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Abstract
Background: Magnetic particle imaging (MPI) is a new tomographic imaging technique capable of
imaging magnetic tracer material at high temporal and spatial resolution. Image reconstruction
requires solving a system of linear equations, which is characterized by a "system function" that
establishes the relation between spatial tracer position and frequency response. This paper for the
first time reports on the structure and properties of the MPI system function.

Methods: An analytical derivation of the 1D MPI system function exhibits its explicit dependence
on encoding field parameters and tracer properties. Simulations are used to derive properties of
the 2D and 3D system function.

Results: It is found that for ideal tracer particles in a harmonic excitation field and constant
selection field gradient, the 1D system function can be represented by Chebyshev polynomials of
the second kind. Exact 1D image reconstruction can thus be performed using the Chebyshev
transform. More realistic particle magnetization curves can be treated as a convolution of the
derivative of the magnetization curve with the Chebyshev functions. For 2D and 3D imaging, it is
found that Lissajous excitation trajectories lead to system functions that are closely related to
tensor products of Chebyshev functions.

Conclusion: Since to date, the MPI system function has to be measured in time-consuming
calibration scans, the additional information derived here can be used to reduce the amount of
information to be acquired experimentally and can hence speed up system function acquisition.
Furthermore, redundancies found in the system function can be removed to arrive at sparser
representations that reduce memory load and allow faster image reconstruction.

Background
"Magnetic Particle Imaging" (MPI) is a method for imag-
ing distributions of magnetic nano-particles which has
been introduced recently [1]. For generating a detectable
particle signal, the method exploits the non-linear mag-
netization response of ferromagnetic particles to an exter-

nally applied oscillating magnetic drive field. The
magnetization response induces a voltage in receive coils,
which constitutes the MPI signal.

As shown in figure 1, its spectrum contains higher har-
monics of the drive frequency, which represent the finger-
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print of the particles. Spatial localization is achieved by
superimposing an inhomogeneous, static magnetic selec-
tion field, that limits the particle response to a small
region, also called field free point (FFP). The effect of the
drive field is to move the FFP in space. Using orthogonal
sets of drive field coils, fast spatial coverage with a 2D or
3D trajectory of the FFP can be achieved, allowing real-
time tomographic imaging of particle distributions [2].

Since the particles' magnetic moment is about eight orders
of magnitude larger than the proton magnetic moment
used in MRI, MPI achieves high sensitivity [3]. This makes
it a promising candidate for dynamic medical imaging
applications, e.g., blood flow imaging in coronary arter-
ies. Feasibility of 3D real-time visualization of blood flow
through the vascular system of a living mouse has been
demonstrated recently [4].

For MPI, in contrast to established imaging modalities
like MRI and CT [5], no simple mathematical transform
has yet been identified to reconstruct images from the
acquired data. Therefore, MPI image reconstruction
requires knowledge of a "system function" describing the
system response to a given spatial distribution of particles,

i.e., mapping particle position to frequency response. To
solve the reconstruction problem, the system function has
to be inverted, usually requiring some regularization
scheme [3]. To date, the system function is determined
experimentally by measuring the magnetization response
of a point-like sample at a large number of spatial posi-
tions corresponding to the number of image pixels or vox-
els [1]. This calibration procedure requires very long
acquisition times and furthermore provides a system func-
tion that is contaminated with noise. Due to the large size
of the system function matrix, solving the inverse recon-
struction problem is also quite time-consuming and
claims large amounts of computer memory.

From a theoretical understanding of the signal encoding
process one expects to gain insight into the structure of the
system function. This knowledge can be used to speed up
the system function acquisition or to even simulate parts
or all of the system function. Information about the
matrix structure can furthermore help to find more com-
pact system function representations, helping to reduce
memory requirements and speed up reconstruction.
Finally, identification of a mathematical transform lead-

Basic MPI PrincipleFigure 1
Basic MPI Principle. Basic MPI principle [1]. The drive field HD(t) generates a particle response M(t) that induces a voltage in 
the receive coils. The time-dependent voltage is measured and constitutes the raw signal s(t)  dM(t)/dt. Due to the non-linear 
magnetization curve, the signal spectrum Sn contains higher harmonics of the drive frequency 0, which are used for particle 
detection and imaging. For reference, the derivative of the magnetization curve M/H is also shown (blue curve).
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ing from the data to the image would greatly simply the
reconstruction process.

Methods
Signal Generation
The basic principle of signal generation in MPI relies on
the non-linear magnetization response M(H) of ferromag-
netic particles to an applied magnetic field H, cf. figure 1.
An oscillating drive field HD(t) of sufficient amplitude
leads to a magnetization response M(t) of the particles,
which has a different spectrum of higher harmonics than
the drive field. If, for instance, a harmonic drive field is
used, the drive field spectrum only contains the base fre-
quency, whereas the particle response also contains mul-
tiples thereof. The information contained in these higher
harmonics is used for MPI. Experimentally, the time-
dependent change in particle magnetization is measured
via the induced voltage in receive coils. Assuming a single
receive coil with sensitivity r(r) at spatial position r, the
changing magnetization induces a voltage

according to Faraday's law. 0 is the magnetic permeabil-
ity of vacuum. The receive coil sensitivity r(r) = Hr(r)/I0
derives from the field Hr(r) the coil would produce if
driven with a unit current I0 [5].

In the following, the sensitivity of the receive coil is
approximated to be homogeneous over the region of
interest, i.e., r(r) is constant. If Mx(r, t) is the magnetiza-
tion component picked up by a receive coil in x direction,
i.e., having the sensitivity r = (x, 0, 0)T, the detected sig-
nal can be written as

Neglecting constant factors, we introduce the notation s(r,
t) for signal generated by a point-like distribution of par-
ticles at position r. If the particle distribution is approxi-
mated by a  distribution, the volume integral vanishes
and the particle magnetization Mx(r, t) is determined by
the local field H(r, t). For the moment, the field is
assumed to have only one spatial component Hx(r, t),
which is pointing in receive-coil direction x. The signal
can then be written as

Since this equation holds for a general 1D setup where the
field is aligned with the direction of the acquired magnet-
ization component, the subscript x has been omitted.
Equation 3 shows that high signal results from the combi-
nation of a steep magnetization curve with rapid field var-
iations. Fourier expansion of the periodic signal s(t)
generated by applying a homogeneous drive field H(r, t)
= HD(t) yields the signal spectrum Sn, as shown in figure
1. Intensity and weight of higher harmonics in the spec-
trum are related to the shape of the magnetization curve
M(H), and to the waveform and amplitude of the drive
field HD(t). To illustrate their influence on the spectrum,
a number of representative cases are shown in figure 2.

The step function relates to an immediate particle
response and creates a spectrum that is rich in high har-
monics. The spectral components have constant magni-
tude at odd multiples of the drive frequency. The even
harmonics are missing due to the sine-type pattern of the
time signal s(t). The step function corresponds to an ideal par-
ticle response and represents the limiting case for the
achievable weight of higher harmonics. For this magneti-
zation curve, triangle and sine drive fields yield the same
result.

If the particle response to the drive field is slowed down
by introducing a linear range in the magnetization curve,
the relative weight of higher harmonics is reduced.
Thereby, the harmonic drive field performs better than the
triangular excitation, since it sweeps faster over the linear
range.

The last row in figure 2 shows a more realistic particle
magnetization as given by the Langevin function [6]

M() = M0 (coth  - 1/), (4)

where M0 is the saturation magnetization and  is the ratio
between magnetic energy of a particle with magnetic
moment m in an external field H, and thermal energy
given by the Boltzmann constant kB and temperature T:

A higher magnetic moment results in a steeper magnetiza-
tion curve and creates more higher harmonics for a given
drive field amplitude. Alternatively, high harmonics can
be generated from a shallow curve using faster field varia-
tions, e.g., induced by a higher drive field amplitude. It
should be noted that MPI uses ferromagnetic particles to
obtain a sufficiently steep magnetization curve [1]. For
low concentrations, however, their mutual interactions
can be neglected and they can be treated like a gas of par-
amagnetic particles with extremely large magnetic
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moment, a phenomenon also known as "super-paramag-
netism" [7].

1D Spatial Encoding
To encode spatial information in the signal, a static mag-
netic gradient field HS(r), also called selection field, is intro-
duced. For 1D encoding, the selection field has a non-zero
gradient only in x direction, Gx = dHS/dx. If the gradient is
non-zero over the complete field of view (FOV), the selec-
tion field is monotonically rising or falling, thus it can
cross zero only in a single point, the above-mentioned

FFP. In regions far away from the FFP, the particle magnet-
ization is driven into saturation by the selection field.

Application of a spatially homogeneous and temporally
periodic drive field HD(t) in addition to the selection field
HS(r) corresponds to a periodic displacement of the FFP
along the gradient direction. The particles experience a
local field

H(x, t) = HS(x) - HD(t). (6)

Particle Magnetization ResponseFigure 2
Particle Magnetization Response. Particle magnetization response M(t), acquired time signal s(t), and magnitude spectral 
components Sn for different drive fields and particle magnetization curves.
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The minus sign has been chosen to make later calculations
more convenient. Since the FFP sweeps over each spatial
position x at a different point in time, each position can
be identified by its characteristic spectral response.

Harmonic Drive Field – Ideal Particles
Figure 3 shows spectra at three different spatial positions
generated by ideal particles exposed to a selection field HS
of constant gradient strength G and a harmonic drive field
HD of frequency 0 = 2/T and amplitude A. A derivation
of their functional form is given in appendix A.1 and A.2.
For the nth harmonic, corresponding to the nth compo-
nent of a Fourier series expansion, one finds the following
dependence on particle position x:

where the Un(x) represent Chebyshev polynomials of the
second kind (42). The functions are defined in the range -
1 < Gx/A < 1. A cosine drive field has been used instead of
the sine drive field to arrive at a simpler expression. The
spatial dependence for the first harmonics is plotted in the
left part of figure 4. One finds an increasing number of
oscillations with increasing frequency components n. This
relates to the fact that Chebyshev polynomials form a
complete orthogonal basis set (cf. appendix A.2), so that
any particle distribution C(x) can be expanded into these
functions. Successive frequency components have alter-
nating spatial parity with respect to the center of the FOV
(even/odd).

The Sn(x) can be seen as a sensitivity map, describing the
spatial sensitivity profile of each frequency component n.
In an MPI experiment, a 1D particle distribution C(x)
would generate spectral signal components

Thus, the Sn(x) represent the system function introduced by
[3]. The system function not only describes the spatial sig-
nal dependence, but also contains information about the
particles' magnetization curve and system parameters (e.g.
drive field amplitude A and frequency 0 = 2/T, selection
field gradient G).

Using (7), the spectral signal components (8) for ideal
particles can be written as

In this notation, the Vn correspond to coefficients of a
Chebyshev series, cf. equation (58). It follows that the
particle concentration can be reconstructed by doing a
Chebyshev transform of the measured Vn, i.e., by evaluat-
ing the Chebyshev series

Hence, for ideal particles under the influence of a har-
monic drive field and a constant selection field gradient,
reconstruction of the spatial particle distribution simply
corresponds to calculating the sum over the measured
harmonics Vn weighted with Chebyshev polynomials of

the second kind. In terms of the system function

, the particle concentration can be written as

Harmonic Drive Field – Langevin Particles
For more realistic particles as described by (4), the system
function Sn(x) is given by a spatial convolution between
the derivative of the magnetization curve, M'(HS), and the
Chebyshev components, as derived in A.2. Using equa-
tion (7) one can write:

Depending on the steepness of M(H), the Sn(x) will be a

blurred version of the , extending slightly
beyond the interval which is covered by the FFP motion

and to which the  are confined. Thus, particles
that are located slightly outside the range accessed by the
FFP also generate signal. The right part of figure 4 displays
components of the system function for particles following
the Langevin magnetization curve in a constant selection
field gradient.
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In the measurement process according to (8), the FOV
now refers to the range where the Sn(x) are non-zero. A
sufficiently steep magnetization curve can provide con-
finement to a region not much larger than the range cov-
ered by the FFP, i.e., -A/G < x <A/G.

Since the system function components cannot be sharper
than the convolution kernel, an MPI experiment with Lan-
gevin particles will run into a resolution limit correlating
with the width of M'(x). Since the derivative of the mag-
netization curve is a symmetric function M'(x) = M'(-x),
one can use (12) to show that

Dependence of Magnetization Response on Selection Field OffsetFigure 3
Dependence of Magnetization Response on Selection Field Offset. Relation between ideal particle response and 
selection field offset. A constant gradient G is assumed leading to a selection field HS(x) = Gx. The superposition of selection 
field HS(x) and harmonic drive field HD(t) = A cos 0t generates a magnetization response M(x, t) which induces a voltage pro-
portional to s(x, t) in the receive coil. Depending on position x, the signal spectrum has a characteristic pattern Sn(x). Since the 
signal s(t) is real and odd, its Fourier components are purely imaginary.
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where  corresponds to the expression in square
brackets in (13). Since (14) corresponds to (9), recon-
struction for the harmonic drive field is given by (11), i.e.,

This means, that in the interval where the ideal particle

system function  is defined, i.e., -A/G < x <A/G,

 can be directly reconstructed. If the particle con-

centration C(x) is confined to the FOV,  is just the
convolution of C(x) with M'(x):

From this equation, one can infer that the resolution of
the reconstructed image is limited by the width of M'(x).
If the particle magnetization curve is known and the
measurement provides sufficient SNR, deconvolution can
be used to overcome this limitation. However, in practical

applications with distributions of different particles sizes
and magnetization curves, deconvolution may be diffi-
cult. Therefore, the following paragraph gives an estima-
tion of the achievable spatial resolution without
deconvolution. The derivative of the Langevin curve in
equation (4) is

which corresponds to the blue curve plotted in figure 1.
The full width at half maximum (FWHM) of this curve can
be determined numerically as FWHM  4.16. If the parti-
cle magnetization m and the selection field gradient
strength G are known, this can be translated to a spatial
resolution using equation (5):

The particle magnetization depends on particle diameter
d according to the following relation [8]:

Spatial Dependence of Spectral Signal ComponentsFigure 4
Spatial Dependence of Spectral Signal Components. Spatial dependence of spectral signal components for a harmonic 
drive field in combination with a constant gradient selection field. Left: ideal particles. Right: Langevin particles. For these more 
realistic particles, the spatial response functions extend beyond the range [-A/G; A/G] covered by the FFP motion.
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Assuming magnetite particles (Fe3O4) with a saturation
magnetization of MS = 0.6 T/0, the resolution limit x
imposed by the magnetization curve can be calculated.
Figure 5 shows x as a function of gradient strength for
different particle diameters. The cross-hairs indicate the
gradient strength of 5.5 T/m/0 and the dominating parti-
cle diameter of 30 nm used in real-time in vivo MPI [4].
This gradient/particle combination theoretically allows a
resolution better than 0.5 mm. However, due to the wide
distribution of particle sizes and the regularization
applied in reconstruction [3] to mitigate limited SNR, the
observed resolution was not better than x  1.5 mm.

Triangular Drive Field
An illustrative case is to use a triangular drive field instead
of the harmonic field, cf. appendix A.3. The system func-
tion for ideal particles then has the form

for an FFP motion covering the range 0 < x < 2A/G. Now,
instead of the Chebyshev series, a Fourier series can be
used to reconstruct a particle concentration

The measured frequency components Vn are proportional

to components  in k space, which are related to the
spatial distribution C(x) by Fourier transformation. In
terms of the system function, (21) becomes

For realistic particles, the system function has to be con-
volved with M'(HS). Since equations (12–14) derived for

harmonic drive field excitation hold for the triangular sys-
tem function as well, a modified/convolved concentration

 can be reconstructed in the range 0 < x < 2A/G.

Matrix Formulation
For MPI image reconstruction, the continuous spatial dis-
tribution of particles will be mapped to a grid, where each
grid location represents a small spatial region. Further-
more, only a limited number n of frequency components
is recorded. If the spatial positions are indexed with m, (8)
becomes

Resolution Limit (without Deconvolution) for Different Particle Sizes as a Function of Gradient StrengthFigure 5
Resolution Limit (without Deconvolution) for Different Particle Sizes as a Function of Gradient Strength. Res-
olution x achievable without deconvolution for different diameters d of magnetite particles (Fe3O4) as a function of gradient 
strength G. According to equations (18) and (19), the limit is proportional to d-3 and G-1. The cross-hairs indicate a gradient/
particle combination used in recent in vivo experiments [4].
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or, in vector/matrix formulation,

v = Sc. (24)

Calculation of the concentration vector then basically cor-
responds to an inversion of matrix S:

c = S-1v. (25)

This notation will be used for 2D or 3D imaging as well,
which requires collapsing spatial indices into the single
index m. Thus, concentration is always a vector, independ-
ent of spatial dimension.

Going back to the 1D case for a harmonic drive field,
introduction of a scalar

and a diagonal matrix

allows derivation of the following identity by comparing
(25) with (11):

S-1 = ST. (28)

Thus, in the case of 1D imaging of ideal particles, the
inverse matrix can simply be obtained by multiplication
of the transpose with a scalar and a diagonal matrix.

Using only a limited number of frequency components
corresponds to working with a truncated Chebyshev
series. The Chebyshev truncation theorem then states that
the error in approximating the real concentration distribu-
tion is bounded by the sum of the absolute values of the
neglected coefficients. More importantly, for reasonably
smooth distributions, the error is on the order of the last
retained Chebyshev coefficient [9].

2D and 3D Spatial Encoding
1D Drive Field
A first step towards describing 2D and 3D imaging is to
look at the 3D system function of particles in a 3D selec-
tion field HS(r) combined with a 1D drive field HD(t).
Using a harmonic drive field and choosing a Maxwell coil
setup to create a selection field as described in equation
(68), the total field can be approximated by

The system function can be written as a convolution over
the z component of the selection field (cf. (65))

In this vector, each component refers to the signal induced
by the respective x/y/z magnetization component. Detec-
tion of these components requires three orthogonal (sets
of) receive coils. For ideal particles (cf. (66)), the explicit
spatial dependence becomes (cf. (70))

where the asterisk denotes convolution over the z compo-
nent, i.e., the direction of the FFP motion resulting from
the drive field. Thus, an expression describing the 3D spa-
tial dependence of the respective magnetization compo-
nent is convolved in drive field direction with the set of
1D Chebyshev functions.

The shape of the convolution kernel is determined by M/
Hz, which describes how the magnetization responds to
the drive field change. For ideal particles, it is singular at
the origin. Figure 6 shows the xz plane of the 3D kernel for
the signal components detected in z and x direction,
Sn,z(r) and Sn,x(r), respectively. Along the center line in
drive field direction, the kernel for the Mz magnetization
corresponds to the delta distribution, just as in the 1D sit-
uation (48). With increasing distance from the center line,
the kernel broadens and its amplitude decreases rapidly.
For Mx, and for symmetry reasons also for My, the kernel
is zero on the symmetry axes. It has high amplitude close
to the singularity at the origin.

To form the 3D ideal particle system function, the 3D ker-
nel is convolved along the drive field direction with the
1D Chebyshev polynomials (31). Figure 7 shows central
2D slices extracted from selected harmonics for the above
case of 1D drive field motion in z direction. Directly on
the line covered by the FFP trajectory, the system function
is given by Chebyshev polynomials and therefore can
encode an arbitrary particle distribution, as discussed for
the 1D situation. With increasing distance to the center
line, the convolution kernel has an increasing blurring
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effect, so that finer structures of the higher Chebyshev pol-
ynomials are averaged to zero. Therefore, the signal in
higher system function components condenses to the line
of the FFP trajectory (cf. figure 7, harmonic 12 and 25),
where the blurring effect is low. This can be explained by
the fact that only in the close vicinity of the FFP, the field
change is rapid enough to stimulate a particle response
that generates high frequency components.

In an MPI experiment, it can be useful to exploit sym-
metries in the system function to partially synthesize the
system function and thus speed up its acquisition and
reduce memory requirements. From the 3D response to
the 1D FFP motion, two basic rules can be derived for the
parity of the system function in the spatial direction
indexed with i  {x, y, z}.

1. The "base" parity is given by the parity of the convolu-
tion kernel shown in figure 6. It is even, if the receive
direction j  {x, y, z} is aligned with the drive direction k
 {x, y, z}. This corresponds to the magnetization deriva-
tive component MjHk for j = k. Otherwise kernel parity
is odd:

2. If the spatial direction of interest is a drive field direc-
tion, i.e., i = k, then parity alternates between successive
harmonics h of that drive field component:

Convolution Kernel Resulting from Magnetization DerivativeFigure 6
Convolution Kernel Resulting from Magnetization Derivative. Derivative of ideal particle magnetization with respect 
to the Hz field component. The derivatives of the Mz (left) and Mx component (right) are shown. Top and bottom row show a 
3D view and gray-scale plot of the xz plane, respectively. The displayed functions represent the convolution kernel applied to 
the basis set in drive field direction, cf. equation (31).
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2D Ideal Particle System Function for 1D FFP MotionFigure 7
2D Ideal Particle System Function for 1D FFP Motion. Ideal particle system function at different harmonics for 1D FFP 
motion along the center line in z direction. The column '1D system function' displays the Chebyshev functions plotted in the 
left part of figure 4. The 2D system function is obtained from a convolution of the Chebyshev functions with the kernels shown 
in the top row for signal reception in z and x direction, respectively. The dashed lines indicate the edges of the range covered 
by the FFP motion.
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The reason is the alternating parity of the Chebyshev pol-
ynomials in the 1D system function.

Parity observed for harmonic h in a spatial direction i then
is pi,j,k,h = pCheb·pkernel.

2D and 3D Drive Field
As displayed in figure 7, the spatial pattern of the particle
response for higher harmonics is confined to a narrow
region close to the line of the FFP motion. Therefore, to
induce a particle response with high harmonics extending
over the whole 2D plane, a lateral displacement of the FFP
is necessary. This is achieved by adding a second drive
field which displaces the FFP in x direction. For 3D encod-
ing, a third drive field for FFP displacement in y direction
is necessary. Figure 7 furthermore shows that high resolu-
tion is obtained only in the close vicinity of the FFP trajec-
tory line. Thus, the 2D or 3D trajectory should be
sufficiently dense to achieve homogeneous resolution
over the imaging plane or volume. For a simple imple-
mentation, one can choose harmonic drive fields with
slight frequency differences in the orthogonal spatial
directions, causing the FFP motion to follow a 2D or 3D
Lissajous pattern. In the following, a 2D system function
requiring two drive frequencies is investigated. The treat-
ment of a 3D system function using three drive frequen-
cies would be analogous. Figure 8 displays a 2D Lissajous
pattern generated by the superposition of two orthogonal
harmonic drive fields with frequency ratio x/z = 24/25:

Using a 3D selection field according to (29), the doubled
selection field gradient in z direction requires Az = 2Ax to
cover a quadratic FOV with the FFP motion. Figure 8 dis-
plays the first components of a simulated 2D system func-
tion for ideal particles exposed to the superposition of the
2D Lissajous drive field and the 3D selection field. Each
receive direction has its own set of system functions,
denoted by 'receive x' and 'receive z'. Components corre-
sponding to higher harmonics of the respective drive fre-
quency are indicated by red frames. On the x channel,
they have a spacing of 24 components. In the spatial x
direction, they closely resemble the 1D Chebyshev series,
while in z direction, they show no spatial variation. On
the z channel, harmonics of the drive frequency exhibit a
spacing of 25 components with a spatial pattern that is

basically rotated by 90 degrees with the respect to the x
components.

While components corresponding to harmonics of the
drive field frequencies only allow 1D encoding in the
respective drive field direction, components arising from
a mixture of both drive frequencies provide spatial varia-
tion in both directions at the same time. For instance,
moving to the left from the first x drive-field harmonic on
the x channel (component 24) corresponds to mix fre-
quencies mx + n(x - z) with increasing integer n and m
= 1. For larger m, one starts at a higher harmonic m. Mov-
ing to the right corresponds to negative n. Thus, pure drive
field harmonics and their vicinity relate to low mixing
orders, while increasing distance goes along with larger n
and higher mixing orders.

It should be noted that the system function component
observed for mx + n(x - z) appears a second time at fre-
quency mx + n(x + z). Thus every component corre-
sponding to frequency mixes appears twice. Examples are
components 23 and 73 (m = 1, n = 1, green frames) or 47
and 97 (m = 2, n = 1, blue frames), but also 26 and 74 (m
= 1, n = -2, orange frames) on the x channel.

Figure 8 also plots the maximum intensities (weights) of
the generated system function components. Highest
intensities are found in pure multiples of the drive fre-
quencies, however with a decrease towards higher fre-
quencies. Components corresponding to mix frequencies
have much lower intensity than pure harmonics. If the
system function is acquired experimentally, these compo-
nents will be the first to fall below the noise level. Thus,
low SNR in the system function acquisition will reduce
the achievable resolution.

The higher the order of a system function component, the
finer its spatial structure. This behavior and the general
spatial patterns closely resemble 2D Chebyshev polyno-
mials, which can be written as a tensor product of the 1D
polynomials for each direction: Un(x) � Um(z). Figure 9
plots the first components of these functions. The 2D
Chebyshev functions satisfy an orthogonality relation
similar to (50). A graphical representation of this relation
for the first 256 components is shown in the left part of
figure 10. The inner product between orthogonal func-
tions vanishes, so that only the product of a function with
itself is non-zero, leading to the diagonal line in figure 10.
In the right part, the corresponding plot is shown for the
normalized rows of an ideal particle 2D Lissajous system
function. Bright spots and lines off the diagonal indicate
that some system function components are not orthogo-
nal with respect to each other. However, black regions pre-
vail and one can infer that most components are
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2D Ideal Particle System Function for 2D Lissajous FFP MotionFigure 8
2D Ideal Particle System Function for 2D Lissajous FFP Motion. Successive frequency components of the ideal parti-
cle system function for 2D Lissajous FFP motion with an x/z frequency ratio of 24/25. The first 99 frequency components are 
shown for the two receive orientations. The first upper left rectangle displays the Lissajous pattern. Multiples of the drive fre-
quencies are indicated by red frames. Their shape closely resembles the 1D system function shown in figure 7. Green, blue, and 
orange frames indicate components with identical spatial pattern. The two graphs at the left show the maximum intensity val-
ues encountered in the respective system function components.
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orthogonal. Therefore, there is only little redundancy in
the system function.

To demonstrate this, a phantom image (figure 11, left) is
expanded into an equal number of 2D Chebyshev and Lis-
sajous system function components, respectively. The
number of components has been chosen to equal the the
number of pixels in the image (64 × 64). The image
obtained from the Chebyshev transformation exhibits
reduced resolution compared to the original image. The
reason is that the Chebyshev functions provide higher res-
olution at the edges of the FOV but reduced resolution at
the center. To keep the high resolution at the image center,
higher Chebyshev components would have to be included
in the expansion. The image obtained from the system
function components has been reconstructed by inverting
the system function matrix using minimal regularization
to suppress noise [10]. Half the system function compo-

nents were taken from the receive x system function, the
other half from the z function (as displayed in figure 8).
Resolution of the image is better than observed for the
Chebyshev expansion, but the image has small artifacts
that make it appear less homogeneous. Considering the
fact that some system function components are not
orthogonal and therefore redundant, the image quality is
quite good. The reconstructions from only the x or z com-
ponents show significantly worse image quality, indicat-
ing that these subsets are not sufficient to homogeneously
represent the image information.

Results and discussion
MPI signal encoding can provide a system function that
forms a well-behaved basis set capable of representing
highly resolved image information.

Pictorial Table of 2D Chebyshev FunctionsFigure 9
Pictorial Table of 2D Chebyshev Functions. Pictorial table of 2D Chebyshev functions. Top row and left column display 
the 1D Chebyshev functions, from which the 2D functions are derived by tensor multiplication.
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For 1D harmonic excitation of ideal particles, the system
function corresponds to a series of Chebyshev polynomi-
als of the second kind. Therefore, a fast and exact recon-
struction is provided by the Chebyshev transform.

The properties of realistic particles are introduced into the
system function by a convolution-type operation leading
to a blurring of the high-resolution components. This
introduces a resolution limit which is determined by the
steepness of the particle magnetization curve. While in
principle, a higher resolution image can be regained by
deconvolution, resolution provided by realistic particles
without deconvolution is already in the sub-millimeter
range [3].

The system function for 2D imaging is determined by the
trajectory taken by the FFP and a kernel representing the
region around the FFP which contributes to the signal.
The shape of this FFP kernel is determined by the topology
of the selection field. The simple case of constant selection
field gradients in all spatial directions has been demon-
strated. For ideal particles, the kernel has sharp singulari-
ties which provide high spatial resolution. However,
regions around these sharp peaks also contribute to the
signal. This is probably the reason for the observation that
in 2D encoding using a 2D Lissajous pattern, the system
function is not exactly represented by 2D Chebyshev func-
tions. Therefore, reconstruction cannot be done by using
the Chebyshev transform as in 1D, but requires the inver-
sion of the system function matrix. However, a close rela-

Orthogonality PlotsFigure 10
Orthogonality Plots. Orthogonality plot for the first 256 basis set components. Left: 2D Chebyshev basis set. Right: 2D MPI 
ideal particle system function for Lissajous FFP motion with frequency ratio 24/25. System function matrix rows were normal-
ized.

Test ImagesFigure 11
Test Images. 64 × 64 sample image and reconstruction from expansion into Chebyshev and system function components. 
The number of Chebyshev components and system function components using both coils was equal to the number image pix-
els. While the Chebyshev expansion represent only a hypothetical case shown for reference, the system function components 
can be derived from an idealized MPI experiment. Images on the right show the reconstruction result using only the system 
function components obtained from the receive coil in x and z direction, respectively.
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tionship between the 2D Lissajous system function and
the 2D Chebyshev polynomials is obvious. This may be
used to transform the system function into a sparser rep-
resentation using a Chebyshev or cosine-type transforma-
tion, resulting in lower memory requirements and faster
reconstruction.

The 2D Lissajous system function does not form a fully
orthogonal set, since it contains redundant components.
Nonetheless, it is capable of encoding highly resolved
image information as shown in figure 11. Possible mis-
matches between the information content of the acquired
data and the desired pixel resolution can be mediated by
using regularization schemes in the reconstruction [10].
In experimentally acquired data, the necessary degree of
regularization will also depend on the SNR. Optimally, to
take into account noise in the system function as well as
in the measured object data, image reconstruction should
be based on the total least squares approach [11].

To speed up the tedious experimental acquisition of the
system function, one can use the parity rules derived for
the 2D system function. In theory, these allow to con-
struct the complete system function from measuring only
one quadrant of the rectangle of the Lissajous figure. For a
3D Lissajous figure, one octant would suffice, accelerating
the system function acquisition by a factor of eight. Exper-
imentally, the symmetry can be disturbed by non-perfect
alignment of coils. Nonetheless, knowledge of the under-
lying theoretical functions and their parity can help to
model the system function from only a few measured
samples.

In a real MPI experiment, one usually acquires many more
frequency components than the desired number of image
pixels. Therefore, one has the freedom to make a selection
of system function components to constitute a more com-
pact basis set providing better orthogonality. For instance,
duplicate system function components can be removed
after acquisition to arrive at a smaller system function
matrix to speed up image reconstruction. Furthermore, a
selection of harmonics according to their weight can help
to reduce matrix size. It is also conceivable to modify the
weight of certain components to influence image resolu-
tion and SNR.

2D imaging of realistic particles has not been simulated in
this work, but from the 1D derivations, one can infer that
a blurring of the FFP kernel depending on the steepness of
the particle magnetization curve will occur. This would
remove the kernel singularities, but would also result in a
slight loss of resolution, as discussed for the 1D case.

3D imaging has not been shown, but 2D results can be
directly extrapolated to 3D by introducing an additional

orthogonal drive field enabling 3D FFP trajectories. For a
3D Lissajous trajectory, close resemblance of the system
function to third order tensor products of Chebyshev pol-
ynomials can be expected.

The selection field topology and the FFP trajectories used
in this work have been chosen for their simple experimen-
tal feasibility. However, many alternative field configura-
tions are conceivable. For the FFP trajectory, one can as
well use radial or spiral patterns [12], or even patterns that
are tailored to the anatomy to be imaged. Trajectories can
be adapted to deliver varying resolution over the image.
For the selection field, a topology creating a field-free line
instead of the FFP promises more efficient scanning [8].
More research is required to identify field configurations
optimal for specific applications.

Conclusion
This work for the first time reports on the properties of the
MPI system function. It shows that MPI signal encoding
using harmonic drive fields in combination with constant
selection field gradients provides a system function capa-
ble of representing highly resolved image information in
rather compact form. The close relation to Chebyshev pol-
ynomials of the second kind can be used to speed up sys-
tem function acquisition by partially modeling it, or to
reduce memory requirements by applying tailored spar-
sity transforms resulting in faster reconstruction times.

The system functions explored here are tied to specific
field configurations and scanning trajectories. Many other
configurations are feasible, providing the flexibility to tai-
lor system functions to satisfy certain experimental needs
regarding speed, resolution, and sensitivity.
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Appendix
A Mathematical Derivations for 1D Encoding
A.1 Signal Fourier Components Generated by a Periodic Drive Field
As shown in equation (3), the MPI signal is generated by 

the magnetization of particles following an externally 
applied (1D) field H. For spatial encoding, the field is split 

into a static selection field HS(x) which varies in space, 
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and a homogeneous drive field HD(t) with a temporal var-
iation, as shown in equation (6). The drive field is 

assumed to be periodic with frequency 0 = 2/T. Since 
the drive field causes a periodic change in magnetization, 
the acquired signal can be represented by a Fourier series

Using 0 = 2/T, the coefficients are defined as

To get rid of the time variable, parametrization is changed
to the drive field by taking the inverse function of HD(t),

t = t(HD), (37)

which may require piecewise definition if the inversion is
ambiguous. Ignoring this for the moment, equation (36)
formally becomes

where dH/dt = dHD/dt has been used.

In the following, (38) is evaluated making different
assumptions on the type of drive field, selection field, and
magnetization curve.

A.2 Fourier Components Generated by a Harmonic Drive Field
A harmonic drive field is easy to implement experimen-
tally. With amplitude A and frequency 0, one can write:

H(x, t) = HS(x) - HD(t) = HS(x) - A cos 0t. (39)

The cosine function has been chosen to arrive at a sine
function after taking the derivative. The superposition of
the two field components is shown in figure 12a. Time
can be expressed as

The two solutions have to be taken into account, and the
integral (38) has to be split accordingly:

Functions of the type sin(n arccos x) bear a close similarity
to Chebyshev polynomials of the second kind [9]:

Thus, (41) can be written as

where  has been used. If we
define

Superposition of Drive and Selection FieldsFigure 12
Superposition of Drive and Selection Fields. Superposi-
tion of selection and drive field at a spatial position x. The 
magnetization flips when the field H(x, t) = HS(x) - HD(t) 
crosses zero. The selection field offset HS(x) causes a time 
shift of the magnetization flip. Harmonic (a) and triangular (b) 
drive fields with amplitude A are displayed. Note that for 
mathematical convenience, the harmonic drive field ranges 
from -A to A, whereas the triangular field varies between 0 
and 2A.
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the integration limits can be set to infinity. This is an arti-
ficial construction, since the drive field HD cannot reach
infinite values, but it shows that (43) is a convolution:

Thus, for a harmonic drive field, the frequency compo-
nents form a set of Chebyshev polynomials, convolved
with the derivative of the magnetization curve. Assuming
a homogeneous drive field amplitude A, the spatial varia-
tion of the frequency components depends on the spatial
variation of the selection field HS(x).

Addition of a Constant Field Gradient for 1D Spatial Encoding
To make an explicit choice for the selection field, a con-
stant 1D field gradient G generating a field HS(x) = Gx is
introduced. Then the frequency components have the fol-
lowing spatial dependence:

Ideal Particles
For ideal particles, the magnetization curve corresponds
to the sign function, so that, introducing the saturation
magnetization M0, the magnetization becomes

The derivative is the delta distribution

M'(H) = M0 2 (H). (48)

The convolution integral (43) then reduces to

when a constant selection field gradient G has been
assumed. The Chebyshev polynomials form a complete
basis set and satisfy the orthogonality relation [9]

Therefore, the frequency components  meas-
ured by MPI can be used to represent any spatial particle
distribution in the range -A/G < x <A/G accessed by the
drive field.

A.3 Fourier Components Generated by a Triangular Drive Field
If a triangular drive field is used instead of the cosine field,
the superposition of selection and drive field becomes

H(x, t) = HS(x) - HD(t) = HS(x) - A tri 0t (51)

as shown in figure 12b. Note that in order to keep the
functional form simple in later calculations, tri 0t varies
between 0 and 2, i.e., the imaging range has been shifted
to 0 < x < 2A/G. Time can then be expressed as

and the resulting signal components are

Addition of a Constant Field Gradient for 1D Spatial Encoding
For a selection field HS(x) = Gx, the spatial dependence
becomes

Ideal Particles
For ideal particles, the integral (53) reduces to

when a constant selection field gradient is assumed.

A.4 Derivation of the Chebyshev Transform from the Sine Transform
A function f(x) that is defined on the interval [0, ] and is
zero at the edges of the interval, i.e., f(0) = f() = 0, can be
mirrored to form an odd function over [-, ] and thus
can be expanded into a sine series. The following relations
hold for the coefficients bk [13]:
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Using the substitution x  arccos(x), one can easily show
that the expansion changes to

or,

Since the range [0, ] is mapped to [-1, 1] by the coordi-
nate transform, there is no symmetry requirement for f(x).

B Mathematical Derivations for 2D/3D Encoding
Using a pair of detection coils in z direction, the acquired
signal is proportional to the time-variation of the z com-
ponent of the magnetization. According to (3),

i.e., the total differential has to be taken. The same holds
for receive coil pairs in x and y direction, so that (59) can
be written in vector form:

It should be noted that M/Hk generally is a function of
H(r, t), which can be chosen as the sum of a static selec-
tion field HS(r) and a homogeneous drive field HD(t).
Assuming a 3D drive field that has an overall periodicity
with cycle duration T = 2/0, all three spatial compo-
nents can be expanded into Fourier series, so that simi-
larly to (36)

The sum has been pulled out of the integral under the
assumption that all individual integrals exist.

B.1 1D Harmonic Drive Field in z Direction
If a periodic 1D drive field is chosen in z direction,

then only the time derivative of the Hz component is dif-
ferent from zero

The derivations for 1D encoding still hold for this situa-
tion. According to (38), the frequency components gener-
ated by a periodic drive field can be formally written as

If a harmonic drive field HD(t) = A cos 0t is used, the fre-
quency components are based on Chebyshev polynomi-
als, as derived in (45),

The convolution operation only involves the z compo-
nent of the field, which is why HSz appears in the argu-
ment of the Chebyshev function.

B.1.1 Ideal Particles
Assuming ideal particles, the magnetization follows the
external field as described by

The differentials for the three spatial components are:
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3D spatial encoding requires a 3D selection gradient. An
easy way to set up a 3D gradient is to use a Helmholtz pair
of coils supplied with opposite currents in the two coils,
also called the Maxwell coil [14]. Near the symmetry
center, the generated gradient field can be approximated
linearly:

Including the above homogeneous drive field along the z
direction, the total field becomes

The spatial dependence of the signal picked up in three
spatial directions (65) then becomes

where the convolution involves the z variable only.

C List of Symbols
A drive field amplitude

C(r) (true) particle concentration at position r

particle concentration convolved with M'(r),
reconstructed concentration

Fourier transform of particle concentration C(x)

c concentration vector

G magnetic field gradient

H magnetic field

HD(t) drive field (spatially homogeneous)

Hr(r) field produced by a receive coil

HS(r) selection field (static)

I0 unit current

kB Boltzmann constant

0 magnetic permeability of vacuum

m single particle magnetic moment

M0 saturation magnetization

M' derivative of the particle magnetization curve with

respect to the magnetic field: 

M(r, t) magnetization (depending on space and time)

Mx(r, t) magnetization component detected by x receive
coil

0 drive field frequency 0 = 2/T

r spatial coordinate vector

s(t) signal detected from a point-like sample

Sn signal spectrum derived from s(t) by discrete Fourier
transformation

r(r) receive coil sensitivity

S system function matrix

t time

T cycle duration of periodic drive field excitation

T temperature

Un(x) nth Chebyshev polynomial of the second kind
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