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Abstract

the sharpness of the image details.

imaging rates.

compared to other approaches.

Background: Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the
spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances
in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of
more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the
biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time,
resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT
tomograms acquired at high speed is to compensate for the noise component in the images without compromising

Methods: In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a
noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance
of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different

Results: Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art
denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when

Conclusions: A new reconstruction method based on a noise-compensated homotopic modified James-Stein
non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT
image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve
the visualization and analysis of biological material using OCT.

Background

Optical coherence tomography (OCT) [1] is a minimally
invasive imaging technique, based on low-coherence
interferometry, that utilizes the spatial and temporal
coherence properties of optical waves backscattered from
biological tissue. Given the high level of resolution (close
to cellular) and non-invasiveness that can be achieved
using OCT, a very promising application is in the in-vivo
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imaging of the retina for studying physiological processes
as well as detecting retinal dystrophies in a clinical setting.
Recent advances in swept source OCT (SS-OCT) and
spectral domain OCT (SD-OCT) technology has resulted
in image acquisition rates of hundreds to millions of A-
scans per second [2,3]. The obvious advantages of the
high data acquisition rates are the ability to image larger
volumes of the imaged retina with sufficiently high pixel
density in 3D, to allow for simultaneous visualizationof
small and large scale morphological details in the retina,
to track fast physiological processes in biological tissue, as
well as to reduce the effect of motion artefacts resulting
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from natural motion in living biological tissue that can
affect the quality of the retinal imaging.

One of the key challenges to rapid retinal OCT acqui-
sitions is the increasing presence of noise as acquisition
speed increases. Since OCT is based on the detection
of partially coherent light, speckle noise is an inherent
component of any OCT tomogram [4]. The presence
of speckle results in a grainy appearance of the OCT
images, which can blur the boundaries between features
in the image with different structural or optical proper-
ties, or even obscure structural details of small size or
low reflectivity. Moreover, the presence of speckle can
affect negatively the performance of other image process-
ing algorithms such as feature segmentation [5] and pat-
tern recognition. Since speckle contains both information
about the structure and optical properties of the imaged
object and a noise component, different approaches were
utilized in the past to suppress speckle noise and improve
the image quality [4,6-8].

The presence of speckle noise is made worse by rapid
OCT acquisitions, since the OCT signal-to-noise ratio
(SNR) is directly proportional to the integration time of
the signal detection and thus inversely proportional to the
image acquisition rate [2,9,10], OCT imaging at the rate
of hundreds of kHz or tens of MHz results in a signif-
icant drop in the image SNR. Therefore, morphological
features in imaged biological tissue samples such as retinal
tissue layers, small blood vessels, lipid deposits, etc, can
be blurred or obscured by the presence of noise in unpro-
cessed OCT images. Therefore, speckle noise reduction
has drawn significant interest from the OCT community,
since it can improve the image SNR and contrast, provide
better visualization of morphological features in biologi-
cal tissue that could be of clinical diagnostic value, as well
as potentially improve the precision and overall perfor-
mance of the other image post-processing algorithms such
as layer segmentation, registration, cell detection, etc.

In general, these approached can be divided into two
categories: instrumentation and software. Given the com-
plexity, cost, and relatively limited gain in modifying the
instrumentation to reduce the presence of noise, much
attention has been focused on the software front. Previ-
ous studies on reducing speckle noise can be categorized
into two groups: multi-frame averaging and digital image
denoising approaches. The first strategy was mainly used
for post-processing, where a sequence of B-scan images
from a unique position are first captured, then registered
and averaged to get a high SNR image [11,12]. Recently,
a quantitative comparison of frame averaging approaches
has been performed by Eichel et al. [13]. Some SD-OCT
systems have a built-in registration and averaging system
to do this post-processing progress automatically, such as
Spectralis (Heidelberg Engineering, Heidelberg, Germany),
which can help improve the image SNR directly.
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Frame averaging has been proven to be simple and effec-
tive [11,14], however, it has two significant drawbacks:

1. Itresults in overall increased imaging time since
multiple B-scans must be acquired at the same
location,

2. Precise image registration needs to be applied prior
to averaging, which is time consuming and can lead
to blurring in the frame-averaged tomogram if done
incorrectly.

Another approach would be to use standard digital
image denoising technologies to suppress speckle noise.
An extensive comparison of standard digital denoising
methods has been performed by Ozcan et al. [15]. Clas-
sic denoising algorithms often assume a priori parametric
or non-parametric model for signal and noise, and oper-
ate on the reconstructed OCT tomogram in the spatial
domain from a single acquisition to suppress noise. Some
methods include adaptive non-linear filtering strate-
gies [6,16-19], or wavelet filtering strategies [20-22]. More
complicated wavelet thresholding denoising approaches
such as dual tree complex wavelet transformation [23] and
curvelets transformations [24], are able to generate sat-
isfactory results in terms of improved image SNR with
tolerable blurring. More recently, a weighted wavelet mul-
tiframe reconstruction algorithm was proposed [25] and
used for preprocessing OCT for retinal layer segmenta-
tion, and a denoising algorithm was introduced based on a
sparse representation dictionary approach [26,27]. How-
ever, all these denoising methods have the disadvantage
that they have been designed to work only in the spatial
domain, and therefore they do not take into account the
inherent characteristics of the measured spectral signal
from a SD-OCT system, which can lead to reduced per-
formance in maintaining signal fidelity. A very interesting
approach that was more recently taken was that is capa-
ble of not only reducing noise but also interpolate missing
data using sparse representation dictionaries constructed
from previously collected datasets [27].

In this paper, a noise-compensated homotopic modified
James-Stein non-local reconstruction (NCHR) framework
is introduced to improve the reconstruction of rapid reti-
nal OCT image acquisitions, that can result in SNR and
contrast-to-noise (CNR) improvements while preserving
the sharpness and visibility of structural details in the
reconstructed tomogram. The framework’s performance
was tested on a series of human retinal OCT tomograms
acquired in-vivo and was compared quantitatively with
the performance of some of the most advanced published
denoising approaches. It is important to note that, while
it builds upon a homotopic reconstruction framework as
with our previous work on sparse reconstruction [28],
there are significant differences between the proposed
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work and our previous work, and as such highlights the
main novel contributions of the proposed work:

1. The work presented in [28] is designed for
reconstructing OCT imagery from sparse spectral
data acquired using compressed sensing, where a
random sampling pattern is used to acquire
incomplete measurements in the spectral domain.
Since the acquisitions are made at regular scanning
speed, the individual sparse measurements that were
made have relatively higher SNR compared to that in
this proposed work. Therefore, the goal of [28] is to
reconstruct based on missing information, with the
aim to allow for high resolution OCT imagery with
limited camera pixels. However, the methodology in
the proposed work is designed for reconstructing
OCT imagery from rapidly acquired fully-sampled
spectral data, where the scan speed is high and thus
the amount of light captured at each scan is much
lower than that in the sparse measurements case.
Therefore, the goal of this work is to reconstruct
based on fully-sampled but low-SNR acquisitions,
with the aim to allow for rapid OCT imaging with
higher effective SNR.

2. While both employ a homotopic minimization
framework, the proposed work introduces a modified
James-Stein non-local regularization strategy, while a
conventional non-local regularization strategy is
employed in [28]. As such, the proposed work is
different and novel from an algorithmic standpoint
as well relative to [28].

3. The proposed work incorporates a noise
compensation strategy into the proposed homotopic
modified James-Stein non-local regularized
minimization framework to account for the noise
characteristics of the underlying system.

The rest of the paper is organized as follows. First,
the underlying methodology behind the proposed use
of a homotopic modified James-Stein non-local reg-
ularization (NCHR) reconstruction framework for the
reconstruction of rapid OCT tomograms is described in
Section “Methods” The experimental results using rapid
in-vivo acquisitions of the human retina are presented
and discussed in Section “Experiments”. Finally, conclu-
sion are drawn and future work is discussed in Section
“Conclusion”

Methods

The main principle behind the proposed approach is the
introduction of a modified James-Stein non-local regular-
ization strategy and noise compensation within a homo-
topic minimization framework.
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In SD-OCT, a broadband light source is split into refer-
ence and sample arms. The sample signal reflected back
from the sample is recombined with the reference signal
to produce broadband interference. The interference pat-
tern is captured by a linear array CCD camera (each pixel
capturing a different spectral frequency) and mapped into
k-space. By applying a FFT, the k-space data is converted
to the spatial domain, which allows for direct correlation
of the spectral frequencies and the spatial locations within
the imaged object where the optical imaging beam has
been back-scattered. Let S be the set of sets in a discrete
lattice L upon which an OCT image is defined in spatial
domain, and K be a set of sites defined in a discrete lattice
R upon which the same OCT image is defined in k-space
domain. Denoting the measurements in spatial domain
as f(x), and the measurements in k-space domain as
F(k), the relationship between f (x) and F (k) is formulated
as

fx) =FH{Fk) (1)

where F~! denotes the inverse Fourier operator, and F (k)
denotes measurements in k-space domain. However, solv-
ing the problem in this manner will take all the noise
sampled in the k-space domain back to the spatial domain,
thus causing detail blur as well as obscuring important
structures, which we can see in Figure 1(a)(d)(g). Here we
are promoting a different strategy for noise compensation
under the proposed NCHR framework.

f@) = lim arg min p(f (x),0) )
o—0 f(x)

such that
Bk it ‘f—"(k) —F(k)‘ <

F(k)+ 6 if F(k)—Fk) > § 3)
F(k)— 68 if F(k)—F(k) < —8

Fk) =

where p is a modified James-Stein non-local regulariza-
tion function, based on the work by James and Stein [29]
and Wu et al. [30], which can be defined as

p(f@),0) =Y D" wxio)- (Rx) — R(@)’

xeQ ieN(x)

(4)

where © denotes the set of all the pixels in the image,
N (x) stands for the neighborhood of the pixel x, and the
term w(x, i,0) is the modified James-Stein weight for the
i-th neighborhood pixel, and we define R(x) as an opera-
tor that extracts a patch of a predetermined size from an
image centered at x. The modified James-Stein weights,
w (%, i, 0) are computed based on the amount of similarity
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Figure 1 Reconstruction results of three different methods. 1(a), (b), (c) original images from 47 kHz, 188 kHz, and 376 kHz acquisitions; 1(d),
(e), (f) reconstructed images from 47 kHz, 188 kHz, and 376 kHz acquisitions using DT-CWT; 1(g), (h), (i) reconstructed images from 47 kHz, 188 kHz,
and 376 kHz acquisitions using BM3D; 1(j), (k), (1) reconstructed images from 47 kHz, 188 kHz, and 376 kHz acquisitions using NCHR. We can clearly
observe the increase in noise level associated with higher scanning speeds. Our proposed method (NCHR) is able to suppress most of the noise
while still preserving boundary and details, at the same time without losing any important structures. The green and blue line boxes in the original
normal speed image mark regions which we used for perform quantitative comparison of all the processed images by different algorithms.

376kHz

of spatial neighborhoods extracted by operators R(x) and
R(),

wx,i,0) =lax,i)—|1

(N =2)0? ex%@m—mw}
o7, |

(5)
where |N]| is the size of the neighborhood, and
| 1ifx #£i
“m”_{oﬁxzi (©)

Based on Eq. 3, the proposed iterative strategy con-
sists of two main steps (a detailed description is shown
in Algorithm 1): first, modified James-Stein homotopic
non-local regularization is enforced in the spatial domain,
and then noise compensation is enforced via NCHR in
the k-space domain to constrain the estimator based on
the given frequency-domain information. This two-step
process is repeated until convergence. To enforce mod-
ified James-Stein homotopic non-local regularization in
an efficient manner, we employed an efficient steepest
descent algorithm. Details regarding the implementation
of this efficient steepest descent algorithm can be found
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in [31,32]. The minimization formulation in Eq. 3 reflects
two objectives:

1. Adjacent patches in a neighborhood should be similar;

2. The reconstructed signal should be in reasonable
proximity to the measurements in the k-space
domain.

In NCHR (Eq. 3), any coefficients that deviate from the
original measurements beyond a certain tolerance § are
constrained back, coefficients that deviate from the orig-
inal measurements beyond § are constrained by lower
and upper tolerance bounds. Therefore, the choice of §
becomes important as it will affect the noise compensa-
tion capabilities of the proposed framework. For example,
choosing a § that is too low would result in poor noise-
compensation performance since the underlying noise
would then be treated as important image content. How-
ever, choosing a § that is too high would result in poor
image reconstruction quality as the important image con-
tent would be treated as noise. Therefore, here, to choose
the proper § for the reconstruction framework, the noise
floor of the imaging system operating at a particular speed
is determined empirically and used to set §. Different
approaches for choosing § to optimize noise compensa-
tion performance would be of interest as part of future
investigation.

Algorithm 1 Noise-compensated homotopic modified
James-Stein non-local regularization for OCT imagery
Require:
Noisy OCT data in the k-space domain, £ (k) = F(k)
initialize parameters: 01,0y, A, 3, €
Ensure:
Reconstructed OCT image in spatial domain, f(x)
i=1;
while (0; > op)and(i < n+1) do

filx) =F! ﬁ,»(k)] <« transform to spatial domain
ﬁ'(x) = arg min 1(fi(x),0;) < modified James-Stein
Sit)
homotopic NLR minimization
ﬁi(k) =TF { ﬁ(x)} < transform back to frequency
domain
enforce data fidelity (Eq. 3) in frequency domain
‘F,v(k)fl:"(k)Hz
Ao,
0i+1 = 0; % A < decrease approximation degree
er}d if .
Fiy1(k) = Fi(k)
i=i+1;
end while

Jo =FH{Euo)

if < ¢ then
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Figure 2 SNR of three different reconstruction methods as a
function of scan speed. The proposed NCHR method produces
reconstructed OCT data with higher SNR values for all scan speeds
when compared to the other two methods.

Experiments

Data description

To evaluate the effectiveness of the proposed method
we applied it to the reconstruction of a series of rapid
human retinal OCT cross-sectional image acquisitions
(Figure 1). The tomograms were acquired with a research
grade, high-speed, UHROCT system [33], operating at
1060 nm wavelength, that utilizes a super-luminescent
diode (A-c = 1020 nm, SA = 110 nm, P,,; = 10 mW), a
47 kHz InGaAs linear array, and a 1024 pixel camera (SUI,
Goodrich) interfaced with a high performance spectrom-
eter. The UHROCT system provides 6 pm resolution and
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Figure 3 CNR of three different reconstruction methods as a
function of speed. The proposed NCHR method produces
reconstructed OCT data with higher CNR values at all scan speeds
when compared to the other two methods.
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97 dB SNR for 1.5 mW of optical power incident on the
cornea. Cross-sectional retinal tomograms were acquired
from the foveal region of the retinas of healthy subjects
using an imaging procedure that was approved by the
University of Waterloo Office of Research Ethics. Writ-
ten informed consent for participation in the study was
obtained from the subjects. Each retinal tomogram was
comprised of 1000 A-scans, each of 512 pixels. The raw
OCT data was processed to generate images with SNR
and CNR corresponding to the original data acquisition
rate of 47 kHz, as well as corresponding to significantly
higher scanning rates of 188 kHz (= 4 x 47 kHz) and
376 kHz (= 8 x 47 kHz) (simulated). In the implemen-
tation of NCHR, the parameters were set to o7 = 0.3,
and A = 0.7, and a patch size of 9 x 9 and neighborhood
size of 21 x 21. The parameters used in the implementa-
tion of NCHR were found to provide strong results based
on extensive empirical testing.

Results and discussion

For comparison purposes, the proposed method (NCHR)
was compared with two state-of-art denoising algorithms,
DT-CWT [22] and BM3D [34], using the implementa-
tions provided by the authors of the respective works, with
the determined noise levels at the different scan speeds
used as inputs to the algorithms. To perform a compre-
hensive and systematic assessment of the reconstruction
performance of the different methods, the signal-to-noise
ratio (SNR) and the contrast-to-noise ratio (CNR) was
computed for reconstructed data. These metrics are the
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same as those used in [4,6,7,35], and can be defined as
follows:

SNR = 10log10 [max (AZ) /02] (7)

R
CNRzl ZM (8)

R =1 1/(7,2—{—%2

In the expression for SNR, A and o2 represent the max-
imum magnitude of signal and variance of background
noise region respectively. In terms of CNR, u; and sz
represent the mean and variance of the same background
region as in SNR formulation, p, and 0,2 represent the
mean and variance of the r# region of interest which
includes the homogeneous regions.

The SNR and CNR of the reconstructed OCT data sets
is shown in Figures 2 and 3, as a function of the imaging
speed. The proposed method resulted in significant per-
formance improvements over the other two approaches
of over 10 dB for normal speed to 5 dB for triple speed,
and is consistently relatively higher for even more higher
speed. Further more, the proposed method produced the
best CNR compared with DT-CWT and BM3D, across
all different speeds. It is important to note that beyond a
scan speed of 144 kHz, there are no obvious advantages
in terms of SNR of the proposed method when compared
to DT-CWT and BM3D. As such, the optimal scan speed
for gaining clear advantages from the proposed method is
144 kHz.

Figure 5.

2k
¥

%4" — ONL

Figure 4 UHROCT image of the human retina acquired near the fovea. NFL denotes nerve fiber layer; GCL denotes ganglion cell layer; IPL
denotes inner plexiform layer; INL denotes inner nuclear layer; OPL denotes outer plexiform layer; ONL denotes outer nuclear layer; ELM denotes
external limiting membrane; IS denotes inner segment; OS denotes outer segment of the photoreceptor layer; RPE denotes retinal pigmented
epithelium; C denotes choroid and S denotes sclera. Red line boxes mark regions of interest that were enlarged for more detail visual comparison in
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Figure 1(a) shows the original image acquired with the
maximum CCD data acquisition rate (47 kHz) image,
while Figure 1(d), (g) and (j) show the reconstructed
image using DT-CW T, BM3D, and our approach, respec-
tively. Figure 1(b) corresponds to an image from 188 kHz
acquisitions, which clearly shows a higher level of noise
compared to Figure 1(a). The reconstructed images using
NCHR are shown in Figure 1(e) and (f), separately.
We can see very clearly that the DT-CWT approach
(Figure 1(d)(e)(f)) leads to considerable blur, and the
structure and detail information are hard to see. BM3D
provides improved noise suppression compared to DT-
CWT, but still has noticeable amount noise residual in
the images (Figure 1(g)(h)(i)), which can blur impor-
tant structural features and characteristics of the imaged
retinal tissue such as the retinal layer. Finally, NCHR
(Figure 1(j)(k)(1)) results relatively low residual noise and
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sharper boundaries of the imaging features such as the
retinal layer boundaries, and does not appear to generate
any noticeable artifacts.

To quantify the performance of the tested algorithms,
five regions of interest ROI were identified in the retinal
tomogram of Figure 1 and marked with blue rectan-
gles (Figure 4) and image metrics were applied to them.
Those regions were chosen to contain different charac-
teristics, layers, blood vessels, etc. Results from the per-
formance of different algorithms are shown in different
rows (Figure 5), while five enlarged regions were shown
in different columns. Compared with the original noisy
image, we can observe that all three methods success-
fully suppressed noise. DT-CW'T tends to blur or smooth
the whole images, while BM3D and our algorithm can
improve the image contrast while still keep important
tissues and structures. Figure 5(a2)-Figure 5(d2) show a

JI‘

L nf |
|l,|'l[“’1

0 R "IJ"'“‘l
(c2)

I\#‘

! _1.4(/1

(d1) (d2)

Figure 5 Magnified view of the red rectangular regions shown in Figure 4, and processed results of three different algorithms (DT-CWT,
BM3D, Proposed). 5(a1), (a2), (a3), (a4) magnified regions from original image; 5(b1), (b2), (b3), (b4) magnified regions from reconstructed
image using DT-CWT; 5(c1), (c2), (€3), (c4) magnified regions from reconstructed image using BM3D; 5(d1), (d2), (d3), (d4) magnified regions
from reconstructed image using NCHR; It can be observed that the proposed method (NCHR) results in improved important tissue contrast for the
boundaries (see red arrows) and important features (see blue arrows), which can be very helpful for clinical and research purposes.
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region of the original image Figure 4 marked with red
box #2, containing sections of the NFL, GCL and IPL layer.
The enlarged region from the original image(a2) shows
the presence of the speckle reduces the overall image qual-
ity and blurs the boundary and obscure the important fea-
tures as pointed out by red and blue arrows, respectively.
DT-CWT blurs the whole image, BM3D and our pro-
posed method give us better contrast, while our algorithm
is also able to sharpen the important features and bound-
ary compared with BM3D. Figure 5(a3)-Figure 5(d3) is a
region of the original marked with red box #3, containing
sections of the RPE layer(thick black line) and the IS/OS
portion of the photoreceptor layer. Clearly our proposed
method gives the sharpest boundary, as pointed by the
red arrow, which has great potential in post-processing
steps. For images Figure 5(a4)-Figure 5(d4), it is an impor-
tant cell tissue in the human retina and it’s very important
to distinguish the unique shape(marked with the blue
arrow). DT-CWT suppressed the noise but also blurred
the whole image, BM3D is able to suppress some noise,
our algorithm is able to suppress noise while preserving
the RPE layer. To summarize, our proposed method has
the advantage of suppressed noise while preserving the
sharpness and visibility of structural details in the retinal
tomograms. In addition, compared to other state-of-art
algorithms, our novel approach results in a significant
improvement in image contrast.

Therefore, based on both quantitative SNR and CNR
analysis as well as qualitative visual assessment, NCHR
provided improved reconstruction performance and
visual quality compared to all other algorithms. Finally, we
performed a performance analysis between the modified
James-Stein homotopic non-local regularization strategy
and the conventional homotopic non-local regularization
strategy within the context of the proposed reconstruc-
tion framework, and found that the modified James-Stein
homotopic non-local regularization strategy to achieve an
average SNR and CNR increase of 1.3 dB and 0.02 dB,
respectively, across scan speeds compared to the conven-
tional homotopic non-local regularization strategy.

Conclusion

A novel noise-compensation approach based on homo-
topic, non-local regularization was presented for recon-
structing images from rapid retinal OCT acquisitions.
Results show that the proposed approach is able to achieve
a significantly higher signal-to-noise ratio and better
visual quality under all different scan speeds, thus illus-
trating the potential for obtaining high resolution images
with lower equipment costs and reduced imaging times.
Future work involves the study of the proposed approach
for rapid corneal OCT acquisitions, which entails the
investigation of different parameters and potentially mod-
ifications to the optimization framework.
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