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Abstract

Background: Activity of disease in patients with multiple sclerosis (MS) is monitored by detecting and delineating
hyper-intense lesions on MRI scans. The Minimum Area Contour Change (MACC) algorithm has been created with
two main goals: a) to improve inter-operator agreement on outlining regions of interest (ROIs) and b) to
automatically propagate longitudinal ROIs from the baseline scan to a follow-up scan.

Methods: The MACC algorithm first identifies an outer bound for the solution path, forms a high number of
iso-contour curves based on equally spaced contour values, and then selects the best contour value to outline the
lesion. The MACC software was tested on a set of 17 FLAIR MRI images evaluated by a pair of human experts and a
longitudinal dataset of 12 pairs of T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images that had lesion
analysis ROIs drawn by a single expert operator.

Results: In the tests where two human experts evaluated the same MRI images, the MACC program demonstrated
that it could markedly reduce inter-operator outline error. In the longitudinal part of the study, the MACC program
created ROIs on follow-up scans that were in close agreement to the original expert’s ROIs. Finally, in a post-hoc
analysis of 424 follow-up scans 91% of propagated MACC were accepted by an expert and only 9% of the final
accepted ROIS had to be created or edited by the expert.

Conclusion: When used with an expert operator's verification of automatically created ROIs, MACC can be used to
improve inter- operator agreement and decrease analysis time, which should improve data collected and analyzed
in multicenter clinical trials.
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Background
Large agreement differences often exist between opera-
tors drawing regions of interest (ROIs) of hyperintense
lesions on Fluid Attenuated Inversion Recovery (FLAIR)
MRI brain scans of patients with multiple sclerosis (MS)
despite training and standards designed to minimize inter-
operator variability [1-4]. These differences can be broken
down into two categories: a) lesion outline disagreement
and b) lesion detection disagreement. Differences in how
operators outline a lesion account for the majority of dif-
ference (measured by volume) between operators. The
size of this outline error (OE) between human experts
increases with the level of lesion burden revealed in the
patient’s scan. Detection error (DE), the total area of
ROIs chosen by one operator that do not match with
another operator's ROIs, remains comparatively com-
pensated with increasing lesion burden of the under-
lying scan. For MRI scans revealing high lesion burden,
OE between raters’ ROIs can be much greater than DE
[5]. ROIs can be visually very similar, yet have large area
differences. As an example, if a 10x10 pixel ROI in-
creased by a half pixel in each direction, the new area
would be 21% larger.
Operators often analyze a sequential set of scans that

were collected over the course of months or years. Finding
a lesion at a given location on a baseline scan is a good in-
dication that a lesion can be found (detected) at the same
location on a follow-up scan, though the size and shape
(outline) may vary. For this reason, each image must be an-
alyzed and have ROIs drawn for each time point. Despite
the similarities between the placements of ROIs between
scans of the same individual, there is not a significant time
saving in a subsequent lesion analysis compared to the
baseline.
A commonly used tool for outlining lesions in MS is

the Java Image Manipulation (JIM) software package (ver-
sion 4.0, Xynapse System, Leichester, UK), which allows
an operator to delineate a lesion by clicking near the edge
of the lesion. JIM calculates a contour value by choosing
the image intensity value associated with the steepest gra-
dient value in a small surrounding neighborhood of the
cursor. Using the determined contour value, the program
outlines the lesion with an iso-contour curve. This appli-
cation works well and is an indication that a large percent-
age of lesion delineations can be represented by a single
contour value. There have been many other applications
designed to aid operator efficiency and precision in ROI
creation such as live wire, active contours, and snakes
[6-8]. Lesion growth methods [9,10] have been previously
applied to images to delineate MS lesions in order to re-
duce inter-rater variability. Furthermore, curve evolution
has been applied post lesion detection [11]. Re-contouring
methods have been applied to auto-propagate an ROI
from one phase of a 4D CT image to another [12,13]. The
intended application of these tools is to increase operator
productivity and reduce inter-operator variability.
Against this background, the Minimum Area Contour

Change (MACC) algorithm has been created with two
main goals: a) to improve inter-operator agreement on
outlining ROIs and b) to automatically propagate longi-
tudinal ROIs from a baseline scan to a follow-up scan (i.e.
by “propagate” we mean MACC is run using the baseline
ROI set and a follow-up image, to produce ROIs for the
follow-up image that have been re-contoured to account
for changes in a lesion’s size and shape). For each lesion
that has a previously drawn ROI, the MACC software se-
lects a unique/best contour value, and uses the iso-contour
curve as the lesion outline. The use of MACC virtually as-
sures an improvement in inter-operator agreement because
MACC will settle on a unique ROI from a large range of in-
put ROIs. What is less clear is whether the MACC ROIs
are an acceptable replacement for the original ROIs. There-
fore, in the present study we test whether MACC meets
the following four requirements:

1) Differences between ROIs drawn by MACC and the
operators’ original ROIs should be similar to
(or smaller than) the differences found between two
operators;

2) ROIs outlined by two operators and reanalyzed by
MACC should be significantly closer to each other
than the comparison between the operators’ original
hand-drawn ROIs;

3) If MACC is used to propagate (which includes
re-contouring) ROIs to a follow-up image (from the
ROIs of the previous scan), differences between
ROIs drawn by MACC and the operator’s
hand-drawn ROIs (of the current scan) should be
similar to differences found between two operators;

4) MACC should process a set of ROIs fast enough to
be routinely used by an operator.

Methods
MACC algorithm
The MACC algorithm uses an image and an input set of
ROIs to create an output set of ROIs, in the same loca-
tions as the input ROIs, but outlined according to the
rules of the algorithm. For a given ROI (each individual 2d
outline of a single lesion, from a single rater), Figure 1, the
algorithm restricts the analysis to a rectangular region
around the ROI, Figure 2. Then a large set of iso-contours
is created for the restricted image, Figure 3. The program
searches for the best contour to be the new outline of the
lesion, and applies restrictions to candidate contours. For
instance, a contour curve cannot be chosen as the final
ROI if it: 1) meets the edge of the bounding box, 2) in-
creases or decreases the ROI size from the original by
more than a user specified ratio, or 3) does not intersect



Figure 1 Flair MRI, with a hand-drawn ROI of a lesion shown in
lower left.

Figure 3 Iso-contour curves at 50 evenly spaced values. MACC
searches for a pair of neighboring contours that are close together.
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with the original ROI. The square root of the total area for
all compliant contours at a given contour level, SqrtArea
(Ln), is calculated, where Ln represents the nth evenly
spaced level value (starting from low to high). The level, Ln,
that minimizes (SqrtArea(Ln)–SqrtArea(Ln+1)) is chosen by
the program, Figure 4, and the compliant contours at this
level are used as the output “MACC” ROI, Figure 5. Using
the square root of the contours’ areas was motivated by the
desire to find the minimum overall “radial” distance be-
tween neighboring ROIs, as would be the case if the set of
Figure 2 Close-up view of the hand-drawn ROI from Figure 1;
the entire image displayed represents the rectangular region
to bound the MACC ROI.
conforming ROIs were concentric circles. A center could
use another metric in place of the radial metric we present
provided adequate testing was performed to ensure that it
conforms well to how their raters contour lesions. The
value should be unique and be efficiently calculated for
contours of any shape.
Figure 4 Graph of contour index number (from low to high)
and SqrtArea(Ln)-SqrtArea(Ln + 1). The arrow passes through the
minimum of the graph, and points to the value of n that is selected
by the algorithm.



Figure 5 Close-up view of the MACC ROI for lesion displayed in
Figures 1 and 2.
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Around a hyper-intense lesion, higher valued contours
will be nested within lower valued contours. For a given
value, there may be more than one contour, which could
be due to high intensity “peaks” found within a lesion.
To have multiple ROIs formed from one input ROI is
acceptable by the algorithm. Conversely, multiple input
ROIs may lead to the same MACC ROI, which would
typically fully contain those input ROIs.
Since MACC is dependent on the topography of the

image around a lesion, it is possible for it to fail in find-
ing any conforming ROIs. In this case, for purposes of
evaluating calculations, the MACC program does not re-
turn an ROI. However, our implementation has two other
“Failed” ROI modes: one, which returns the original ROI;
the other returns a rectangular ROI roughly double the
size of the original ROI, which enables quick identification
by the operator.
Algorithm parameters
The area of a MACC ROI was restricted to being greater
than 1/3 and less than three times the input ROI. This
and selecting how to handle a “Failed” ROI are the only
external “tuning” parameters. Remaining parameters are
seldom changed and are internal. The MACC algorithm
was run with an ROI bounding window that was twice
the width and height of the smallest rectangle containing
the ROI (with a minimum of 4 mm and maximum of
10 mm padding of the original ROI in any direction). The
MACC program selected the best contour curve originat-
ing from 250 equally spaced contour values between the
median and maximum pixel intensity values within the
bounding rectangle.
Datasets
Human operators
To assess the amount by which MACC can improve
agreement between operators (requirement 2), a pair of
raters (both neurologists) was used who had spent ap-
proximately three months in our lab and had over 3 years’
experience in lesion analyses at the time they performed
their analyses. No effort was made to optimize inter-rater
reliability between the pair of raters, and they should be
considered independent experts. The ROIs from the pair
of raters were also used in testing whether MACC ROIs
were in close agreement with the original raters’ ROIs (re-
quirement 1). To assess whether MACC produces ROIs
that are in close agreement with the original raters' ROIs
on both the baseline and follow-up scans (requirements 1
and 3), a single rater was used who has several years of ex-
perience in our imaging laboratory. All raters were physi-
cians with several years of experience working with MS
scans. ROIs were drawn using JIM software and created
2D outlines of lesions on each scan slice.

Participants
Two separate datasets were used in testing the algo-
rithm. In Dataset 1, a set of 17 FLAIR MRI images ful-
filling the criteria for clinically definite MS were used as
in Di Perri et al. [14] and Wack et al. [5], which allowed
comparison between a pair of human operators’ ROIs
with and without the use of MACC (requirements 1 and 2).
In Dataset 2, a set of 12 baseline and matching 12 month
follow-up FLAIR MRI scans of relapsing-remitting MS pa-
tients were used to assess the agreement between MACC
ROIs and the original raters' ROIs (requirements 1 and 3).
To avoid any potential bias in data analysis, we placed im-
ages in a halfway space during co-registration. Briefly, we
used FSL’s FLIRT linear registration tool (http://www.fmrib.
ox.ac.uk/) [15,16] to estimate a forward transform from
baseline to follow-up, and a backward transform from
follow-up to baseline. We then took the halfway transforms
for each, and used these to re-sample their respective im-
ages into a common space. Participants gave informed con-
sent and study protocols were approved by the University
at Buffalo’s Health Sciences Institutional Review Board.

Scanning protocol
All scans were acquired on a GE 3 T Signa Excite HD
12.0 Twin Speed 8-channel scanner (General Electric, GE,
Milwaukee, WI). The scanner has a maximum slew rate of
150 T/m/s and maximum gradient amplitude of 50 mT/m
in each orthogonal plane. A multi-channel Head and Neck
(HDNV) coil was used for all sequence acquisitions. Scan
voxel dimensions were .86 × .86 × 2.92 mm and .94 × .94 ×
3.0 mm for the first and second sets of scans, respectively.
Scans were collected in a clinical setting with a standar-
dized protocol including double-echo proton density (PDw)

http://www.fmrib.ox.ac.uk/
http://www.fmrib.ox.ac.uk/
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and T2-weighted (T2w) spin echo (SE), a FLAIR, and T1-
weighted (T1w) SE pre- and post-contrast injection, all pre-
scribed axial with subcallosal alignment. Acquisition pa-
rameters were defined as follows: for the PD-T2 repetition
time (TR) = 3000 ms, first/second Echo time (TE) = 12/
95 ms, FA = 90°, echo train length (ETL) = 14, Bandwidth
(BW) = 20.83 Hz/pix, field of view (FOV) = 240 mm, acqui-
sition matrix = 256 × 256, phase field of view (pFOV) = 0.75
for an in plane resolution of 0.94 × 0.94 mm, slice thick-
ness = 3 mm for 46 slices, NEX= 1 for an acquisition
time of 4:31 min; for the FLAIR TR= 8500 ms, TE =
120 ms, FA = 90°, BW= 27.78 Hz/pix, FOV= 240 mm for
the first dataset and FOV= 220 mm for the second one, ac-
quisition matrix = 256 × 256, pFOV= 0.75 for an in plane
resolution of respectively 0.94 × 0.94 mm and 0.83 × 0.83,
slice thickness respectively of 3 mm and 2.92, for 46 slices,
NEX= 1 for an acquisition time of 4:16 min; for the T1w
SE pre- and post-contrast injection TR = 550 ms, TE =
12 ms, FA = 60°, FOV= 240 mm, acquisition matrix =
256 × 256, pFOV= 0.75 for an in plane resolution of 0.94 ×
0.94 mm, slice thickness = 3 mm for 46 slices, NEX= 1 for
an acquisition time of 3:47 min.

Assessment measures
In addition to the Similarity Index (SI) we use the mea-
sures of Detection Error (DE) and Outline Error Rate
(OER) [5], to compare ROIs. We define a connected re-
gion as a single region (blob) contained in the union of
raters’ ROIs. We label each connected region, as CR1,
CR2, or CR12 based on whether it is composed of ROIs
solely from rater 1, rater 2, or from both raters 1 and 2, re-
spectively. For a given connected region, cr, we denote the
ROIs created by rater 1 contained within cr as R1(cr).
Similarly, R2(cr) represents the ROIs created by rater 2
within cr, and hence R1(cr) ∪ R2(cr) = cr. DE is the total
area of ROIs of lesions that were marked by either, but
only one, of the raters, and is sensitive to whether raters
mark the same hyper-intense regions as a lesion:

DE ¼ ∑
cr ∊ CR1 or CR2

crj j;

where |cr| represents the area of the connected region, cr;
and cr∊CR1 or CR2 represents the set of connected regions
that can be labeled as either CR1 or CR2.
OE is the difference in area between the union and inter-

section of ROIs of lesions that were marked by both raters,
and is sensitive to how well two raters agree in determi-
ning and marking the edge of a lesion:

OE ¼∑cr∈CR12 cr −j jR1 crð Þ∩R2 crð Þj jð Þ

where |R1(cr) ∩ R2(cr)| represent the area of the intersec-
tion of rater 1 and rater 2’s ROIs within cr, respectively.
We calculate the mean total area (MTA) of the two
raters ROIs as: MTA = (1/2)(|R1| + |R2|), where |R1| and
|R2| represent the total area of rater 1 and rater 2’s
ROIs, respectively.
Similarity Index (SI) is commonly defined as 2 times the

area of the intersection of the raters’ ROIs, divided by sum
of the area of the raters ROIs [17]. Defining OER ¼ OE

MTA, SI
is related to DE, OER, and MTA as (see appendix):

SI R1;R2ð Þ ¼ 1−
1
2

� �
OER‐

1
2

� �
DE
MTA

We expect OER to be very sensitive to the changes in
ROIs in the presented experiments because MACC at-
tempts to improve agreement between ROI sets through
the re-contouring (outlining) of ROIs. We do not expect
much change in DE, since MACC attempts to create an
ROI at each location given by the input ROI. Hence, given
SI’s dependence on both DE and OER, we expect SI to be
less sensitive than OER to measuring the changes in ROIs
made by MACC.

We will also plot the histogram of R2 crð Þ −j jR1 crð Þj jð Þ
crj j for all

connected regions that can be labeled as CR12 regions,
which we term the Outline Error Distribution (OED)
graph. If MACC draws the majority of ROIs as either
larger or smaller than the original set of ROIs, the OED
graph will be biased to one side of 0. If operators draw
most ROIs identically, there will be a large peak at 0.

Software assessment
We use r1 and r2 to denote the two raters used on Dataset
1, and r to denote the single rater used on Dataset 2. We
use im to denote an image from Dataset 1 (single time
point, with 17 participants), and imb, and imf to denote the
baseline and follow-up images from Dataset 2. The ROIs
created by rater r on the baseline image (imb) from Dataset
2 (with 12 participants) are denoted as ROI(r, imb). ROIs
created by MACC on the follow-up image (imf) are denoted
as MACC(ROI(r, imb), imf). Other combinations will follow
this same convention. We evaluate our software based on
four assessments that correspond to our four requirements.

1) MACC ROIs are acceptable replacements for the
original ROIs:

Requirement: Differences between ROIs drawn by
MACC and the operators’ original ROIs should be
similar to (or smaller than) the differences found
between two operators.
Assessment: Measure the agreement using DE, OER,
and SI for all three raters between their original ROI
and the MACC ROI created on the same image.
That is, using Dataset 1 compare ROI(r1, im) vs.
MACC(ROI(r1, im), im), and ROI(r2, im) vs. MACC
(ROI(r2, im), im). With Dataset 2 compare the
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agreement between: ROI(r, imb) vs. MACC(ROI
(r, imb), imb). All comparisons using MACC will then be
compared with the agreement seen between two expert
raters without MACC: ROI(r1, im) vs. ROI(r2, im).We
will show the OED graph for the comparisons and
inspect for signs of asymmetry or bias.

2) MACC improves inter-rater agreement:
Requirement: ROIs outlined by two operators and
reanalyzed by MACC should be significantly closer
to each other than the comparison between the
operator’s original hand-drawn ROIs.
Assessment: Using Dataset 1, measure the agreement
using DE, OER, and SI between MACC(ROI(r1, im),
im) and MACC(ROI(r2, im), im), and compare with
the agreement seen between the two expert raters
without MACC: ROI(r1, im) vs ROI(r2, im). Create,
inspect, and compare the outline error distribution
graph for both agreement comparisons.

3) MACC can propagate ROIs to follow-up images:
Requirement: If MACC is used to create ROIs for a
follow-up image (from the ROIs of the previous scan),
differences between ROIs re-contoured by MACC
(on the follow-up image) and the operator’s
hand-drawn ROIs (on the follow-up image) should be
similar to differences found between the two operators.
Assessment: Using Dataset 2, measure the
agreement using DE, OER, and SI between ROI
(r, imf) and MACC(ROI(r, imb), imf). Additionally,
measure the agreement between MACC(ROI
(r, imf), imf) and MACC(ROI(r, imb), imf).

4) MACC executes quickly:
Requirement: MACC should process a set of ROIs
fast enough to be routinely used by an operator.
Assessment: Measure the mean time for MACC to
process the ROIs in assessment 3.
Post-hoc analysis
We examined the ROI files from 424 follow-up FLAIR
scans of patients with MS, where the original follow-up
ROI file was created by MACC, and subsequently edited
by an expert. We then determined the percentage of ROIs
that MACC produced that were found acceptable without
adjustment, and the percentage of the final number of
ROIs that were either edited or created by the expert.
ble 1 Cross-sectional Data, Dataset 1

I sets Detection erro

I(r1, im) v. ROI(r2, im) 747

I(r1, im) v. MACC(ROI(r1, im), im) 1

I(r2, im) v. MACC(ROI(r2, im), im) 1

ACC(ROI(r1, im), im) v. MACC( ROI(r2, im), im) 714
Results
Assessment 1: MACC ROIs are acceptable replacements
for the original ROIs
For Dataset 1, 1710 ROIs were drawn by either rater
from 17 scans with mean LV of 15,084 mm3. Values for
DE, OER, and SI for the two raters’ original ROIs and
the corresponding MACC ROIs from Dataset 1 (Rows 2
and 3 of Table 1) were better than those found between
two raters without MACC (Row 1, Table 1). Mean lesion
volumes (LVs) measured from the rater and MACC
processed ROIs were 8443 mm3 and 7817 mm3, respec-
tively, for Dataset 2. ROIs from this dataset using the
single rater were also processed with MACC and com-
pared—using DE, OER, and SI—to the originals, see Row
1, Table 2. In total 1135 2D ROIs were evaluated from 12
scans. The program failed in creating a MACC contour for
two ROIs that were both smaller than 3.0 mm2 in size. The
average DE, OER, and SI values between the original and
MACC ROIs were in each case better than the correspond-
ing values found in the comparison between the two raters
(Row 1, Table 1). The distribution of sizes between ROIs
drawn by the operator and the MACC program were
evenly distributed as shown by the OED graph, Figure 6;
coefficient of variation (COV) of MTA between the original
and MACC ROIs was COV= .10. The Pearson correlation
of the individual ROI areas of the original and MACC pro-
grams = .99 ( p < < .0001 ).

Assessment 2: MACC improves inter-rater agreement
Using Dataset 1, ROIs from two raters were processed
through MACC together with the original image (same
for both raters), on which the ROIs were created. 579
ROIs had a detection error with the other operator. The
median ROI size having a detection error was 12 mm2.
DE, OER, and SI for both pre- and post-MACC processing
are reported in Table 1. While DE remained roughly the
same, both OER and SI, measured between the two raters
ROIs (Row 4 vs. Row1, Table 1), improved for all 17 ROI
sets after MACC processing. OER was approximately
cut in half, with min/mean/max decreases of .05/.19/.35,
(p < .0001, paired t-test). SI increased on average 12.5%,
with min/mean/max increases of .01/.08/.16, (p < .0001,
paired t-test).
The OED graph between the operators’ original ROIs

and the MACC ROIs is shown in Figure 7. MACC has over
r (mm2) Outline error rate Similarity index

.41 .64

.40 .80

.39 .80

.21 .72



Table 2 Longitudinal Data, Dataset 2

ROI sets Detection error (mm2) Outline error rate Similarity index

MACC(ROI(r, imb), imb) v. ROI(r, imb) ~0 (.24) .37 .82

MACC(ROI(r, imb), imf) v. ROI(r, imf) 473 .41 .63

MACC(ROI(r, imb), imf) v. MACC(ROI(r, imf), imf) 450 .18 .74
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six times the number of ROIs between raters with near zero
differences, and has fewer ROIs with size mismatches ex-
cept for extreme ROI size differences, where MACC and
the original ROIs are roughly evenly distributed.
Assessment 3: MACC can propagate ROIs to
follow-up images
An example of MACC used for lesion propagation is given
in Figure 8. Mean LV as measured by the unprocessed
raters’ ROIs for the follow-up scans in Dataset 2 was
5822 mm3. Mean values for DE, OER and SI between
MACC(ROI(r, imb), imf) and ROI(r, imf) are also given in
Table 2. The average OER was .41 (Row 2, Table 2) and
was the same as between two raters (Row 1, Table 1).
Average DE was better (37% lower) than between two
raters, however, SI was similar, .63 vs. .64.
When MACC ROIs originating from the baseline image

but processed with the follow-up image were compared to
MACC processed ROIs created from the rater’s original
ROIs from follow-up image, SI improved for all 12 compar-
isons (Row 3, Table 2), compared to using the original rater
ROIs from the follow-up scan (p < .0001, paired t-test).
That is SI was better between MACC(ROI(r, imb), imf) and
−1 −0.8 −0.6 −0.4 −0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Rater 

N
or

m
al

iz
ed

 li
ke

lih
oo

d

Figure 6 The Outline Error Distribution graph comparing ROI(r, imb) a
original ROIs are larger than the MACC ROIs, and positive values indicate th
MACC(ROI(r, imf), imf ) than between MACC(ROI(r, imb),
imf) and ROI(r, imf). The min/mean/max improvement of
SI were 05/.11/.26, respectively. Likewise, OER im-
proved for all scans with min/mean/max decreases
of .08/.23/.41 (p < .0001, paired t-test).

Assessment 4: MACC executes quickly
Average running time for the MACC software on the 34
trials performed in Assessment 3 was 23.5 seconds. For
this calculation the program did not make use of paralle-
lization, and was performed on a Dell (Round Rock, TX)
R610 server.

Assessment post-hoc: MACC propagated ROIs are
predominately acceptable
For an illustration of MACCs real-world utility, an ana-
lysis was performed of ROIs drawn on 424 follow-up
FLAIR MRI scans of patients with MS where MACC
was used to create initial sets of ROIs that were subse-
quently edited so every ROI was compliant with our
center’s standards. In total, the MACC program gener-
ated 56,656 ROIs, of which 91% needed no modification
by the trained operator to meet our center’s standards.
0 0.2 0.4 0.6 0.8 1
difference

nd MACC (ROI(r, imb), imb). Negative abscissa values indicate the
e opposite.



Figure 7 The graph with the sharp peak is the Outline Error Distribution (OED) graph of MACC (ROI(r1, im), im) and MACC (ROI(r2, im),
im), and indicates that most compared ROIs have near zero area disagreement. The flatter graph is the Outline Error OED graph of ROI
(r1, im) and ROI(r2, im), and indicates a broad range of area disagreement between corresponding ROIs. Negative abscissa values indicate that
operator 1’s ROIs are larger than operator 2’s ROIs, and positive values indicate the opposite.
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The final edited set consisted of 56,615 ROIs, of which
only 9% were drawn by the operator. The plan for this
analysis was made after the final ROI sets were created,
and hence the operator was not biased to accept MACC
ROIs, nor was the operator acting under time constraints.
Discussion
Incorporating MACC in the analysis of MS lesions not
only achieves the more important goal of improving inter-
operator agreement; but can also provide a significant time
savings for the neuroimager. The above assessments of
MACC established that: 1) MACC-created ROI’s can be
used in place of ROIs drawn by an expert operator; 2)
inter-operator agreement between MACC-created ROIs is
improved compared to the original ROIs; 3) significant
time savings can be achieved for the lesion analysis of fol-
low up scans; 4) MACC can be routinely used by any MS
MRI reading center since the computational burden is
low. Our post-hoc analysis on 424 follow-up scans showed
that the vast majority of MACC propagated ROIs (91%)
need no further expert adjustment.
MACC ROIs are acceptable replacements for the
original ROIs
ROIs that have been created by MACC are in close agree-
ment with ROIs that were used as input. The comparison
measures between the rater-drawn ROIs and the output
MACC ROIs, when the rater ROIs are used as input, were
better for all three raters (Rows 2 and 3, Table 1; Row 1,
Table 2), than between the two expert raters’ original ROIs
(Row 1, Table 1). DE in these comparisons is the total size
of the rater-drawn ROIs for which MACC failed to pro-
duce an ROI, and is near zero. Given the dependence SI
has on OER and DE, SI = 1-1/2*OER–½* DE/MTA, the
high values for SI are largely attributable to the low DE.
A crucial point is that for MACC ROIs to be useful as a

replacement for the original ROIs, the differences in ROIs
(un-processed and MACC-processed ROIs) should be less
than the expected difference between (un-processed) ROIs
drawn by two experts. This is confirmed by OER being
slightly higher (worse) for the two expert raters. Further-
more, the OED graph between the rater-drawn ROIs and
the MACC ROIs is roughly symmetric and does not reveal
an obvious bias (Figure 6). This demonstrates that MACC
does not favor the creation of ROIs that are in general
either larger or smaller than the expert rater’s ROIs used
as input. We conclude that MACC ROIs are an acceptable
replacement for the operators’ ROIs.

MACC improves inter-operator agreement
The use of MACC improves inter-operator agreement
when applied to the ROIs from two different raters on the
same scans (Assessment 2). MACC in this assessment re-
duced average OER from .41 to .21 (p < .0001, paired t-test),
resulting in the average SI value increasing from .64 to .72,
(p < .0001, paired t-test). MACC improved operator agree-
ment for all 17 ROI sets in the assessment. If raters already



Figure 8 The left images are from a FLAIR MRI baseline scan of a patient with MS, and the right images are the matching planes at
3 month follow-up. MACC was used to propagate ROIs drawn of the lesions on the baseline scan to automatically create the ROIs on the
follow-up scan. Since MACC creates the lesion ROIs based on the underlying image topography (in this case the follow-up scan), the
automatically drawn follow-up ROIs accurately reflect both the changes in the size and shape of the lesion.
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had perfect agreement, then MACC obviously would not
be able to provide any improvement. However, we note that
the closer the ROIs of two raters are to each other, the
higher the likelihood that MACC will settle on the identical
ROI (note the spike of 0 disagreements in Figure 7 after
using MACC). Therefore, we consider it a strength of our
study that we did not make an attempt to calibrate the
raters prior to the study, and is an indication that MACC
could likely be utilized effectively in multi-center studies to
reduce rater variability.

MACC can propagate ROIs to follow-up images
Rater-drawn ROIs on the follow-up image are in close
agreement with MACC ROIs created from the baseline
ROIs together with the follow up image as input, MACC
(ROI(r, imb), imf). That is, the baseline ROIs are re-
contoured to account for the changes in the size and
shape of the lesions seen on the follow-up image. DE
was roughly half that observed between the two inde-
pendent raters, while OER was the same (.41). The lower
value for DE reflects the advantage a single rater has in
agreeing on the identification of lesions on baseline and
follow-up scans compared to two independent raters
identifying the same region as a lesion on the same scan.
We believe the most relevant value for this comparison
is OER, which indicated an equal performance.
Significantly closer agreement is seen between MACC

(ROI(r, imb), imf) and MACC(ROI(r, imf), imf) rather
than ROI(r, imf). The OER value for this new compari-
son (Row 3, Table 2) is lower (.18) and results in the
higher SI value of .74 because DE remains essentially un-
changed. To put the low value of OER = .18 into per-
spective, if DE equaled zero then SI would equal .91.
That DE is lower (better) for the follow-up image using

one-rater than between the two-raters on a single image is
not a relevant comparison. DE for the follow-up image
mainly represents the area of new or disappearing lesions
and is driven by pathology, whereas DE between the two
raters represents their disagreement on which regions to
mark as lesion. The important point about DE for the lon-
gitudinal study is that after editing the follow-up image,
DE should be near zero. In fact, DE can be made to equal
0 by only adding or deleting ROIs (i.e., without having to
change the shapes of any MACC propagated ROIs). To
have DE equal zero after editing, is only to say that the
same rater would choose all of the same regions to mark
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as lesion whether starting from propagated MACC ROIs,
or starting from scratch. In practice, of course, operators
should add, delete, and modify ROIs until they are 100%
satisfied. Our argument above is to indicate that propa-
gated MACC ROIs provide a good starting point for doing
so. MACC was designed to be a simple and effective tool
that improves rater agreement through the improvement
of OE and the propagation of lesions. MACC does not de-
lineate new lesions, nor does it automatically remove the
ROIs of those that have disappeared. This aspect is left en-
tirely to the expert human rater, or could be addressed
with other software designed to improve DE.

MACC executes quickly
The improved inter-rater reproducibility should be worth
MACC’s short execution time, which averaged less than
24 seconds, and time needed to inspect the final ROIs.
Our post-hoc analysis on a high number of scans indicates
that the vast majorities of MACC ROIs are of use to an
expert, and only a small percentage of ROIs needed to be
created or edited for the final analysis, hence providing a
time savings.

Choice of MACC parameters
An advantage of MACC is that it has few “tuning” pa-
rameters, and in fact only two settings are typically used,
and these will only affect a small percentage of ROIs. The
first parameter only bounds the size of an output ROI
based on the size of the input ROI. In the presented as-
sessments, MACC ROIs were constrained to be at least
1/3 and less than three times the input ROI. These values
were chosen prior to testing as reasonable bounds that
would handle the vast majority of lesions. The second par-
ameter determines the output ROI if MACC does not find
a solution otherwise. In these instances, MACC is designed
to “fail” in one of three modes by returning: no ROI, the
original ROI, or an easily identifiable rectangular ROI.
This study chose to have MACC “fail” by producing no
ROI, to enable some study calculations. The major pre-
condition for MACC to be used to propagate ROIs be-
tween longitudinal scans is that the scans must be
aligned with each other.
For an analysis center to improve inter-operator repro-

ducibility, which is a concern in large studies requiring
multiple operators, we recommend using MACC as a
final pass after operators have created their ROIs. In this
case, we suggest that MACC be run so the area of the
output ROI is at least within the bounds of 1/2 and two
times the original; if MACC fails to find a solution, the
original ROI should be returned. The MACC ROIs should
be inspected by the operator to ensure conformance with
the center’s standards, but used in this way very few ROIs
should require any modifications. If MACC is used to
propagate ROIs to a follow-up scan we recommend that
MACC in this case be run in the failure mode that pro-
duces rectangular ROIs to mark locations where the soft-
ware was unable to find a proper MACC ROI. Afterwards,
an operator can quickly identify, examine, and fix the rec-
tangular ROI. Locations where a lesion disappeared will
often be locations where MACC is unable to produce a
conforming ROI and will be marked with a rectangle.
An imaging center could use another metric in place

of the radial metric we presented, provided adequate
testing was performed to ensure that it conforms well to
how their raters contour lesions. We choose this “radial”
metric for its simplicity. The contour curves are evenly
spaced based on intensity values, but are physically closer
on the image as the image gradient increases. Varying the
parameters for MACC will have only small effects, which
we believe is desirable. The main purpose in bounding the
extent to which a lesion can grow or shrink is to provide
an easy way to avoid consideration of other strong image
gradients such as the outline of the brain, or a small single
spot of the lesion that has very high intensity. We did not
try to optimize parameters such as the parameter limiting
the extent to which the lesion can grow or shrink. That
is, the results that we present represent what one could
reasonably expect by implementing the MACC method
themselves; the results are not from specialized modifica-
tion of tuning parameters for our particular set of data.
An investigator implementing the MACC method may
want to test other bounds, perhaps including additional
minimum or maximum sizes, etc.

Comparison automated lesion segmentation algorithms
We classify MACC as a lesion “propagation” tool, not an
automated lesion segmentation algorithms (ALSAs) [18],
and in this capacity it is only useful for determining ROIs
for follow-up images in a longitudinal study. In contrast
ALSAs are usually but not always tested on single time
point images [19]. ALSAs, in essence, attempt to solve a
harder problem: detect and outline lesions, without know-
ledge of where previous lesions were marked for that pa-
tient. But, if one considers a longitudinal study with four
time points, then on ¾ of the scans traditional ALSAs are
not using the very valuable information of how previous
scans were marked. Region growing (RG) and fuzzy con-
nectivity (FC) methods [20-22] have perhaps the closest
similarity to MACC software, in that they can start with a
selection of lesion and non-lesion voxels. The resulting
segmentation of a lesion using FC or RG will be the col-
lection of voxels that best optimizes the algorithms selec-
tion criteria. As with ALSAs methods, these have been
evaluated in terms of SI values or calculation of total le-
sion volume, on datasets from the individual researcher’s
labs. This makes comparison between methods difficult.
One difficulty is that agreement in terms of SI is better on
high lesion load images than on low lesion load images
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[5,23-25]. This is a benefit in breaking SI into OER and
DE as SI = 1-.5 OER-.5 (DE/MTA), noting that MTA is
an assessment of lesion load. Many ALSA methods have
reported similar performance in terms of SI than we ob-
served between our two raters [23-25]. Note that, since
MACC provides contours that delineate lesions with
sub-voxel accuracy, SI, OER, and DE for MACC are
calculated at a sub-voxel level. In contrast, ALSAs
typically work at a voxel level. For lesions with a high
contrast between edge and background tissue, MACC, FC,
and RG methods should have similar results. We view
MACC as complementary to ALSAs, and speculate it could
be applied as a post-processing step to give better agree-
ment with a human rater whose ROIs were also processed
by MACC.
Finally in our post-hoc assessment performed on 424

follow-up FLAIR images and over 55,000 ROIs, MACC
was able to produce 91% of the required ROIs such that
they did not need further editing to meet our centers
stringent standards. Having to only draw/edit only ~9%
of the ROIs represents a significant time savings for an
analysis center.
Assessment indices
We included SI as a performance index for MACC be-
cause SI is commonly used for comparing image masks.
We prefer DE and OER values because they are descrip-
tive of how MACC improves agreement and are more
resistant to the influence of the underlying ROI set’s
MTA. MACC was designed to improve OER and not DE.
SI reflects the proportional size difference between ROI
sets. That MACC performs well as measured by SI reflects
the overall dominance of OER over DE in the calculation
of SI, especially for ROI sets with high MTA. Despite the
low impact DE may have on SI, DE is an important meas-
ure. For instance, DE will be much more sensitive than SI
for determining whether raters agree in marking the same
small lesions, which is important if an outcome for an
analysis is the number of “new” lesions.
Uses of MACC
We have demonstrated using MACC to both improve
inter-operator agreement in creating ROIs, and for effi-
ciency when ROIs on follow-up scans are required.
Furthermore, the concept of MACC can be readily
used in other medical imaging scenarios. MACC was
shown to improve measurement reliability and repro-
ducibility of cerebral spinal fluid flow [26]. MACC
could potentially be used for evaluation of “blackholes”
[27], however because of the greatly reduced number
of contours per image, the time savings would not be
significant.
Conclusion
We have introduced a method that is both well-defined
and easy to implement, which drastically reduces the error
associated with multiple operators performing lesion ana-
lysis. The method also provides significant time savings
for operators creating ROIs on follow up scans, assuming
the spatial registration of MR images. The method is fast
and enables better precision in subsequent steps of lesion
activity analysis.

Appendix
Letting I be the intersection of both raters’ ROIs, U be
the union of the rater ROIs, SI can be expressed as SI =
2I / (U + I). By adding and subtracting U to the numer-
ator, SI = ((U + I)-(U-I)) / U + I. Since DE +OE =U-I (i.e.,
total error equals the total difference between ROIs),
MTA =½( U + I), and OER =OE/MTA:

SI R1;R2ð Þ ¼ 1−
U‐I
Uþ I

¼ 1−
OEþDE
2MTA

¼ 1−
1
2

� �
OER‐

1
2

� �
DE

MTA

We represent OE/MTA as a single variable (OER)
since we expect OE to increase as MTA increases. That
is, the total outline error area (OE) of two sets of ROIs
increases with the number and sizes of ROIs in the sets.
We do not necessarily believe that raters will misidentify
a region as being a lesion is strongly dependent on the
lesion load, hence the contribution to SI from DE is -
.5 (DE/MTA). For this reason, we expect higher SI between
raters of algorithms evaluated on higher lesion load images,
as is consistently observed.
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