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Abstract

Background: Magnetic Resonance Imaging (MRI) methods were evaluated as a tool for the study
of experimental meningitis. The identification and characterisation of pathophysiological
parameters that vary during the course of the disease could be used as markers for future studies
of new treatment strategies.

Methods: Rats infected intracisternally with S. pneumoniae (n = 29) or saline (n = 13) were
randomized for imaging at 6, 12, 24, 30, 36, 42 or 48 hours after infection. TIW, T2W, quantitative
diffusion, and post contrast TV images were acquired at 4.7 T. Dynamic MRI (dMRI) was used to
evaluate blood-brain-barrier (BBB) permeability and to obtain a measure of cerebral and muscle
perfusion. Clinical- and motor scores, bacterial counts in CSF and blood, and WBC counts in CSF
were measured.

Results: MR images and dMRI revealed the development of a highly significant increase in BBB
permeability (P < 0.002) and ventricle size (P < 0.0001) among infected rats. Clinical disease
severity was closely related to ventricle expansion (P = 0.024).

Changes in brain water distribution, assessed by ADC, and categorization of brain 'perfusion' by
cortex ASl ;) were subject to increased inter-rat variation as the disease progressed, but without
overall differences compared to uninfected rats (P > 0.05). Areas of well-'perfused' muscle
decreased with the progression of infection indicative of septicaemia (P = 0.05).

Conclusion: The evolution of bacterial meningitis was successfully followed in-vivo with MRI.
Increasing BBB-breakdown and ventricle size was observed in rats with meningitis whereas changes
in brain water distribution were heterogeneous. MRI will be a valuable technique for future studies
aiming at evaluating or optimizing adjunctive treatments
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Background

The development of bacterial meningitis is associated
with multiple pathophysiological changes in brain home-
ostasis. Previously, this has been investigated experimen-
tally using different methodologies to determine the
kinetics of infection and inflammation; loss of blood-
brain-barrier and blood-labyrinth-barrier; damage to
brain cortex, hippocampus and white matter; develop-
ment of brain oedema; alterations in brain blood supply
and loss of cerebral vascular autoregulation [1-6]. How-
ever, experimental investigations of the interaction
between these pathophysiological measures have been
limited, probably due to complexity and incompatibility
of the methodologies applied. Recent bioluminescence
studies illustrate the apparent limitation of a single
method, where the optical technique is able to visualize
the dynamics of the progressing meningeal infection but
does not provide information relating to disease induced
physiological changes [7,8].

Whilst magnetic resonance imaging (MRI) has been
widely used for the study of experimental stroke [9], its
application has been limited in studies of experimental
meningitis [10-12], with reported studies primarily focus-
ing on visualization of meningeal enhancement and
hydrocephalus at low resolution. When compared to
experimental stroke studies that aim to produce single
lesions localised in predetermined anatomical sites, bacte-
rial meningitis results in diffuse and unpredictable
involvement of brain vasculature and parenchyma that is
often complicated by systemic infection [13].

In clinical neuroinfections, including meningitis, MRI has
primarily been used as a diagnostic tool to assess brain
pathology, intracranial complications and to evaluate
responsiveness to treatment [14,15], despite MRI's capa-
bility to provide quantifiable in vivo data on BBB function,
brain water distribution as well as indices of cerebral
blood supply [9].

Consequently, MRI methodology was used to acquire
multi-parametric in-vivo data to characterize temporal
changes during the course of experimental pneumococcal
meningitis in the rat model. MR measures of inflamma-
tion, vascular permeability, brain water, brain contrast
agent supply and pathoanatomy were obtained together
with clinical and paraclinical data, in both infected and
control animals. Identification of parameters that report
on the disease progress may be used in future studies to
assess and optimize therapeutic strategies.

Methods

The experimental protocol was approved by the Danish
Animal Inspectorate (Dyreforsoegstilsynet). Adult male
Wistar rats (280-300 g) were used for the experiments.
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Normal day/night cycles and free access to food and water
were provided.

Experimental study design

Data from 29 rats infected with pneumococci and 13 con-
trols inoculated with saline are presented. Four infected
and 2 control rats were randomized to each MR examina-
tion time point at 6, 12, 24, 30, 36, 42 or 48 hours follow-
ing inoculation. Immediately prior to MR investigation,
each rat was assessed clinically and neurologically (see
Table 1). After imaging, blood and CSF samples were
taken and brains prepared for histopathology (see below).
One infected and 1 control rat, assigned to MR imaging at
36 and 48 hours after inoculation, died in the scanner
prior to image acquisition. One infected rat (24 hours)
died immediately prior to contrast administration. Also,
contrast administration was not successful in two rats
assigned to MR imaging at 6 and 42 hours after infection.
The two dead infected rats were replaced from a separate
group that was not assigned to a specific time point a priori
(the group was incorporated due to the risk of sick rats
dying from anesthesia, n = 4. Spare controls were not
incorporated). Therefore, datasets from 5 infected rats
were included for the 24 hour time point, providing a
total of 29 datasets, whereas contrast administration data
was only obtained in 26 infected rats.

Infection

A Streptococcus pneumoniae type 3 strain (68034, Statens
Serum Institut (SSI), Copenhagen, Denmark) was used
for the experiments [4]. The infectious inoculum was
diluted in cold saline to a final concentration of 2-5 x 105
CFU/ml, as confirmed by quantitative cultures. On the
day of inoculation, rats were anaesthetized subcutane-
ously with 3 ml/kg weight of an aqueous solution (10 ml
sterile water) of Hypnorm® (2 ml)/Dormicum® (4 ml, 5
mg/ml)/Atropine (1.5 ml, 1 mg/ml) and injected intrac-
isternally with 30 pl of the bacterial suspension or saline
using a butterfly syringe. After MR investigation, cerebros-
pinal fluid (CSF) and blood was obtained by cisterna
magna- and tail-vein puncture from each animal. White
blood cell (WBC) counts in CSF were measured on an
automatic cell counter (Swelab Autocounter AC 920, Swe-
lab Instruments, Sweden) using 20 pl of CSF. Bacterial
counts in CSF were determined by plating 10-fold serial
dilutions of 20 ul CSF. Fifty ul of undiluted blood and 50
ul of a 20-fold dilution were plated. CSF from uninfected
controls was plated undiluted.

Assessment of clinical disease, motor performance and
disease severity (Table I)

Clinical appearance and motor-function scores were
determined prior to each scanning session. The scoring
method was based on previous reports and fitted to the
present model of disease [1,16,17], see Table 1. Overlap
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Table I: Guidelines for clinical disease score and motorical performance score.

Motor Function

Grade Movement Front legs

(Held by the tail, normally the front
paws grip the edge of i.e. a table)

Hindlegs

(Hind legs are placed below a table
edge. Normal reaction is an
immediate grip of the edge).

Climbing

(Plate with an upward slope of 30
degrees. The rat will normally crawl
upwards and grip the top edge).

0 Normal. Both legs grip the table edge and  Normal. Normal.
is cabaple of "walking along the
edge".
| Movements slower. Can still be  Both legs grips the edge. No Seeking to grip the table edge. Does nor crawl upwards but
activated. movement. spreads legs to hold on.
2 Prefers to stay in the same Only one leg grips the edge or Does not grip the edge. Slides down.
place. Nose is still active. Still no gripping.
climbing, Paws are seeking.
3 Developing problems with
controlling the limbs. Does not
move. Tilting. Front paws sliding.
4 Paresis of one or more
extremities.
Clinical Appearance
Grade Activity Eyes Fur
0 Normal activity. Normal eyes and surroundings.  Tended fur.

| Activity reduced, Turns easily if
laid on the back.

2 Slow turning if laid on the back.

Wet eyes.

Haemorrhage around eyes.
Scrathcing of eyes.

3 Does not turn around.

4 Lying on the side.

Pilo-erection.

Pilo-erection and untended fur.

between scores was evident since, for example, ambula-
tory activity would be affected by clinical disease.

MR imaging

MR imaging was performed using a Varian SISCO 4.7
Tesla imaging and spectroscopy system. Rats were posi-
tioned in a stereotactic device placed within a home-built
quadrature coil. The animals were kept warm using a ther-
mostatically controlled blanket with circulating warm
water (35°C). All rats underwent T1-weighted (T1W), T2-
weighted (T2W), quantitative diffusion, dynamic MRI
(dMRI) and post contrast TIW measurements whilst
anaesthetized as described above. To enable direct com-
parison of the imaging data, the same 12 contiguous coro-
nal slices were acquired for the TIW, T2W and diffusion
measurements. The acquisitions using a b-value = 0 pro-
vided the T2W images.

Three coronal MR images corresponding to the frontal,
mid-frontal and mid-brain (sections shown in Fig. 1) were
selected for dynamic MRI investigation, measurement of
ventricular-brain ratio (VBR) and calculation of ADC.

Figure |

Hydrocephalus in experimental meningitis. T2W
images showing a control rat (a) and two infected rats
imaged at 36 hours (b) and 42 hours (c) presenting significant
dilation of lateral and third ventricles (outlined in red) indica-
tive of hydrocephalus. Brain-ventricle ratio (VBR) in a, b and
c was 0.025, 0.076 and 0.085, respectively. The anatomical
positioning of the three slices (from left to right) was used to
analyze and measure VBR, ADC and dMRI.
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ADC - Apparent diffusion coefficient mapping
Quantitative diffusion measurements (single in-plane
direction, along the x-axis) were performed before the
administration of contrast agent (echo time (TE) = 80 ms,
repetition time (TR) = 2000 ms, matrix size (MA) = 128 x
128, field of view (FOV) = 40 x 40 mm, number of tran-
sients (NT) = 1 with b-values of 0, 185, 740, 1665 s/mm?2).
Regions of interest (ROI) were drawn by hand around cer-
ebral neo-cortex, excluding the meninges. A circular ROI
was used in the basal ganglia. ROI's were drawn inde-
pendently by two of the authors (HS and CTB) blinded to
all other data. ROI's were drawn and mean ADC's calcu-
lated using MATLAB®.

http://www.biomedcentral.com/1471-2342/8/1

Dynamic MRI - Loss of blood-brain-barrier (BBB) integrity
and contrast agent bolus induced changes in signal
intensity (ASly,,,s) in cerebral cortex and muscle (Fig. 2)
T1W images (TE = 11 ms, TR = 450 ms, SL = 1.8 mm, MA
=128 x 256, FOV = 40 mm x 40 mm, NT = 4, 12 contig-
uous slices) were acquired before and directly after acqui-
sition of AMRI. Dynamic MRI data was acquired using a
bolus administration of contrast agent (Magnevist, Scher-
ing AS) administered via a cannulated tail vein. The con-
trast agent, containing gadolinium diethylene triamine
pentaacetic acid (GdADTPA), was injected within 10 sec-
onds, at a dose of 0.5 mmol/kg. Bolus passage was fol-
lowed using a dMRI protocol where 100 sets of FLASH
T1W images (3 slices) were obtained with 10 images

(a) Non-enhancing Enhancing (C)
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Dynamic MRI data analysis. (a) Categorization of dMRI profiles: Typical data sets showing dynamic MRI signal intensity
profiles categorized into non-enhancing and enhancing parent classes and high, medium and low ASl ) sub classes. Enhancing
and non-enhancing pixels were identified according to whether curves returned to baseline (non- enhancmg) or increased
(enhancing) above baseline after the signal intensity reached its minimum value due to T2* losses. The extent of T2* induced signal
loss determined the pixel sub-class and was, subsequently, assigned a colour. (b) Automatic cortex region of interest
selection: Proton image (i) also shown with a brain mask (ii) calculated using thresholding and morphology. Morphological
erosion of the brain mask (blue) yielded a cortex mask (jii) enabled an automatic, unbiased selection of a cortex region of inter-
est (yellow). In addition, maps of the parent classes were obtained as shown in (iv) showing pixels that underwent contrast
enhancement (blue) and those that failed to enhance (orange). (c) Cortical regions of interest: Cortex brain masks show
the distribution of non-enhancing voxels with high (red), medium (orange) and low (yellow) ASl,q,, values. Green voxels,
dominant in outer cortex layers from rats with meningitis, show enhancing voxels indicative of blood brain barrier breakdown.
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acquired before and 90 images acquired after a single
injection of contrast agent (TE = 4 ms, TR = 11 ms, flip
angle (FL) = 7°, SL =1 mm, MA = 128 x 128, FOV = 40 x
40 mm, NT = 1).

Loss of BBB integrity — contrast agent bolus induced changes in signal
intensity (4S5 in cerebral cortex

An automated selection of cerebral cortex was performed
via standard image processing methods. Thresholding
and morphology were used to identify the full brain mask
including ventricles, basal ganglia and the base of the
brain. Morphological erosion and subsequent subtraction
then extracted a region of interest, which was then halved
to obtain the cortex used for analysis (see Fig. 2b). Data
and results from the cortex voxels are presented as the frac-
tion of the total number of voxels in each brain cortex
selection.

A preliminary analysis of the dynamic MRI data sets using
k-means clustering was performed to identify specific
enhancement patterns associated with normal and
infected animals. From this analysis, typical enhancement
profiles were identified which could be divided into tem-
poral regions. Consequently, data was divided into 2
major classes (non-enhancing and enhancing) and into 3
sub-classes of cortex ASl ) values: 1) high, 2) medium
and 3) low. Enhancing and non-enhancing voxels were
classified according to whether significant T1-weighted
enhancement occurred within the voxel following gado-
linium administration. Sub-classification of the 3 cortex
ASI(0145) Values was performed according to the extent of
T2* signal loss during the bolus passage. The T2* signal
loss is dependent on the concentration and distribution of
gadolinium within the tissue and will, consequently, be
dependent on a variety of physiological parameters
including perfusion, blood volume, flow and vascular
permeability and dimensions. Hence, whilst the extent of
signal loss only reflects tissue perfusion, the approach
does provide a semi-quantitative parameter that gives an
indication of how meningitis affects brain and muscle

physiology.

Muscle perfusion

A class of high muscle ASI ;s Was identified in intrinsic-
and extrinsic muscle in the rat head including jaw and
temporal muscle. This class was not observed within the
brain compartment and analysis was based on extra-cra-
nial pixels identified by visualizing the rat head subtract-
ing all other profiles thus clearly showing only the muscle
relief of the rat head. Consequently, the analysis did not
use ROI's but used extra-cranial pixels automatically
assigned to the class. A reduced number of voxels in this
cluster was interpreted as a reduction in muscular blood
supply. Data for the infected animals are presented as a
fraction of the corresponding control rat value at each

http://www.biomedcentral.com/1471-2342/8/1

time point since the study design was performed so that 2
meningitis rats were matched with one control. Failure to
acquire complete data from one 48 hour control rat meant
that correspondent data from 2 infected rats were unavail-
able.

Measurement of ventricle-brain ratio (Fig. 1)

Regions of interest around whole brain and lateral- and
third ventricles were drawn on T2W images. The ventricle-
brain ratio (VBR) was calculated as ventricular area
divided by total brain area for all three coronal slices
included. Regions of interest (ROI's) and measurements
were performed in MATLAB® and done blinded to all
other data (HS).

Histopathology

After MR investigation, rats were euthanized with pento-
barbital (200 mg/ml) and perfused with 1.5% parafor-
maldehyde (PFA) via the left ventricle of the heart. Brains
were harvested and stored for 14 days in 1.5% PFA and
frozen in n-hexane mixed and cooled with dry-ice. Two 45
pm thick coronal cryosections adjacent to each other, cor-
responding to the MR images obtained were stained with
Hematoxylin & Eosin (HE) in order to identify the nature
of pathological features apparent in the MR images.

Statistical analysis

Data are presented as mean +/- SEM. Comparisons
between controls and infected rats were performed by
two-way ANOVA and P < 0.05 was considered significant.

Due to the temporal development of the disease, two-way
ANOVA was performed in 3 intervals for each dataset; 6 to
48 hours, 6 to 30 hours and 36 to 48 hours after infection.

Statistical comparisons between infected and control ani-
mals were only performed between MRI-generated data-
sets. Since muscle ASl;, data were presented as a
fraction of results obtained in the correspondent control,
a linear regression analysis of this dataset was performed.

To identify relationships between clinical, paraclinical
and MRI data, Spearman Rank correlations were per-
formed among meningitis rats in the terminal disease
phase, 36 to 48 hours after infection. Since only a limited
number of comparisons were performed, a P-value below
0.05 was also considered significant for correlation analy-
sis.

Results

The evolution of pneumococcal meningitis in the
experimental model (Fig. 3 and 4)

As shown in Fig. 3, the increase in the paraclinical (CSF
and blood bacterial counts, CSF WBC) and MRI data (ven-
tricle-brain ratio (VBR), Apparent Diffusion Coefficient
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Figure 3

Development of pneumococcal meningitis. Graphs (a) to (I) show the development and changes in all included study
parameters from 6 to 48 hours after inoculation in infected (n = 29, open circles and solid median line) and control rats (n =
I3, black circles and dashed median line). Graph (a) and (b) show median and interquartile range of bacterial counts and WBC
counts. Graph (c) and (d) show the steady worsening of clinical disease and deteriorating motor performance among infected
animals. The ventricle-brain ratio (VBR) in (e) was subject to marked development among infected rats from 30 hours after
infection and all infected rats had increased VBR from 36 hours onwards (P < 0.0001). The number of enhancing cortical voxels
(f), indicative of BBB breakdown, was significantly increased among meningitis rats (6 to 48 hours, P = 0.0019). Graphs (g) and
(h) illustrate comparable ADC values in cortex and basal ganglia among infected rats with increased variation around the mean
values from the control group until 36 hours after infection (P > 0.05). Graph (i) shows decreased areas of high ASI )y muscle
(no. of voxels) in infected rats presented as a fraction of the value in corresponding control animals at each time point (P =
0.05). Graphs (j), (k) and (I) show the total number of voxels (enhancing + non-enhancing) in each ASl,q,, category (P > 0.05).
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Figure 4

Disease evolution visualized using MRI. Pre- and post
contrast TIW images (a, b), T2W (c) images together with
equivalent Histological slices (d) illustrate the evolution of
the disease. Postcontrast TIVW images were used to identify
meningeal enhancement. Meningeal enhancement could be
visually graded as (from left to right): 0) No enhancement, 1)
Thin brim of enhancement, 2) Thick brim of enhancement
and 3) Diffuse enhancement with unclear borders towards
outer cortex layer. T2WV images (c) clearly show increasing
ventricular size that was also apparent in the histological
slices.

(ADC) and dynamic MRI (dMRI)) was non-linear as the
disease progressed with time. The dual phase nature of the
increases suggested that this model of the disease could be
characterised by a Developing disease phase (up to and
including 30 hours after infection) followed by a Termi-
nal disease phase (from 36 to 48 hours).

Infection and inflammation (Fig. 3a and 3b)

All CSF samples obtained from control rats were sterile.
CSF and blood samples taken 6 to 48 hours after infection
delineated the progression of meningitis with increasing
CSF bacterial growth, secondary bacteremia and increas-
ing CSF inflammation. Both CSF WBC and CSF bacterial
counts peaked at 30 hours after infection. A plateau
relieved by a downward slope in CSF WBC and CSF bacte-
rial counts was observed in samples obtained from 30
hours onwards, declining until the final 48 hour study
point. Blood bacterial counts showed that secondary bac-
teremia was present in one rat from 12 hours after infec-
tion and 3/4 rats at 24, 30 and 36 hours and 4/4 rats at 42
and 48 hours.

Development in disease scores (Fig. 3¢ and 3d)

As expected, clinical disease severity increased in infected
animals as the disease progressed. Subsequent to increas-
ing clinical scores, motor performance, mainly ambula-

http://www.biomedcentral.com/1471-2342/8/1

tory activity, deteriorated. Increasing inter-rat variation in
both clinical and motor performance scores was observed
as the infection developed, being marked from 30 hours
onwards. In the terminal disease phase (36 to 48 hours)
no further change in the scores was observed in either clin-
ical or motor performance scores among infected rats.
Infected rats imaged at 36, 42 and 48 hours after infection
were comparable with respect to clinical disease and
motor performance.

Following intracisternal inoculation of saline, clinical dis-
ease was not observed among these control rats although
slight post-anaesthetic drowsiness (the Animal Inspector-
ate required animals to be transported to the MR centre
whilst anaesthetised) accounted for a score of 1 in one
control at 6 hours after inoculation.

Ventricle-brain ratio — expansion of the lateral and third ventricle (Fig.
I, 3e and 4)

The extent of ventricle expansion, determined as the ven-
tricle-brain ratio (VBR), was comparable between controls
and infected rats up to 30 hours post-infection at which
time point 3 out of 4 infected rats had increased VBR com-
pared to controls. When compared to controls, the VBR
was significantly increased among infected rats in the total
study period (6 to 48 hours, Two-way ANOVA, P <
0.0001) as well as the terminal phase of meningitis (36 to
48 hours, P < 0.0001), but not in the developing phase (6
to 30 hours, P = 0.40).

In the terminal disease phase, a significant association was
found between VBR, severity of clinical disease and motor
disability (Spearmann rank, rho = 0.62, P = 0.024 and rho
=0.57, P =0.04) whereas an inverse correlation was found
between increased VBR and the fraction of enhancing
brain cortex indicative of increased BBB permeability (rtho
= -0.73, P = 0.01) as well as the muscle perfusion ratio
(tho = -0.75, P = 0.019).

Loss of BBB integrity (Fig. 3f)

A measure of BBB integrity was obtained in 26 infected
and 13 control rats. Increased BBB permeability, meas-
ured as the fraction of cortex voxels enhancing due to
gadolinium leakage, was observed in one rat with menin-
gitis as early as 6 hours after infection. From 36 hours
onwards, all infected rats (n = 11) had increased BBB per-
meability when compared to corresponding controls (n =
5). The maximum fraction of enhancing voxels was found
from 30 to 42 hours after infection. Compared to the con-
trol group, the total fraction of enhancing brain voxels
was significantly increased during the full course of dis-
ease as well as in the terminal phase (6 to 48 hours, Two-
way ANOVA, P = 0.0019 and 36 to 48 hours, P = 0.019),
but did not quite reach significance during the developing
phase (6 to 30 hours, P = 0.06).
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Cerebral cortex ASl g values (Fig. 3j,3k and 3I)

AS(1,1us) Values were obtained from 26 infected and 13
control rats. The marked shift towards enhancing cortex
voxels, and thus increased BBB permeability, in rats with
meningitis, was also apparent in the analysis of cortex
ASI(0145) Values based on gadolinium bolus passage. In
infected rats, the selected cortex region (Fig. 2) shifted
from non-enhancing high-, medium- and low-ASI
values towards enhancing high-, medium-, and low-
ASI(,01s) cortical values. This shift towards increased BBB
permeability was significant in all 3 classes of ASI,q,,
values in comparison with the control groups (6 to 48
hours, Two-way ANOVA, high, P = 0.017, medium, P =
0.0018 and low, P = 0.012). However, the total fraction of
high-, medium- and low-AS ), cortical values (non-
enhancing + enhancing) did not change significantly
among infected rats in comparison with controls in either
the developmental stage (6 to 30 hours, Two-way
ANOVA, high, P = 0.97, medium, P = 0.99, and low, P =
0.98), terminal stage (36 to 48 hours, high, P = 0.78,
medium, P = 0.71, and low, P = 0.2) or full course of dis-
ease (6 to 48 hours, high, P = 0.8, medium, P = 0.76, and
low, P = 0.9). Within the control group, one 24 hour and
one 42 hour rat had markedly reduced ASl,q,,) values
comparable to the most affected infected rats. The number
of high ASI,q values in muscle were equally low in
these control rats.

Muscle ASl ) values (Fig. 3i)

Data from 24/29 infected rats was successfully analyzed.
The number of voxels representing high ASI,,,) muscle
values in infected rats, relative to corresponding controls
at each time point, showed a steady decline as infection
progressed (Linear regression analysis, borderline signifi-
cant, P = 0.05).

Apparent Diffusion Coefficient in cerebral cortex and basal ganglia
(Fig. 3g and 3h)

Apparent Diffusion Coefficient (ADC) values were
obtained in 28 infected rats and 13 controls. Increased
variability in ADC values in cerebral cortex and basal gan-
glia was observed among infected rats in comparison with
the highly uniform control group.

However, no significant differences in cortex ADC was
found comparing infected rats to controls in either devel-
oping or terminal disease stages (6 to 48 hours, Two-way
ANOVA, P=0.47; 6 to 30 hours, P =0.12; 36 to 48 hours,
P = 0.67). Also, basal ganglia ADC was not significantly
different between infected rats and controls (6 to 48
hours, P = 0.38; 6 to 30 hours, P = 0.062; 36 to 48 hours,
P =0.47).

http://www.biomedcentral.com/1471-2342/8/1

Brain injury (Fig. 5)

Focal injury to the brain parenchyma, other than hydro-
cephalus, was observed in four rats in the terminal stage
of meningitis (two rats after 36 hours, one rat after 42
hours and one rat after 48 hours). Injury presented as a
localized infarction, haemorrhage and abscess formation,
the latter being readily observable on T1W post contrast
images whereas the other lesions were smaller and less
obvious on MR images.

Discussion

Few studies have combined MRI and experimental pneu-
mococcal meningitis research [10]. The present study is
the first to use minimally invasive in-vivo MRI methods to
describe the development of brain pathoanatomy and
pathophysiology in a meningitis model. Within 24 hours
after infection, MRI was able to detect physiological
changes as the disease developed. In the terminal disease
phase, the most marked results obtained with MRI were
the significant expansion of ventricles and increased BBB
permeability. Cortex brain water distribution (ADC) also
changed but appeared to be subject to variation making
interpretation of the data less obvious. Regions of high
ASI(01ys) muscle values declined as infection progressed,
whereas the included classes of cortex ASI ) values
were not subject to significant changes.

Hydrocephalus is a well-known complication of bacterial
meningitis associated with poor outcome and brain injury
[18-20], and preliminary studies directed at reducing
intracranial pressure appear promising [21]. This study

Figure 5

Infection induced brain injury. Example of an infected rat
(48 hours) with a cortical abscess (white arrow), confirmed
histopathologically (a and b), apparent in post-contrast T | W-
and T2W images (c and d). The damaged area identified with
histology covered only |/3 of the area with contrast
enhancement.
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describes a marked expansion of ventricles that appears to
develop, in the terminal disease stage [10] in close associ-
ation with development of severe clinical disease and
deteriorating motor performance. This is in agreement
with recent findings of a close association between clinical
disease score and intracranial pressure [22].

A hallmark of bacterial meningitis is the loss of BBB integ-
rity allowing CSF leukocyte accumulation and diffusion of
water and plasma constituents into brain parenchyma. In
the present study, permeability of the vascular barrier
increased markedly as meningitis progressed. This was vis-
ualized by the accumulation of contrast agent surround-
ing brain cortex and in the ventricles (Fig. 4). The loss of
BBB integrity appeared to be an efficient disease biomar-
ker, making it possible to identify infected and control
animals at early time points after infection. In comparison
to methodology previously applied to investigate BBB
integrity such as Evans Blue staining [23], MRI enabled
quantification and visualization of areas with increased
BBB permeability that were confined to the outer layers of
cerebral cortex (see Fig. 2). The close association between
increased VBR and low fraction of enhancing cortex and
thus a low BBB permeability suggests that expansion of
the ventricles may influence cortex perfusion and via
physical compression alter, for example, interstitial vol-
ume. This may account for the observed changes in brain
water distribution and contrast agent kinetics even though
the present study failed to identify the association
between the two parameters.

Brain water content has in previous experimental menin-
gitis studies been shown to increase as a consequence of
the infectious and inflammatory response [24-26]. To
some extent, this is in accord with our measurements of
ADC, reflecting altered water distribution in the extracel-
lular compartment (vasogenic oedema [27]) in cerebral
cortex and basal ganglia in the majority of infected rats in
the developmental stage of meningitis. Normalisation, or
decrease, of ADC was observed in the terminal stage of
meningitis and could be related to the concomitant ven-
tricle expansion, as has previously been shown [28]. In the
early stages of meningitis, increased brain water content
may reflect increased blood volume. This would be in
agreement with previous findings of increased cerebral
blood flow in early meningitis and changes in ADC could
thus be due to alterations in blood flow and volume
[24,29]. This study has not investigated the distribution of
water between tissue and ventricles. Future studies meas-
uring ventricular size and ADC in combination with wet/
dry weight analysis would provide further mechanistic
insight into this characteristic of the disease.

Our measurement of ASI ;.. values due to contrast agent
induced T2* effects during the bolus passage in cerebral

http://www.biomedcentral.com/1471-2342/8/1

cortex was not subject to any significant overall changes
whereas the area of high ASI ;) muscle values declined
as infection progressed. The latter being in agreement with
studies of muscle perfusion in septicaemia showing areas
of well perfused muscle to decrease as septicaemia wors-
ens [30-32]. Previous studies have shown that cerebral
perfusion is compromised in bacterial meningitis as a
consequence of systemic disease, brain oedema, and
raised intracranial pressure [3,33,34]. Our experimental
data cannot support this as a general assumption, since we
found a large variation within ASI ) categories in the
terminal phase of meningitis where only seven of 15 rats
between 30 and 48 hours after infection presented an
increased fraction of low ASl,,, brain areas (Fig. 31).
Our ASl},)ys) results were limited to the cortex, a region
that has previously been shown experimentally to be
more well perfused, even in severely ill subjects [26], and
in patients to be subject to great variation and regional dif-
ferences [35]. It is important to state that the ASlj,q,)
measure of 'perfusion' reported here is dependent on a
number of other physiological factors and only partly on
perfusion.

Several limitations in the presented study should be con-
sidered. Firstly, biological variation in disease develop-
ment and the limited numbers of animals used makes
temporal comparison sub-optimal. Whilst the sacrifice of
rats at designated time points was performed to ensure
histopathological evaluation, this limited the study of
pathophysiological events preceding a poor outcome.
Imaging of rats on more than one occasion would have
significantly improved analysis of inter-relationships. Fur-
thermore, the study design is limited by the relatively
short time course of the disease and image acquisition
times. The dynamic MRI measurements provided only a
semi-quantitative measure that only partly reflects per-
fusion. Hence the crude categorization and dependency of
the ASIp,5) values on other parameters including blood
volume clearly indicates that future studies could be fur-
ther optimized. Quantitative perfusion measurements
could be performed following sequence optimisation to
acquire kinetic changes in relaxation times following
gadolinium administration. The gadolinium concentra-
tion could then be fitted to appropriate kinetic models to
obtain measurements of vascular permeability, extracellu-
lar volume and perfusion. Also, ADC measurements may
be improved by introducing measurement of water
motion in three or even more planes as compared to the
single plane performed here. In addition, the necessary
use of a total anaesthesia during scanning sessions affects
pathophysiological parameters and result in changes in
vasodilatation, blood pressure, blood supply or ventila-
tion [36] in a disease-dependent way.

Page 9 of 11

(page number not for citation purposes)



BMC Medical Imaging 2008, 8:1

Even though our study was performed using a dedicated
4.7 Tesla animal scanner, the resolution was not optimal
and small lesions in the cerebral cortex were not readily
recognized as areas with lesions until after the histopatho-
logical evaluation of the corresponding specimen. The
discrepancy between the extent of gadolinium distribu-
tion and histopathology shown in Fig. 5 is probably due
to standard histological methods being unable to identify
early neuronal loss since we have previously shown
abscesses to be surrounded by a bright halo of ballooning
or necrotic neurons [4]. The advantages of working at
higher magnetic field strengths enabling higher resolution
MRI images to be acquired and would be of significant
benefit when comparing MR and histological images.

Conclusion

The present study has shown the ability of MR methods to
monitor in-vivo changes in brain pathoanatomy and
pathophysiology as meningitis progresses. Measurement
of BBB breakdown and dilation of ventricles has identi-
fied parameters that are related to disease severity. MRI is
therefore of significant value for the development and
evaluation of new and successful therapeutic approaches.
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