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Abstract

Background: Prostate cancer is the most common form of cancer and the second leading cause of cancer death in
North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which
has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has
shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of
abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a
radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data.

Methods: In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate
cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted
MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate
computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI).
Moreover, the proposed texture feature models incorporate features from individual b-value images. A
comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture
feature models. We performed feature selection analysis for each individual modality and then combined best
features from each modality to construct the optimized texture feature models.

Results: The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out
cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue
samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the
conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy.

Conclusions: Comprehensive texture feature models were developed for improved radiomics-driven detection of
prostate cancer using MP-MRI. Using a comprehensive set of texture features and a feature selection method, optimal
texture feature models were constructed that improved the prostate cancer auto-detection significantly compared to
conventional MP-MRI texture feature models.

Background
Prostate cancer is the most common form of cancer diag-
nosed in North American men, with roughly 23,500 new
cases in 2014 in Canada [1] and 233,000 new cases in 2014
in the United States [2]. Furthermore, prostate cancer is
the third leading cause of cancer death in Canadian men
with an estimated 4,000 deaths [1], and second leading
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cause of cancer death in men in the United States with
an estimated 29,480 deaths in 2014 [2]. Given that the
median patient survival time for metastatic prostate can-
cer ranges from 12.2 to 21.7 months [3], early diagnosis
of clinically significant prostate cancer would have signifi-
cant benefits to patient care. This is particularly true given
that the five-year survival rate after diagnosis for patients
with prostate cancer at the non-metastatic stage is 96% in
Canada [4].
In the current clinical model, men with positive digital

rectal exam (DRE) and elevated prostate-specific anti-
gen (PSA) require multicore random biopsies for risk
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stratification. However, there is an ongoing controversy
about the role of prostate PSA as a screening test in
prostate cancer. Two recent major randomized clinical tri-
als [5, 6] have demonstrated that PSA screening contains a
significant risk of overdiagnosis for prostate cancer where
it is estimated that 50% of screened men are diagnosed
with prostate cancer. This leads to painful needle biopsies
and subsequent potential overtreatment [5–8]. Moreover,
it has become increasingly clear that carrying out prostate
biopsy procedures escalates hospital admission rates due
to infectious complications, regularly resulting in discom-
fort and possible sexual dysfunction while with the chance
of the needle missing cancerous tissue [9–11]. Neverthe-
less, PSA testing has proven to reduce prostate cancer
mortality by 20–30% at long-term follow-ups [10]. There-
fore, the PSA testing remains an important biomarker in
diagnosing prostate cancers that are clinically significant.
The remaining challenge is how to improve the prostate
cancer diagnosis to reduce the overdiagnosis of clinically
insignificant cancers.
Automatic detection of prostate cancer as part of a clin-

ical decision support system can potentially help radiolo-
gists in interpreting images more accurately. Specifically,
multi-parametric MR imaging (MP-MRI), which com-
bines two or more of T2-weighted MRI (T2w), diffusion-
weighted imaging (DWI), dynamic contrast enhanced
imaging (DCE), and spectroscopy has been investigated as
a promising approach for prostate cancer diagnosis and
construction of detection algorithms [12–16]. By taking
advantage of the unique quantitative information pro-
vided by each individual imaging technique, MP-MRI can
exploit the different characteristics of prostate tissue to
improve differentiation between cancerous and surround-
ing tissue. For example, cancerous tissue in the prostate
gland may exhibit a moderate drop in signal in T2w [17]
(which characterizes differences in transverse (spin-spin)
relaxation time of tissue), restricted diffusion in DWI [17]
(which characterizes diffusion of water in tissue), earlier
onset time, higher peak, and shorter peak time in DCE
[18] (which characterizes the concentration of an injected
gadolinium contrast agent over time as it passes into the
extracellular extravascular space of the tissue). Moreover,
studies have demonstrated the ability ofMP-MRI to direct
biopsy with MRI/Ultrasound fusion techniques [19] and
to predict Gleason score [16] and tumour volume [20].
The pulse sequence that has shown the most promise is
DWI in the peripheral zone and the combination of T2w
and DWI in the transition zone [21, 22]. The apparent
diffusion coefficient (ADC) map in particular has shown
the most promise as a biomarker [16, 23–27]. Although
DCE is considered as part of MP-MRI, T2w+DWI is the
most common MP-MRI because it has the most diagnos-
tic value and does not require invasive contrast agent as
DCE does.

Radiologists’ interpretations of MP-MRI have shown to
achieve good prostate cancer detection rates, reaching
accuracies of 80% in the peripheral zone of the prostate
gland [28]. Similarly, several algorithms have been pro-
posed for auto-detection of prostate cancer using MP-
MRI setting [13–15, 29–31]. These algorithms usually
compute a set of low-level features from theMP-MRI data
to construct feature vectors. Next, a supervised classifier
is trained using the computed feature vectors from the
training cases and their associated ‘ground-truth’ labels
(e.g., labeled healthy or cancerous). Finally, the trained
classifier is used to classify new cases. The reported values
for accuracy of cancerous versus healthy tissue classifica-
tion ranges from 64% to 89%, depending on the feature
sets and training/test data.
Different texture features have been used in the litera-

ture for automatic detection and classification of prostate
cancer. Most of the reviewed methods utilized texture
features that are based on one or more of the follow-
ing methods: First-Order statistical method, second-order
statistical methods or Co-Occurrence Matrices [32, 33],
steerable Gabor filter [34], Gradient based features (e.g.,
Kirsch [35]), fractal based features [36], run length matri-
ces [37], and discrete cosine transform (DCT) [38]. Dif-
ferent classifiers are used for classification of pixels in
prostate as cancerous and healthy among which support
vector machine (SVM), neural networks, naive Bayesian,
and random forests are most frequently used.
The usefulness of analysis of these texture features in

prostate cancer detection has been demonstrated in a
variety of applications. Madabhushi et al. [29] presented
the utility of combining multiple features in detecting
high likelihoods of prostatic adenocarcinoma from high-
resolution ex-vivo MRI (i.e., following radical prostate-
ctomy). In this method, the following feature sets were
extracted from 3D voxels to train an ensemble of classi-
fiers: First- and second order statistical method, steerable
Gabor filters, Gradient based features, and discrete cosine
transform (DCT). The algorithm was applied to 5 MR
prostates and while specificity was high (e.g., 98%), the
sensitivity was reported to be low (36% - 42%).
Duda et al. [39] defined multi-image texture analysis

(MITA) to characterize prostatic tissues in MR images. In
this method, multiple MRI acquisitions of corresponding
slices are performed to form a database of image n-
tuples. This database includes T1-weighted (DCE), T2w,
and DWI of 19 patients. The process of validating any
MITA consisted of contouring Regions of Interest (ROI)
by a clinician. Once all the ROIs were contoured, the cor-
responding slices from each sequence were combined to
form n-tuple images, from which texture features were
extracted and concatenated in a feature vector used to
train the classifiers. In addition to features used in [29],
fractal-based and run length features were also used. It
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was shown that the MP-MRI performed better compared
to pairs of MRI modalities. Although accuracies of up to
99% was reported, the evaluation was only performed on
one slice (middle slice) for each modality. Moreover, the
ROIs used for classification and measuring the accuracy
was considerably large (400 to 2,400 pixels).
In another study, Litjens et al. [30] introduced the use of

a cascaded classifier in order to characterize benign con-
founders such as atrophy, inflammation, benign prostatic
hyperplasia (BPH), and prostatic intra-epithilial neoplasia
(PIN) as the sources of challenge to diagnose malignant
prostate cancer. In this paper, the authors presented the
biology behind the benign confounders and bridged it
with MRI sequences. The pathology annotations were
propagated to MR images by registering the whole-mount
slides with MR images. Different features were extracted
from different MR images; second-order statistical and
Gabor features from T2w, multi-scale blobness filter from
ADC images, and curve fitting and pharmacokinetic fea-
tures from DCE images [31]. The maximum relevance,
minimum redundancy (mRMR) feature selection tech-
nique [40] was used to determine best features for sep-
arating of cancer from three non-cancer classes (BPH,
inflammation, and atrophy). A cascaded classifier was
used to gradually determine whether the sample is can-
cerous. MRI data of 31 patients with 44 corresponding
histological H&E stained slides were used to evaluate the
detection algorithm; a maximum accuracy of 76.4% was
achieved.
Tiwari et al. [13] proposed a method that combines

structural and metabolic imaging data for separating
benign versus cancerous and high Gleason score ver-
sus low Gleason grade regions in MP-MRI that includes
T2w and magnetic resonance spectroscopy (MRS). Sim-
ilar set of features used in [29] was used with a random
forest classifier for detection where the evaluation was
performed on 29 patient studies; accuracy of 86% was
achieved.
Ozer et al. [15] extracted second-order statistical and

DCT features from 19 patients’ MP-MRI (T2w, DWI, and
DCE) and used two classifiers (SVM and Relevance Vector
Machine (RVM) [41]) to autodetect prostate cancer. The
best achieved sensitivity and specificity were 78% and
79%, respectively. Glaister et al. [14] studied computed
high b-value DWI for localization of prostate cancer and
it was found that using ultra-high b-value (≥ 2000s/mm2)
improves the separability of cancerous and healthy tissues
significantly.
The underlying challenge in all of these auto-detection

algorithms is whether there is enough separability
between the cancerous and healthy tissues in a given
image. This means if the separability is poor, even sophis-
ticated feature extraction algorithms may not have a sig-
nificant effect on the accuracy of cancer detection. On

the other hand, improving the separability of cancerous
and healthy tissues in the images would have a signifi-
cant impact on the performance of cancer auto-detection
algorithms, potentially reducing the dependency on the
feature extraction methods.
In this paper, we propose new MP-MRI texture fea-

ture models that in addition to T2w and conventional
DWI images, incorporate computed high-b diffusion-
weighted imaging (CHB-DWI) [14] and the recently pro-
posed correlated diffusion imaging (CDI) [42]. Compared
to DWI images, CHB-DWI and CDI have both shown
initial promise to improve visual separability of cancer-
ous and healthy tissues in prostate, which can lead to
improved performance of the proposed MP-MRI tex-
ture feature models for detecting prostate cancer. One
aspect of the proposed MP-MRI texture feature mod-
els is to use non-invasive modalities aiming for higher
usability in the clinical practice. Hence, we did not use
DCE images in our models. Moreover, while most can-
cer detection algorithms use combined b-value images in
the form of apparent diffusion coefficient (ADC) map,
our proposed texture feature models utilize the individ-
ual b-value images of DWI to extract additional sets of
features leading to improved accuracies. For each modal-
ity, the best feature subsets are selected based on different
performance evaluation criteria (sensitivity or specificity).
These best feature subsets are then combined to construct
the comprehensive feature set from which the final best
feature subset is selected to be used by the classifier. To
the authors’ best knowledge, the proposed comprehensive
texture feature models are the first that utilize all of the
above-mentioned MP-MRI modalities and combine them
using best feature subsets to construct an optimal texture
feature model.
The proposed MP-MRI texture feature models are the

first attempt in designing comprehensive quantitative fea-
ture sequences or radiomics as a high dimensional mine-
able feature space that can be used as both detection and
prognostic tools for prostate cancer [43]. The proposed
radiomics-driven models in this paper have been used
for prostate cancer detection and they can be augmented
for prognostic of prostate cancer as well. Studies on lung
and head-and-neck cancer patients have confirmed the
prognostic power of radiomics features when it comes
to patient outcome prediction for personalized medicine
[44, 45]. However, the prognostic capability of radiomics
features has not been fully investigated for prostate can-
cer and this is a novel approach for identifying prostate
tumours phenotypes.
In a previous work [46], the preliminary results for the

proposed approach was reported. This paper is signifi-
cantly different than the initial work as follows. First, the
previous work only used T2w, ADC, CHB-DWI and CDI
whereas the current approach also utilizes four b-value
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images. Second, in [46], only 19 features were used com-
pared to 96 features used in this work. As it will be seen in
the “Results” section, using more data (more images using
b-value images and more features) makes the texture fea-
turemodelmore accurate, in terms of the cancer detection
accuracy. Third, in the previous work, feature selection
was not used while here we use feature selection for each
modality and also for combination of different modalities.
Feature selection allows to build a more optimal texture
feature model leading to more accurate results. Finally,
only five patients datasets were used in the previous work
whereas 20 patients datasets have been used in this paper
(6,535 cancerous and healthy tissue samples versus 40,975
samples) allowing for a better validation of the proposed
texture feature models.

Methods andmaterials
We propose MP-MRI texture feature models for prostate
cancer detection which take advantage of abundance of
data from different MR modalities to compute features
used by the classifier. The goal is to combine features from
each imaging modality that best separates cancerous pix-
els from healthy ones. In the following, we present the
imaging methods used in the proposed model, the feature
sets, and the proposed texture feature models. In addi-
tion, details about the image acquisition protocols and the
performance measures are presented.

Imagingmethods
The main criteria for choosing imaging modalities used
in the proposed texture feature models are twofold. First,
images that are part of well-known radiology reporting
system. Second, they are acquired non-invasively, with no
need for contrast agents, and can be collected in a single
imaging session. Recently, a structured 5-scale reporting
system, PI-RADS, was proposed for consistent prostate
MP-MRI reading [47] with subsequent studies confirm-
ing its effectiveness with respect to biopsy results [48].
PI-RADS consisst of T2w, DWI (ADC) as well as DCE
images. Instead of using DCE which requires contrast
agent, the proposed texture feature models use additional
information available by DWI images which includes
computed high b-value image, individual b-value images,
and correlated diffusion images. This subsection summa-
rizes the imaging methods used in the proposed MP-MRI
feature models.

T2-weighted imaging (T2w)
T2w is a MR imaging modality in which the sensitivity of
tissue is characterized by measuring the relaxation time
(spin-spin) of the applied magnetic field. The T2w image
of prostate usually shows a small reduction in signal in the
cancerous tissue [17].

Diffusion-weighted imaging (DWI)
DWI is a promising imaging modality in which the sen-
sitivity of tissue to Brownian motion of water molecules.
The signal intensity is measured by applying pairs of
opposing magnetic field gradient pulses, also known as
lobe gradients [49]. The radio-frequency is excited by
applying a 180 degree pulse on the phase of all the spins.
The first gradient lobe, in turn, introduces a signal diphase
in all the spins proportional to the gradient lobe area.
The spins, then, evolve freely, divided into static spins
and spins that move with respect to their relative posi-
tion. The same intensity and polarity of the first gradient
lobe is used again for a second gradient lobe, where all the
static spins align to the 90 degree pulse and the moving
spins never recovering the phase. The moving spins create
higher diphase among the spins, acquiring less signal than
that of the static spins. The diffusion-weighted signal, S is
formulated as:

S = S0e−bD (1)

where S0 is the signal intensity without the diffusion
weighting. The signal loss due to spins diphase, accord-
ing to Stejskal-Tanner sequence, can be controlled by b,
which consists of amplitude and duration of the diffu-
sion pulses, gradient intensity and the time between the
two pulses as well as the gyromagnetic ratio, and D repre-
sents the strength of the diffusion. The diffusion-weighted
image (S) is usually generated with different b values
which can be used to estimate apparent diffusion coef-
ficient map (ADC) using the least-squares or maximum
likelihood strategies [49]. The cancerous tissue in ADC is
usually represented by a darker intensity compared to the
surrounding tissue.

Computed high-b diffusion-weighted imaging (CHB-DWI)
Previous research has shown that high b-value DWI
images (e.g., b-values greater than 1,000 s/mm2) allow
for increased delineation between tumours and healthy
tissues [14, 50] which makes the prostate cancer detec-
tion more robust. Nevertheless, due to hardware limita-
tions, most MRI machines in practice do not produce
DWI with b-values higher than 1,500 s/mm2 for prostate
imaging. CHB-DWI is an alternative approach to obtain
high-b DWI in which a computational model is used to
reconstruct DWI at high b-values using low b-value DWI
acquisitions [14, 51]. For our experiments, we constructed
CHB-DWI with b-value at 2000s/mm2 using a Bayesian
model with the same least squares estimation technique
used for ADC, extrapolating to the b-value of 2000s/mm2.

Correlated diffusion imaging (CDI)
CDI [42] is a new diffusion magnetic resonance imaging
modality, which takes advantage of the joint correlation in
signal attenuation across multiple gradient pulse strengths
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and timings to not only reduce the dependency on the
way diffusion gradient pulses are applied, but also improve
delineation between cancerous and healthy tissue. The
effectiveness of the delineation process depends on the
models of the different types of tissue, since tumorous tis-
sue has been empirically demonstrated to generate higher
greyscale intensities at higher b-values. As such, in con-
structing CDI, these properties are exploited where the
utilized b-values are adjusted for a given application. The
local correlation of signal attenuation across all b-values
within a local sub-volume is calculated to better represent
the overall characterization of the water diffusion prop-
erties of the tissue. The CDI signal is obtained via signal
mixing as follows [42]:

CDI(x) =
∫

. . .

∫ bn

b0
S0(x). . .Sn(x)P(S0(x), . . . , Sn(x)|

V (x)) × dS0(x). . .dSn(x) (2)

where x denotes spatial location, bi represents b values,
S denotes the acquired signal, P denotes the conditional
joint probability density function, and V (x) denotes the
local subvolume around x.

Feature extraction
In order to separate the cancerous tissue from the healthy
one, a set of features is calculated on a given MR imag-
ing modality (i.e., T2w, DWI, CHB-DWI, CDI, and indi-
vidual b-value images). We incorporate four well-known
classes of texture features used in different studies to sep-
arate cancerous and healthy tissues in prostate. These
features include first- and second-order statistical features
(Haralick [32, 33]), steerable Gabor filter features [34], and
Kirsch filter features [35]. The first-order statistical fea-
tures include mean and standard deviation of grey-level
intensity, skewness, and kurtosis. Second-order statisti-
cal features such as entropy and contrast are extracted
from the gray-level co-occurrence matrix (GLCM) in four
directions: 0 °, 45 °, 90 °, and 135 °. These texture features
include 18 features in each direction generating a total of
72 features. Gabor features includes 12 features from three
scales and four orientations and Kirsch features include
the maximum gradient in eight directions. As a result,
the proposed MP-MRI texture feature models consist of a
total of 96 features for each imaging modality: four from
first-order and 72 from second-order statistical features,
eight from Kirsch, and 12 fromGabor filters. Table 1 sum-
marizes all features used in the proposed texture feature
models.

Texture feature model
Figure 1 shows the block diagram of the proposed texture
feature models. The goal is to incorporate information

Table 1 Summary of textural features used in the feature model

Feature class Feature

First-order statistical features Mean, Standard deviation

Skewness

Kurtosis

Second-order statistical

Energy, Contrast

features (Haralick)

Correlation, Variance

Inverse difference moment

Sum average, Sum variance

Sum entropy, Entropy

Difference variance

Difference entropy

Information measure of correlation

Homogeneity, Autocorrelation

Dissimilarity, Cluster shade

Cluster prominence

Maximum probability

Gabor filters 3 scales and 4 orientations

Kirsch filters 8 directions

from different sets of images to construct radiomics fea-
tures; a high-dimensional feature space that can be mined
for different purposes such as detection or prognosis of
cancer. Similar to conventional MP-MRI, the proposed
feature models include T2w and ADC modalities. They
also incorporate CHB-DWI, which has been shown to
increase separation between healthy and cancerous tis-
sue. As discussed in Section “Correlated diffusion imaging
(CDI)”, as a new diffusion magnetic resonance modality,
CDI has shown promise in separating healthy tissue from
cancerous one. Although ADC incorporates all b-value
images implicitly, individual b-value images may contain
information to help further distinguish healthy tissues
from cancerous tissues. Therefore, we also incorporate
four b-value images into our proposed texture feature
models. The following lists all the imagingmodalities used
by the proposed texture featuremodels for prostate cancer
detection:

• I1 = T2w
• I2 = ADC
• I3 = CHB-DWI: b-value at 2000s/mm2

• I4 = CDI
• I5 = b1: b-value at 0s/mm2

• I6 = b2: b-value at 100s/mm2

• I7 = b3: b-value at 400s/mm2

• I8 = b4: b-value at 1000s/mm2

For each modality, Ii, from the list above, the features
described in Table 1 are calculated for a local window (e.g.,
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Fig. 1 Block diagram of the proposed texture feature models

3 × 3 pixels) sliding on the prostate gland. Each window
is labeled either a tumour or non-tumour voxel. For each
imaging modality Ii, this gives a feature vector Fi.
For each voxel in each image, the feature extraction

function produces 96 features. A feature selection algo-
rithm determines a subset of features that contribute the
most to the separability of classes (e.g., cancerous vs. non-
cancerous tissues). This allows us to use the best features
for each imaging modality when building the final texture
feature models. The feature selection algorithms usually
require the number of best features to be selected. For a
given imaging modality Ii, to determine the optimal num-
ber of features mi, we perform an exhaustive search over
the feature space to evaluate the performance of any num-
ber of features. This allows us to select mi features as
the feature vector Fmi

i that produces the best results for a
given imaging modality Ii.
To evaluate the performance of a given number of fea-

tures, the accuracy or area under curve (AUC) for receiver
operating characteristic (ROC) curve of the classification
is usually used. Cancer cells in prostate usually constitute
a small fraction of the entire prostate gland (i.e., around
1%). This means that an accuracy of an algorithm may
be very high (e.g., 0.90) while it is unable to correctly
locate the cancerous cells (i.e., low sensitivity). On the
other hand, depending on the clinical procedures, differ-
ent levels of sensitivity or specificity may be required. For
example, for cancer screening programs, high sensitivity
(e.g., 0.90) is required where a moderate specificity (e.g.,
0.60) is deemed to be adequate. On the other hand, for
a procedure such as radical prostactomy, a high speci-
ficity (e.g., 0.99) with moderate sensitivity (e.g., 0.60) is
necessary to avoid unnecessary surgery. As a result, when
choosing the best feature subset, it is important to con-
sider different clinical scenarios by considering different
performance evaluation criteria for feature selection.
To determine the best feature subsets, we examine two

scenarios where in each scenario, it is assumed that either
sensitivity or specificity has a higher priority in the per-
formance evaluation of the proposed texture feature mod-
els. As it will be seen in the results section, depending

on performance criteria used, the texture feature models
produce different results.
Once the best feature subsets for each imaging modality

was determined, the next step is to combine them to build
different texture feature models (TFM) as follows:

• TFM1 = T2w+ADC
• TFM2 = T2w+ADC+CHB-HBV
• TFM3 = T2+CDI
• TFM4 = T2w+ADC+CDI
• TFM5 = T2w+ADC+HBV+CDI
• TFM6 = T2w+ADC+HBV+CDI+b1+b2+b3+b4

The feature selection method is applied to each texture
feature model to build the final models. At this stage, the
two performance criteria (sensitivity and specificity) are
used to select the final best feature subsets for each tex-
ture feature model. Algorithm 1 summarizes the texture
feature model construction steps.

Algorithm 1 Texture Feature Model Construction
1: For each imaging modality Ii in training the set T =

{I1, I2, . . . , In}, apply feature extraction function: Fi =
Features(Ii).

2: For the feature set of each imaging modality in train-
ing set Fi, apply feature selection function: Fmi

i =
F_Selection(Fi) where mi is the number of the best
selected features for imaging modality Ii.

3: Construct different combinations of selected features
from different imaging modalities: Fm

j = Fmi1
i1 ∪

Fmi2
i2 . . . ∪ Fmin

in wherem = m1 + m2 + . . . + mn.
4: Apply feature selection function to the constructed

feature set Fm
j : Fm0

j = F_Selection(Fm
j ) where m0 is

the number of the final best selected features.
5: Apply classification to Fm0

j .

For feature extraction function, we used the maximum
relevance, minimum redundancy (mRMR) technique [40],
which is based on maximum relevance and minimum
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redundancy of features. In this method, the feature subset
Fmi
i is selected to satisfy the following criteria:

maxD(Fm, c),D = 1
|Fm|

m∑
fi∈Fm

MI(fi; c) (3)

minR(Fm, c),R = 1
|Fm|2

m∑
fi,fj∈Fm

MI(fi; fj) (4)

where Fm is the best feature subset that we would like
to find, c is the target class, f is a feature and MI is the
mutual information function. D and R are the relevance
and redundancy of features, respectively. Maximum rele-
vance guarantees that the selected features have the high-
est shared information with the target class and minimum
redundancy ensures that the redundant features are elim-
inated. For the classifier, we used the SVM implemented
in [52].
The proposed radiomics-driven cancer detection mod-

els combine a plethora of data from different imaging
modalities of MP-MRI to construct comprehensive tex-
ture feature models which can be used for both detection
and prognosis purposes in prostate cancer.

Image data
MRI data of 20 patients (17 with cancer and three
without cancer) were acquired using a Philips Achieva
3.0T machine at Sunnybrook Health Sciences Centre,
Toronto, Ontario, Canada. All data was obtained retro-
spectively under the local institutional research ethics
board (Research Ethics Board of Sunnybrook Health Sci-
ences Centre). For each patient, the following MP-MRI
modalities were obtained (Table 2): T2w, DWI, and CDI.
The patients’ age ranged from 53 to 83. Table 2 sum-
marizes the information about the 20 patients’ datasets
used in this research, which includes displayed field of
view (DFOV), resolution, echo time (TE), and repeti-
tion time (TR). Images were processed in the ProCanVAS
(Prostate Cancer Visual Analysis System) platform devel-
oped at Sunnybrook Research Institute, Toronto, ON,
Canada. Each modality (e.g., CDI) provided 40,975 sam-
ples used for the leave-one-patient-out cross-validation of
the algorithms.

Evaluation metrics
To evaluate the performance of cancer detection algo-
rithms, two approaches may be used: pixel-based and

Table 2 Description of the prostate T2w, DWI, and CDI images

Modality DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

T2w 22 × 22 0.49 × 0.49 × 3 110 4,687

DWI 20 × 20 1.56 × 1.56 × 3 61 6,178

CDI 20 × 20 1.56 × 1.56 × 3 61 6,178

ROI-based. In pixel-based approach [53], small neighbor-
hoods of pixels (e.g., 3 × 3) are considered to distinguish
cancerous tissues from healthy ones. In other words, accu-
racy determines the percentages of these neighborhood
that were correctly labeled as cancerous or healthy. ROI-
based approach [29, 39, 54] is similar to pixel-based with
the difference that it uses larger neighborhoods of pixels
(e.g., 50 × 50) for calculating accuracy measures.
In evaluating the performance of the proposed tex-

ture feature models in this paper, we use the pixel-based
approach so that the accuracy measurements are calcu-
lated more precisely. As ground-truth, all MP-MR images
were reviewed and marked as healthy and cancerous
tissue by a radiologist with 18 and 13 years of experi-
ence interpreting body and prostate MRI, respectively. In
addition, for cases with cancer, the MP-MRI images and
expert annotations were compared to the corresponding
histopathology data, obtained through radical prostate-
ctomy with Gleason score seven and above, as ground-
truth to confirm the accuracy of the MP-MRI markings.

Results
Figure 2 shows sensitivity and specificity for all 8 MP-MRI
modalities using different number of best features (e.g., 10
features to 96 features). For each modality, 40,975 sam-
ples (40,369 healthy and 606 cancerous samples confirmed
by the radiologist) was used for the leave-one-patient-out
cross-validation.
Tables 3 and 4 show the quantitative results for dif-

ferent modalities and combinations of modalities. Using
sensitivity as feature selection criteria (Table 3), the sen-
sitivity of the texture feature models reaches 0.86 using
CDI alone. It is interesting to observe that CDI also out-
performs the conventional MP-MRI (i.e., TFM11) and
combination of conventional MP-MRI and CHB-DWI
(i.e., TFM2) (0.86 vs. 0.77 and 0.86 vs 0.69, respectively).
Although CDI alone gives the best results for sensitivity
(0.86), the full feature sets model (i.e., TFM6) produces the
best results when considering specificity, accuracy, and
AUC as well (0.82, 0.82, and 0.86, respectively). Compar-
ing TFM6 to all other models in Table 3, at least 2 metrics
out of 4 are significantly different than each of other mod-
els. For example, comparing TFM6 to TFME5, the P values
for specificity and accuracy via Wilcoxon signed-rank test
are 0.006 and 0.01, respectively.
Table 4 shows the performance results for using speci-

ficity as performance evaluation criteria for feature selec-
tion. It is observed that compared to the previous
approach (Table 3), the full feature sets model (TFM6)
improves the specificity by 0.06 (0.88). This was expected
since the performance evaluation criteria used for fea-
ture selection affects the final results. Thus, as discussed
in Section “Texture feature model”, depending on the
clinical scenario, one can choose different performance
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Fig. 2 Performance results for different modalities (T2w, ADC, CHB-DWI, CDI, and 4 DWI images at different b values) across all features
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Table 3 Evaluation results for prostate cancer detection: Feature selection based on Sensitivity (Results are shown with 95%
confidence interval)

Imaging Number of
Sensitivity Specificity Accuracy AUCmodality features

T2w 96 0.71 [0.54 0.89] 0.44 [0.39 0.49] 0.45 [0.40 0.50] 0.58 [0.48 0.68]

CHB-DWI 90 0.73 [0.58 0.88] 0.78 [0.71 0.85] 0.77 [0.71 0.84] 0.79 [0.73 0.85]

ADC 20 0.76 [0.64 0.88] 0.59 [0.51 0.67] 0.60 [0.52 0.67] 0.68 [0.63 0.74]

CDI 96 0.86 [0.76 0.97] 0.80 [0.75 0.85] 0.79 [0.74 0.84] 0.85 [0.81 0.90]

TFM1= T2w+ADC 20 0.77 [0.64 0.91] 0.57 [0.49 0.65] 0.59 [0.51 0.66] 0.68 [0.62 0.74]

TFM2=T2w+ADC+CHB-DWI 208 0.69 [0.54 0.84] 0.79 [0.73 0.84] 0.78 [0.73 0.84] 0.78 [0.72 0.85]

TFM3=T2w+CDI 196 0.85 [0.75 0.96] 0.81 [0.76 0.86] 0.80 [0.76 0.85] 0.85 [0.81 0.90]

TFM4=T2w+ADC+CDI 216 0.86 [0.76 0.96] 0.81 [0.76 0.86] 0.80 [0.76 0.85] 0.85 [0.81 0.90]

TFM5 =T2w+ADC
300 0.86 [0.75 0.96] 0.81 [0.77 0.86] 0.81 [0.77 0.85] 0.86 [0.83 0.90]

+CHB-DWI+CDI

TFM6 = T2w+ADC

416 0.86 [0.75 0.97] 0.82 [0.78 0.87] 0.82 [0.78 0.86] 0.86 [0.81 0.91]+CHB-DWI+CDI

+b1+b2+b3+b4

evaluation criteria to better suit the clinical procedure
requirements. Comparing TFM6 to all other models in
Table 4 (except for TFM3), at least 2 metrics out of four
are significantly different than each of other models. For
example, comparing TFM6 to TFM5, the P values for
specificity and accuracy via Wilcoxon signed-rank test
are 0.01. Comparing TFM6 to TFM3, the two models are
significantly different with respect to AUC (P = 0.01).
Tables 3 and 4 show the result when the goal was to

maximize sensitivity (Table 3) or specificity (Table 4).
Figure 3 shows the combinations of all eight imaging
modalities (TFM6) with best feature subsets based on sen-
sitivity and specificity with the objective ofmaximizing for
AUC. It can be seen that using specificity as performance
evaluation criteria gives a higher best AUC compared to

sensitivity (0.90 vs. 0.87). Figure 4 shows the ROC curves
for all six models as well as individual imaging modali-
ties discussed in Section “Texture feature model”. It is seen
that the combination of all imaging modalities, TFM6,
gives the best results in terms of AUC (0.90). This result
is significantly different with respect to any other imaging
modality or texture feature model where P < 0.009.
Table 5 shows the optimal results with the target of max-

imizing sensitivity, specificity, or AUC. As it can be seen,
choosing a target yields the best result for the selected tar-
get. Setting AUC as the target maximizes the AUC (0.90)
and at the same time generates more balanced results with
respect to sensitivity and specificity (0.84 and 0.86). Using
sensitivity as the performance evaluation criteria maxi-
mizes the result for sensitivity (0.86). Using specificity as

Table 4 Evaluation results for prostate cancer detection: Feature selection based on specificity (results are shown with 95%
confidence interval)

Imaging Number of
Sensitivity Specificity Accuracy AUCmodality features

T2w 10 0.66 [0.50 0.81] 0.47 [0.42 0.53] 0.48 [0.43 0.53] 0.57 [0.48 0.66]

CHB-DWI 10 0.69 [0.52 0.86] 0.82 [0.75 0.88] 0.81 [0.75 0.87] 0.76 [0.68 0.84]

ADC 96 0.73 [0.60 0.85] 0.62 [0.55 0.70] 0.63 [0.56 0.71] 0.70. [0.64 0.76]

CDI 10 0.82 [0.69 0.94] 0.85 [0.80 0.89] 0.84 [0.80 0.88] 0.84 [0.78 0.89]

TFM1= T2w+ADC 110 0.72 [0.59 0.86] 0.63 [0.55 0.70] 0.64 [0.56 0.71] 0.69 [0.63 0.75]

TFM2 =T2w+ADC
40 0.66 [0.50 0.82] 0.77 [0.71 0.83] 0.77 [0.71 0.82] 0.73 [0.65 0.81]

+CHB-DWI

TFM3=T2w+CDI 20 0.78 [0.65 0.91] 0.86 [0.82 0.90] 0.86 [0.82 0.89] 0.84 [0.78 0.90]

TFM4=T2w+ADC+CDI 40 0.77 [0.63 0.90] 0.86 [0.82 0.90] 0.85 [0.81 0.89] 0.84 [0.79 0.89]

TFM5 =T2w+ADC
50 0.78 [0.64 0.91] 0.86 [0.82 0.90] 0.85 [0.82 0.89] 0.84 [0.78 0.90]

+CHB-DWI+CDI

TFM6 =T2w+ADC

130 0.80 [0.69 0.91] 0.88 [0.85 0.92] 0.88 [0.84 0.91] 0.88 [0.83 0.93]+CHB-DWI+CDI

+b1+b2+b3+b4
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the performance evaluation criteria maximizes the result
for specificity (0.88) and AUC (0.90), depending on the
selected target.
Figure 5 shows an example for all four modalities which

include T2w, ADC, CHB-DWI, andCDI. As it can be seen,
CDI (Fig. 5d) is the only modality that clearly shows a
bright nodule where a tumour is located (confirmed by
histopathology data - Fig. 6).

Discussion
Automated prostate cancer detection has been investi-
gated by different research groups in the field. The under-
lying building blocks of these algorithms consist of feature
extraction and classification applied to local windows of
pixels in the images. Most algorithms in the literature
usually incorporate few imaging sequences into their pro-
posed feature models. For example, the work presented in
[39] used three sequences (T1w, T2w, and DCE) to build
the texture feature model. In contrast, in this paper, we
have taken one step further by incorporating information
from all available MR imaging data which includes T2w,
ADC, and different b-value images of DWI (i.e., b-values
at 0, 100, 400, and 1000s/mm2). Moreover, we incorpo-
rated computed high-b DWI (CHB-DWI) [14] as well as
correlated diffusion imaging (CDI) [42] into our model.
Adding these two extra imaging modalities enriched our
texture feature models in terms of the diversity of data
where 6 different models were developed and evalu-
ated (Sections “Texture feature model” and “Results”).
As a quantitative radiomics approach for prostate can-
cer detection, we used a comprehensive texture feature
model which incorporated eight different imaging modal-
ities where each modality contributed with its best feature
subset to the ultimate texture feature model in which all
modalities were combined.

Fig. 3 AUC based on using sensitivity and specificity as performance
evaluation criteria

Fig. 4 ROC for different texture feature models

One important aspect in the clinical workflow for
prostate cancer detection is the targeted clinical proce-
dure. For example, cancer screening programs impose
different performance requirements compared to proce-
dures such as radical prostatectomy. We designed the
proposed texture feature model accounting for such
requirements where the performance of the model can
be optimized for sensitivity, specificity, or the area under
the ROC curve. For example, to use the proposed tex-
ture feature model for cancer screening, sensitivity can be
used as the performance evaluation criteria to steer the
feature selection process which would lead to best result
for sensitivity (0.86) with reasonable results for specificity
(0.82). For cases where higher specificity is required, one
can use specificity as the performance evaluation criteria
to optimize the results for specificity (0.88) with accept-
able sensitivity (0.80). Our experiments showed that using
specificity as the performance evaluation criteria can also
maximize the results for AUC (0.90) which leads to a bal-
anced results for sensitivity and specificity; 0.84 and 0.86,
respectively. The fact that the proposed model is flexible
in terms of optimizing the results for the procedure it is
used for makes it more practical. This is another novel
aspect of the proposed model in this paper which to the
authors’ best knowledge has not been fully explored in the
literature.
The limitations of our research include a relatively lim-

ited number of datasets (20 patients) and targeting only
Gleason score of seven and above. Evaluating the pro-
posed model using a larger dataset and considering lower
Gleason scores (e.g., six) will add more confidence to
the reliability of the model which will be done as future
work. Other limitation is that the proposedmodel was not
assessed by clinicians to investigate whether it improves
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Table 5 Evaluation results for prostate cancer detection: Feature selection based on Sensitivity and Specificity (Results are shown with
95% confidence interval)

Target Performance evaluation criteria Sensitivity Specificity AUC

Sensitivity Sensitivity 0.86 [0.75 0.97] 0.82 [0.78 0.87] 0.86 [0.81 0.91]

Specificity Specificity 0.80 [0.69 0.91] 0.88 [0.85 0.92] 0.88 [0.83 0.93]

AUC Specificity 0.84 [0.76 0.91] 0.86 [0.82 0.91] 0.90 [0.88 0.93]

the clinical readings by radiologists. Similar to the work
reported in [55], clinical assessment of the proposed auto-
detection model will be performed to evaluate its effect
on the clinicians’ performance. Finally, given the fact that
cancerous pixels are a small fraction of the entire prostate
gland, it is possible that the reported specificity results are
an overestimation. A larger and more diversified dataset
will help to investigate this more thoroughly.
Our proposed texture feature model incorporated CDI

as one of the imaging modalities which as shown in

Section “Results”, boosted the results significantly. We
have developed an enhanced version of CDI, called dual-
stage correlated diffusion imaging (D-CDI) which has
shown promise in enhancing separability of cancerous and
healthy tissue in prostate MRI compared to CDI [56].
As future work, we will incorporate D-CDI to the pro-
posed texture feature model to investigate the effect on
performance. We will also investigate developing a hybrid
morphological-textural feature model for prostate cancer
where in addition to texture analysis, the morphological

Fig. 5 a T2w does not clearly show a tumour although there is mild signal alteration in the left peripheral zone (arrow). b ADC does not clearly show
a tumour (arrow). c CHB-DWI of 2000 s/mm2shows no tumour (arrow). d CDI clearly shows a bright nodule (arrow) corresponding to tumour
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Fig. 6 Corresponding axial hematoxylin and eosin stained tissue showing a Gleason 7 (4+3) tumor circled in red corresponding to the lesion
identified best on the CDI images in Fig. 5-d

characteristics (e.g., shape) of candidate regions are taken
into account to detect cancer. A preliminary work on
morphological feature model has been presented in [57]
upon which we will extend and build the hybrid model.
The b-value images of DWI are usually distorted due to
patient movement during the image acquisition which
may reduce cancer separability. We have presented pre-
liminary results for co-registering the b-value images to
compensate for patient movement [58]. As future work,
we will incorporate this co-registration algorithm into our
proposed texture feature models to investigate the effect
on the accuracy of cancer detection. Finally, normalized
entropy has been shown to be a strong predictor of patient
survival rate for lung and renal cell cancers in CT images
[59]. The future work will also involve investigating the
efficacy of the proposed texture feature model in this
paper for normalized MP-MRI entropy characterization
of prostate cancer.

Conclusion
In this paper, we introduced new multi-parametric MRI
texture feature models for prostate cancer detection. Our
new MP-MRI texture feature models add two new imag-
ing modalities, computed high-b DWI and correlated
diffusion imaging, to the most commonly used MP-MRI,
T2w+ADC. As a quantitative radiomics approach for
automatic detection of prostate cancer, a comprehensive
set of texture features were calculated for the conventional
MP-MRI and newMP-MRI texture feature models. A fea-
ture selection method was used to select the optimal fea-
tures for each modality. Two different performance eval-
uation criteria were used for feature selection to reflect
different clinical workflows in prostate cancer diagnosis.
The best feature subsets were then combined to construct

optimal texture feature models. A SVM classifier was
trained via leave-one-patient-out setting to classify the
new cases. The proposed MP-MRI texture feature models
showed promise in accurate detection of prostate cancer.

Endnote
1The conventional MP-MRI refers to the combination

of T2w and DWI, which is represented as ADC. Thus,
throughout the paper, T2w+DWI and T2w+ADC are
used interchangeably.
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