBCT) and kilovoltage X-ray (KVX)
imaging was used for model implementation. Software-suggested CBCT and KVX shifts for the lateral (X), vertical (Y)
and longitudinal (Z) dimensions were evaluated for bias, inter-method (between-subject variation), intra-method
(within-subject variation), and overall agreement using with a script implementing COM3;PARE with the MIXED
procedure of the statistical software package SAS (SAS Institute, Cary, NC, USA).

Results: COM3PARE showed statistically significant bias agreement and difference in inter-method between CBCT
and KVX was observed in the Z-axis (both p—value < 0.01). Intra-method and overall agreement differences were
noted as statistically significant for both the X- and Z-axes (all p—value < 0.01). Using pre-specified criteria, based on
intra-method agreement, CBCT was deemed preferable for X-axis positional verification, with KVX preferred for
superoinferior alignment.

Conclusions: The COM3PARE methodology was validated as feasible and useful in this pilot head and neck cancer
positional verification dataset. COM3PARE represents a flexible and robust standardized analytic methodology for IGRT
comparison. The implemented SAS script is included to encourage other groups to implement COM3PARE in other
anatomic sites or IGRT platforms.

*Correspondence: cdfuller@mdanderson.org

TEqual contributors

2Department of Radiation Oncology, The University of Texas M.D. Anderson
Cancer Center, Houston, TX, USA

Full list of author information is available at the end of the article

- © 2015 Roy et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
() BioMed Central License (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.



mailto: cdfuller@mdanderson.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Roy et al. BMC Medical Imaging (2015) 15:35

Background

Method comparison is a frequent problem encountered
whenever different measurement devices/techniques are
implemented in the absence of a gold standard [1-7].
Method comparison in radiological science is often a
vexing issue [8-15], and is especially notable when com-
peting imaging methodologies are used without establish-
ment of the technical superiority in terms of accuracy
of one platform. In a specific example, the explosion in
applications of image-guided radiation therapy (IGRT),
which necessitates repeated and exceedingly accurate spa-
tial localization in order to carefully deliver conformal
radiation dose, places a premium on both reproducibility
and accuracy [14, 16-25]. Furthermore, the large num-
ber of divergent manufacturer-supported mechanisms
for achieving image-guided target localization/positional
verification (e.g., 2D- and 3D-ultrasound [26-34], 2-D
radiography [35-39], megavoltage and kilovoltage 3-D
tomography [40—44]) have arisen in the absence of a gold-
standard, and thus have been the impetus for a large
number of inter-modality comparative studies, which
themselves often utilize a wide array of statistical meth-
ods to report between method measurement differences
(22, 24, 25, 27, 33, 34, 44—47]. In an effort to more for-
mally assess both inter- and intra-method bias, as well
as to streamline comparatively time- and effort-intensive
graphical and statistical analysis inherent in many method
comparison statistical techniques, we sought to devise
an algorithm to explore agreement between two meth-
ods of image-guided radiotherapy, using a novel linear
mixed effects (LME) model with Kronecker product
covariance structure in a doubly multivariate approach
[48]. This integrated approach has great potential util-
ity, formally evaluating inter-method bias, inter-subject
variability and the intra-subject variability (i.e., agreement
between the repeatability coefficients) of the two imag-
ing methods/devices. Testing of all three aspects is crucial,
as inter-subject variability is of import when estimating
the difference between the two methods giving different
measurements on the same subject, while intra-subject
variability affords calculation of the random error among
the replications taken by the same method on the same
subject [49]. We use a doubly multivariate set-up (i.e.,
measurement data for each subject is considered at two
levels, incorporating both the number of measurement
methods and number of replicated measurements). This
specific LME-based technique, which we shall refer to
as COM3PARE (Comparison of Measurement Methods
with Mixed Effects Procedure Accounting for Replicated
Evaluations) is robust with regard to number of repli-
cates, and is easily performed using SAS software (vide
infra). LME models have improved fidelity in scenarios
wherein observations are not fully independent and can
more correctly models correlated errors, compared to
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general linear models (GLM), which includes typical sta-
tistical analyses (e.g., t-test, ANOVA, linear regression).
LME includes multiple random effect components, com-
pared to single element evaluation in most GLM mod-
els, affording improved analysis of continuous variables
where random effects, multiple hierarchical data levels,
and replicated measurements are concerned. The num-
ber of replicated measurements on each patient or subject
may not be equal, and also the number of replications of
the two methods on the same subject may not be equal.
The specific aims for this study included:

e First known application of LME-based COM3PARE
hypothesis testing protocol for method comparison
using imaging data.

e Demonstration of feasibility and utility of
COM;3PARE using an established head and neck
positional verification dataset, previously presented
with standard method comparison approaches.

Methods

Datasets

A previously presented dataset consisting of a series of
100 paired measures using two distinct positional verifi-
cation techniques in a series of 28 sequential head and
neck squamous cell carcinoma patients was utilized. As
this manuscript is designed to specify a novel statistical
methodology, interested readers are referred to the pre-
vious manuscript [50], wherein imaging parameters have
been previously detailed. Briefly, CBCT and stereoscopic
kV X-ray were acquired near-simultaneously at approxi-
mately biweekly intervals throughout a patient’s course of
treatment (dependent upon the scheduling exigencies in
the department) for a series of patients with head and neck
cancers. CBCT/kV X-ray analyses were performed using
the attached on-board imager (Varian Medical Systems,
Palo Alto, CA). Positional verification was performed with
manufacturer-supplied software (Varian OBI 1.3/Varian
Vision, Varian Medical Systems, Palo Alto, CA) for 3D-
3D (CBCT-simulation CT) and 2D-2D (kV X-ray-DRR)
automated matching using the aforementioned software.
Recorded shifts represent the coregistration/allineation
software derived values without physician/observer mod-
ification. For each paired-method positional acquisition,
the origin was defined as the point in space identified by
the initial isocenter position using immobilization-mask-
based markers. Utilizing a three-dimensional Cartesian
coordinate system, this spatial location was designated as
a ‘zero point’ with X/Y/Z coordinates of (0, 0, 0). Software-
derived shifts for each system were recorded in centime-
ters, specified as X-, Y- or Z-axis. Software- derived shifts
were characterized as X- (lateral or left/right), Y- (vertical
or anteroposterior) and Z- (longitudinal or superoinfe-
rior) axes, respectively, for both kV X-ray and CBCT IGRT
techniques. For the purposes of clarity, we proposed the
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following three conditions be met to verify whether two
methods for measuring a variable (in this specific case,
IGRT-suggested spatial shifts) can be considered inter-
changeable:

1. No significant bias (i.e., no difference between the
means of the two methods under a pre-specified
threshold nor a statistically significant difference
between said means).

2. No statistically significant difference in the
inter-subject (between-subject) variability of the two
methods.

3. No statistically significant difference in the
intra-subject (within-subject) variability (i.e.,
repeatability) of the two methods.

For this study, we pre-specified a bias threshold of an
absolute value of < 0.1 cm, with a statistically significant
difference designated by @« < 0.05. To assess the afore-
mentioned criteria, we implemented the LME method-
ology proposed by Roy*®, referred to as COM3PARE
(see Appendix A).

Statistical analysis with COM3PARE

As mentioned in the introduction the number of repli-
cated measurements on each patient or subject may not
be equal, and also the number of replications of the two
methods on the same subject may not be equal. Let hWX
and piCBCT be the number of replications on subject i
by the established method (KVX), and a new method
(CBCT) respectively. Let p; = max (p{wx, piCBCT), and
n; = 2p;. Therefore, the number of observations on the
ith subject is #;, under the assumption that the ith subject
has | p{(VX — piCBCT| missing values.

Let yﬁvx and intBCT be the responses by the estab-
lished method and a new method of the ith subject at
the tth replicate, i = 1,2,...,N, ¢t = 1,2,...,p;. Let
yie = ( itVX,ygBCT)/ be the 2 x 1 vector of measure-
ments corresponding to the ith subject at the tth replicate.
Lety, = (J’;py;zr e ,y;pl)/ be the (n; x 1)-dimensional
random vector corresponding to the ith subject. That is,
the vector y; is obtained by stacking the responses of the
KVX method, and the CBCT method at the first replica-
tion, then stacking the responses of the KVX method and
the CBCT method at the second replication and so on.
We write all responses (y;) of the ith subject in a matrix
equation as

yi = XiB+Zibi + ¢

with b; ~ N, (0,D),
and ¢€; ~ N, (0,R)),
where bi,by,...,by,€1,€9,...,6n are independent,

and y;,9,,...,¥yy are also all independent. LME model
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allows for the explicit analysis of between-subject (D)
and within-subject (R;) sources of variation of the two
methods. We define the two methods by a vector variable
Mvar; Mvar=1 for the KVX method and Mvar=2 for the
CBCT method. We choose the intercept and the vector
variable Mvar as fixed effects, thus the design matrix X;
has three columns, and consequently 8 = (B,, 81, 82) is a
3-dimensional vector containing the fixed effects. We also
choose the vector variable Mvar as random effects, i.e.,
Mvar is random across individual subjects; thus the design
matrix Z; has two columns. Therefore, b; = (by;, bo;)’
is a 2-dimensional vector containing the random
effects.

The solution for B gives the means of the two methods
uxvx and pcpcr- The between-subject variance-
covariance matrix D of the KVX method and the CBCT
method is a general (2 x 2)-dimensional matrix, and R; is
a (n; X n;)-dimensional covariance matrix which depends
on i only through its dimension #;. The marginal density
function of y; ~ N,,,(XiB, Z,DZ;+R;). Suppose the matrix
¥ represents the within-subject variance-covariance
matrix of the KVX method and the CBCT at any repli-
cate; also, suppose V represents the p x p-dimensional
correlation matrix of the replicated measurements on
a given method, where p = max(p;). It is assumed that

1

the 2 x 2 within-subject variance-covariance matrix X
is same for all replications, and the correlation matrix
V is assumed to be the same for both the methods. We
assume R; = dLm(V ® X), where V and X respectively

are positive definite matrices as described above, and ®

represents the Kronecker product structure. The notation

dim(V ® X), represents a (n; X n;)-dimensional sub-
nj

matrix obtained from the (2p x 2p)-dimensional matrix
(V ® X), by appropriately keeping the columns and rows
corresponding to the #;-dimensional response vector y;.
Since the equicorrelated or compound symmetry (CS)
structure assumes equal correlation among all replicated
measurements, we assume that the correlation matrix
V of the replicated measurements has equicorrelated
correlation structure. For the above design matrix Z;
and between-subject D and within-subject R; sources
of variation, the observed (7; x n;)-dimensional overall
variance-covariance matrix ; for the ith individual is
given by

COV(yi) =, = Z,'DZ:- + R;,
= Z;DZ; + dim(V ® X).
nj

Thus, the covariance matrix has the same structure for
each subject, except that of the dimension. The 2 x 2 block
diagonals Block £; in the overall variance-covariance
matrix €2; represent the overall variance-covariance
matrix between the two methods. Similarly, the 2 x 2 block
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diagonals in the overall correlation matrix 2;_Correlation
represent the overall correlation matrix between the two
methods. Thus, the off-diagonal element in this 2 x 2 over-
all correlation matrix gives the overall correlation between
the two methods. It can be easily seen that the overall
variability is the sum of between-subject variability and
within-subject variability (see Roy*® for detail). Thus, we
see that if there is a disagreement in overall variabilities,
then it may be due to the disagreement in either between-
subject variabilities or within-subject variabilities or
both.

MIXED procedure of SAS

We use MIXED procedure (PROC MIXED) of SAS to
get the maximum likelihood estimates (MLEs) of 8, D,
R; and ;. METHOD=ML specifies MIXED procedure
to calculate the maximum likelihood estimates of the
parameters. The COVTEST option requests hypoth-
esis tests for the random effects. CLASS statement
specifies the categorical variables. DDFM=KR specifies
the Kenward-Roger®! correction for computing the
denominator degrees of freedom for the fixed effects.
Kenward-Roger correction is suggested whenever one
has replicated or repeated measures data; also for missing
data. The SOLUTION (S) option in the MODEL state-
ment provides the estimate of the difference between the
two mean readings (bias) of the two methods. RANDOM
and REPEATED statements specify the structure of the
covariance matrices D and R;. See the sample program
in Appendix A that demonstrates the use of RANDOM
and REPEATED statements. PROC MIXED calculates
the (n; x n;)-dimensional submatrix R; of the ith subject
from the (2p x 2p)-dimensional matrix (V ® X), and
eventually calculates (#; x #n;)-dimensional submatrix
;. When the number of replications on each subject by
respective methods is unequal, PROC MIXED considers
the case as missing value situation. Options V=3 and
VCORR=3 in the RANDOM statement give the estimate
of the overall variance-covariance matrix 23 and the
corresponding 23_Correlation matrix, i.e., for the third
subject. The option G in the RANDOM statement gives
the estimate of the between-subject variance-covariance
matrix D. Option R in the REPEATED statement gives
the estimate of the variance-covariance matrix R; for
the first subject. One can get the €; variance-covariance
matrix and the corresponding 2;_Correlation matrix for
all subjects by specifying V=1 to N, and VCORR=1 to N
in the RANDOM statement. When the correlation matrix
V on the replicated measurements assumes equicorre-
lated structure and X as unstructured, we use the option
TYPE=UN along with SUBJECT=REPLICATE(PATIENT)
in the REPEATED statement. This gives the 2 x 2
within-subject matrix X. See
Appendix A.

variance-covariance
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Related hypotheses testings to test the
disagreement between KVX and CBCT

If there is a disagreement between the two methods, it
is important to know whether it is due to the bias, due
to the difference in between-subject variabilities or due
to the difference in within-subject variabilities of the two
methods. If it is due to the bias between the two meth-
ods, it is easy to correct. The output of PROC MIXED
always gives the bias, its £—value and its p—value. Nonethe-
less, it is not straightforward to check the agreement
or disagreement in between-subject variabilities and in
within-subject variabilities of the two methods. We will
accomplish these by the indirect use of PROC MIXED
in two steps (described below) by using likelihood ratio
tests.

Testing of hypothesis of difference between the means of
KVX and CBCT

We are interested in testing the following hypothesis for
bias:

H,, : the two methods do not have the same mean,

vs. K, : the two methods have the same mean.

Output of PROC MIXED (Solution for Fixed Effects) gives
the bias and the corresponding ¢ —value and p—value.

Testing of hypothesis of difference in between-subject
variabilities of KVX and CBCT
Here we are interested in testing the following hypothesis:

H, : the two methods do not have the same
between-subject variabilities,

vs. K;: the two methods have the same

between-subject variabilities.

We apply the likelihood ratio test for this hypothesis
testing. To compute the test statistic —21n A4, where

—2lnAy = |:—21n maxL] - |:—21n maxL:| .
Ky Hy

The log likelihood function under both null hypothe-
sis and alternating hypothesis must be maximized sepa-
rately. We do this by setting the option METHOD=ML in
PROC MIXED statement. The option TYPE=UN in the
RANDOM statement, along with the option TYPE=UN
in the REPEATED statement, is used to calculate the
“-2 Log Likelihood" for the covariance structure under H,;.
Similarly, the option TYPE=CS in the RANDOM state-
ment, along with the option TYPE=UN in the REPEATED
statement, is used to calculate the “-2 Log Likelihood" for
the covariance structure under K.

PROC MIXED calculates “-2 Log Likelihood" under the
heading of “Fit Statistics", see Appendix B. The above
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test statistic —2In A4 under K; follows a chi-square dis-
tribution with degrees of freedom (d.f) v;, where v, is
computed as

vz = LRT df (underH,;) — LRT df (underKy).

PROC MIXED calculates “LRT df" under the heading of
“Null Model Likelihood Ratio Test", see Appendix B.

Testing of hypothesis of difference in within-subject
variabilities of KVX and CBCT

We test the difference between the repeatability
coefficients of the two methods by testing the following
hypothesis:

H, : the two methods do not have the same
within-subject variabilities,

vs. K, : thetwo methods have the same

within-subject variabilities,

As before here also we apply the likelihood ratio
test for this hypothesis testing, and maximize the log
likelihood function under both null hypothesis and alter-
nating hypothesis separately to compute the test statistic
—21n Ay, where

—2lnA, = |:—21nmaxL:| — |:—2InmaxLi|.

Ko o

The option TYPE=UN in the RANDOM statement, along
with TYPE=UN in the REPEATED statement, is used to
calculate the “-2 Log Likelihood" for the covariance struc-
ture under H,. TYPE=UN in the RANDOM statement,
along with TYPE=CS in the REPEATED statement, is
used to calculate the “-2 Log Likelihood" for the covari-
ance structure under K,. The test statistic —2In A,
under K, follows a chi-square distribution with d.f.
Vs = LRT df (underH,) — LRT df (underKky).

Testing of hypothesis of difference in overall variabilities
of KVX and CBCT
We are interested in testing the following hypothesis:

H, : the two methods do not have the same
overall variabilities,

vs. K, : the two methods have the same

overall variabilities,

As before here also we apply the likelihood ratio test to
compute the test statistic —2In A, where

—2lnA, = |:—21nmaxL:| — |:—2lnmaxLi|.

K, H,

The option TYPE=UN in the RANDOM statement, along
with TYPE=UN in the REPEATED statement, is used to
calculate the “-2 Log Likelihood" for the covariance struc-
ture under H,. The option TYPE=CS in the RANDOM
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statement, along with TYPE=CS in the REPEATED state-
ment, is used to calculate the “-2 Log Likelihood" for
the covariance structure under K,. The test statistic
—21n A, under K, follows a chi-square distribution with
d.f. v, = LRT df (underH,) — LRT df (underKy,).

Results

Selected parts of the SAS output to test the within-subject
variabilities are given in Appendix B. We present the sam-
ple SAS code (see Appendix A) to test within-subject
variabilities by fitting the linear mixed effects model to our
KVX and CBCT shifts for the lateral (X). We see that

—2lnmaxL =273.7 and —2Iln n}llaxL =239.7,

Ky
with

LRT df (underH,;) =5 and LRT df (underK,) = 4.

Therefore,

—2lnA, = |:—21n maxL] — [—21nn}1{axL:|

Ko

273.7 — 239.7 = 34.0,
with
Vo=LRT df (underH,) — LRT df (underK,) =5 — 4 = 1.

The p-value for testing the within-subject variabili-
ties of the two methods by using IML procedure of
SAS is calculated at the third stage (see Appendix A).
The p—value = 5.5112E-9 (see Appendix B).

Inter-method bias, inter-method agreement, intra-
method agreement, overall agreement and correlation
results from COM3PARE are presented in Tables 1, 2, 3, 4
and 5. Using COM3PARE, in this specific head and
neck positional verification demonstration dataset, while
inter-method bias was < 1 mm for all axes, a statisti-
cally significant between method bias was noted in the
Z-axis (superoinferior axis). Also, was evidenced there
was a statistically significant difference between CBCT
and KVX inter-subject variation in the Z-axis (Table 1).
Intra-subject variability was noted to be statistically sig-
nificant for X- and Z-axes, as was overall variation. Cor-
relation coefficient calculation estimation was performed
using a mixed effects model (as per Roy [52]).

Using the aforementioned criteria, automated shifts
from CBCT and kV X-ray, acquired and processed in the
manner detailed are interchangeable only for measure-
ments of the Y-axis (anteroposterior), and for example,

Table 1 Between-method bias

Bias (cm) p—value
0.0335 0.6077
-0.0428 0.2836
-0.0942 0.0253
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Table 2 Inter-method agreement Table 4 Overall agreement
KVX (cm) CBCT (cm) p—value KVX (cm) CBCT (cm) p—value
X 0.0413 0.0670 04795 0.3809 0.1717 3.7x1078
0.0511 0.0464 0.7518 Y 0.2198 0.2157 0.9512
z 0.0273 0.0848 0.0010 0.0758 0.1673 13x107°

should not be used on alternating days in facilities with
both systems in either X- or Z-axis. Additionally, our
method suggests that, with lower intra-method variability
in the X-axis (lateral), CBCT is the preferred measure-
ment method, while in the Z-axis (superoinferior) kV
X-ray measurement is preferable.

Discussion

The necessity for quantitative evaluation of compet-
ing measurement devices, in cases where on device
has not been found to be superior, is a significant
need in science generally [1, 2, 5-7], and particularly
within the radiological sciences community. Specifically,
this issue is encountered when comparing distinct posi-
tional verification methods for image-guided radiotherapy
[34, 53-56]. The difficulty of assessing competing plat-
forms is particularly vexing, as it impedes efforts at cross
platform comparison. Our group [24, 50] and others have
implemented several distinct methods for presenting such
analysis [25, 27, 33, 34, 45, 57]. Our previous efforts have
utilized several extant method comparison statistical pre-
sentations (including Bland-Altman?, Lin’s concordance
[58], Deming orthogonal regression [59, 60]); however,
what was gained in completeness was lacking in par-
simony. To this end, we sought to define an improved
algorithm for practical comparison of distinct imaging
methodologies, with a non-fixed number of repeated
measurements per patient, in the absence of a “gold stan-
dard”. Often, inappropriate statistical analyses are imple-
mented in lieu of formal method comparison statistics.
The analysis of different measurement devices is not
as straightforward as the initial observer may suppose.
Bland and Altman demonstrated that mean comparison
and linear regression are insufficient for comparison of
differing measurement techniques [1]. The Bland- Alt-
man method is succinct and easily interpretable, making
it a classic of medical literature. In a series of seminal
papers [1-7], Bland and Altman defined the standard
methodology for comparing differing measurements, as
well as establishing effective techniques accounting for

Table 3 Intra-method agreement

inter- and intra-method variability/repeatability. How-
ever, while the Bland- Altman methodology remains
the current benchmark, it fails (by design, one should
note) to include generation of a formalized p —value,
instead recommending that a clinically meaningful differ-
ence between measures be utilized. Additionally, though
repeatability estimation is a recommended component of
accurate method comparison, the calculation for greater
than two replicates is somewhat unwieldy using the
methodology proposed by Bland and Altman. Since
many IGRT datasets span > 30 repeated daily mea-
sures, the utility of a statistical methodology which can
readily integrate large replicate numbers is desirable.
The COM3PARE methodology presented herein repre-
sents an attempt to integrate several desirable method-
ological attributes into a unified, readily performed
statistical process. COM3PARE has several advantages
over existing method comparison statistical analyses.
Specifically, compared to general linear model [61, 62]
(GLM)-based approaches (such as the ¢-test, linear regres-
sion, and ANOVA [63]), which fail to account for multi-
ple sources of random variance, the linear mixed effects
(LME)-based COM3PARE platform integrates variation
estimation at multiple hierarchical levels (i.e., between-
and within- measurement methods/subjects) [48]. From a
practical point of view, this allows factor-wise assessment
of procedural or technical variability of each of the two
methods rather than a combined assessment, so that there
is the capacity to determine the exact source of disagree-
ment. COM3PARE is also resilient with regard to uneven
numbers of replicates per device, a feature of great practi-
cal utility in a clinical setting, such as daily IGRT record-
ing, where the number of IGRT fractions received for
each patient may differ based on fractionation regimen of
clinical exigency. Additionally, since COM3PARE has the
capacity to fit differences in said variability to a hypothe-
sis testing-friendly Bonferroni-corrected p —value output,
while still implementing clinician-determined thresholds

Table 5 Mixed effects estimated correlation coefficient

Correlation
KVX (cm) CBCT (cm) p—value coefficient
0.3396 0.1047 55%107° 0.5329
0.1687 0.1693 1.0 Y 0.8038
z 0.0485 0.0825 0.0034 z 0.7336
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for agreement there is greater interpretability of statistical
output, with no loss of clinical relevance. For instance,
one could specify a priori that measurement differen-
tials > 1 mm would represent a lack of interchange-
ability globally. Data presentation was performed in this
study in an effort to illustrate potential applications of
COM;3PARE for replicated image-based measurements of
the kind frequently encountered in radiation oncology.
The specific dataset included have been previously pre-
sented using standard method approaches. By revisiting
these data using compare we hope to illustrate imple-
mentation of what we perceive to be a more usable and
parsimonious approach to conceptualizing method com-
parison for IGRT applications, expanding upon, rather
than obviating the previous work. With regard to the
specific dataset presented herein, our analysis points
to the difficulties possible when comparing IGRT plat-
forms. For instance, having set our criteria pre-analysis,
we were surprised to note that differing measurement
methods proved preferable in distinct axes (e.g., CBCT
in X-axis, kV X-ray for the Z-axis), while appearing by
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said criteria interchangeable in the Y-axis. A possible
explanation of this phenomenon may appear as a feature
of the imaging methodologies themselves. For CBCT,
before three-dimensional reconstruction, data is acquired
as axial slices (X-axis), while, previous to DRR referenc-
ing, the kV X-ray system uses orthogonal projections
at oblique angles, parallel to the superoinferior plane
(Z-axis). Consequently, method intra-subject repeata-
bility may be tied to the reference plane of image
acquisition, though this remains conjecture based on
a single dataset. To our knowledge this technique
represents the first formal hypothesis testing approach
to integrate inter-method bias, inter-subject variability,
and intra-subject variability of two methods with any
number of replicated measurements for image-guided
radiotherapy. As modeled on the aforementioned con-
ceptual schema presented in the “Methods” section,
we postulate that the following criteria be formally
evaluated as feature of future image-guided radiother-
apy measurement comparison studies comparing two
imaging platforms, where multiple repeated observations

Measuremert Measurement
Method A Method B

Forrral
statistical analysis

A4

Yes

Is there a dfference
hmeans?*

Is the between-subject
varabity diferent?

L 4

A
interchangeable

[y

Yes

Is the withi+subject
varablty different?

hiethods are
interchangeable

Fig. 1 Flowchart of COM3PARE schema for IGRT device comparison

=< Methad A s p

Method A

Witich method has lower
within subject vanabity ?

Method B

| MethodB k preferable

*At a speciied chical or statistical spnificance vel
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on the same subject is possible. To meet our criteria for
interchangeability [48]:

1. The bias and overall agreement must fall within a
pre-specified range (e.g., bias/agreement of < 0.1 cm
between IGRT devices).

2. There should be no statistically significant, using a
pre-specified threshold (e.g., < 0.05) difference in the
inter-subject variability of the two methods.

3. There should be no statistically significant difference
in the intra-subject variability (i.e., repeatability) of
the two methods.

4. In cases where criteria 2 and 3 are NOT met, the
preferred IGRT technique is the one exhibiting the
lower intra-subject variability (i.e., greater
repeatability).

These criteria are presented as a graphical schema
(Fig. 1); notably analysis of criteria 1-3 is easily incor-
porated in a single step using the COM3PARE SAS
Code (Appendix A). The a priori criteria set we spec-
ified for interchangeability represented what we con-
sidered a reasonable metrics for the given application
(i.e. fractionated radiotherapy of 30+ fractions for head
and neck cancer) with a standardized PTV margin.
The COM3PARE methodology, however, allows spec-
ification of any specified difference/p-value combina-
tion. Consequently, if a scenario arose whereby either
tighter tolerances are desirable (e.g. 3-fraction SBRT),
such parameters can be easily defined as an acceptability
criteria.

Conclusion

COM3PARE represents an attempt at a unified concep-
tual schema and analytic algorithm for method compas-
sion of IGRT platforms. Initial application in a head and
neck positional verification dataset shows feasibility and
utility.

Appendix A

SAS code

Below we provide the sample SAS code to test within-
subject variabilities by fitting the linear mixed effects
model to our KVX and CBCT shifts for the lateral
(X). We first fit the linear mixed effects model for the
null hypothesis, then we fit the linear mixed effects
model for the alternating hypothesis, and then find the
p—value for the test. Appropriate changes can be made to
test between-subject variabilities and overall variabilities
using the SAS commands as described in Sections
Testing of hypothesis of difference in between-sub-
ject variabilities of KVX and CBCT, and Testing of
hypothesis of difference in overall variabilities of KVX and
CBCT. Appropriate changes can be also made for vertical
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(Y) and longitudinal (Z) dimensions and for any other
data sets.

/+ Here we give the SAS code for fitting
the linear mixed effects model to the our
KVX and CBCT shifts data under the null
hypothesis that the two methods do not

have the same within-subject
variabilities.x/

options ls=64 ps=68 nocenter;

proc import datafile="c:\CBCTKVX.xls"
DBMS=EXCELCS
out=sasuser.max2 replace;

/*proc print data=sasuser.max2; run;x*/

data KVXCBCTdataX;
keep pat replicate xmlkvx xm2cbct;

set sasuser.max2;

data b; SET KVXCBCTdataX;
y=xmlkvx; mvar='1l’; output;
y=xm2cbct; mvar='2’; output;
/*xproc print data=b; run;sx/

proc mixed data=b method=ml covtest;
classes pat mvar replicate;

model y = mvar/ s outpredm=pp ddfm=kr;
random mvar / type=un subject=pat g gcorr
v=3 VvCorr=3;

repeated mvar/type= un
subject=replicate(pat) r rcorr;

run;

/+ Here we give the SAS code for fitting
the linear mixed effects model to the same
data under the alternative hypothesis that
the two methods have the same
within-subject variabilities.x/

proc mixed data=b method=ml covtest;
classes pat mvar replicate;

model y=mvar /s ddfm=kr;

random mvar /type= un subject=pat v vcorr g;
repeated mvar/type= cs

subject=replicate (pat) r;

run;

/* Calculating the p-value to test the
within-subject variabilities of the two
methods =/

proc iml;
pval=1- probchi (34.0, 1);

print pval; run;
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Appendix B

SAS output for covariance structure under the null and the alternating hypotheses
Below we provide the selected portions of the output of the above program.

/* The following output is for the null hypothesis x/

Estimated V Matrix for Pat 3
Row Coll Col2 Col3 Col4 Cols Cole

1 0.3809 0.1363 0.04126 0.03663 0.04126 0.03663
2 0.1363 0.1717 0.03663 0.06695 0.03663 0.06695
3 0.04126 0.03663 0.3809 0.1363 0.04126 0.03663
4 0.03663 0.06695 0.1363 0.1717 0.03663 0.06695
5 0.04126 0.03663 0.04126 0.03663 0.3809 0.1363
6 0.03663 0.06695 0.03663 0.06695 0.1363 0.1717
Covariance Parameter Estimates
Cov Parm Subject Estimate Standard Error Z Value Pr Z
UN(1,1) Pat 0.04126 0.03079 1.34 0.0902
UN(2,1) Pat 0.03663 0.02384 1.54 0.1244
UN(2,2) Pat 0.06695 0.02669 2.51 0.0061
UN(1,1) Replicate (Pat) 0.3396 0.05238 6.48 <.0001
UN(2,1) Replicate (Pat) 0.09963 0.02359 4.22 <.0001
UN(2,2) Replicate (Pat) 0.1047 0.01688 6.20 <.0001
Fit Statistics
-2 Log Likelihood 239.7
AIC (smaller is better) 255.7
AICC (smaller is better) 256.5
BIC (smaller is better) 266.4
Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSqg
5 74 .98 <.0001
Solution for Fixed Effects
Effect mvar Estimate Standard Error DF t Value Pr > |t
Intercept 0.03022 0.06212 28.7 0.49 0.6304
mvar 1 0.03349 0.06447 26.5 0.52 0.6077

mvar 2 0 . . . .
/+ The following output is for the alternating hypothesis =/

Fit Statistics
-2 Log Likelihood 273.
AIC (smaller is better) 287.
AICC (smaller is better) 288.
BIC (smaller is better) 297.

o N 93

Null Model Likelihood Ratio Test
DF Chi-Square Pr > ChiSqg
4 41.03 <.0001

/+x The following output is for the p-value to test the within-subject variabilities
of the two methods =/
pval
5.5112E-9
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