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Abstract

Background: Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on
subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified
statistically based on 3D surface models and derived numerical shape descriptors.

Methods: Skin injury surface characteristics are simulated with plasticine. Six injury classes – abrasions, incised
wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18
instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with
a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance
distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are
used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise
ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of
heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of
RDA (regularized discriminant analysis) are optimized yielding a best performance with λ= 0.99 and γ = 0.001.

Results: Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0 for all six
categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold.
Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%.

Conclusions: Digitized 3D surface shape data can be used to automatically classify idealized shape models of
simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic
points or convex hulls with subsequent reduction of dimensionality while maximizing SNR seem to work well for the
data at hand, as predictive RDA results in CRR of 97,22%. Objective basis for discrimination of non-overlapping
hypotheses or categories are a major issue in medicolegal skin injury analysis and that is where this method appears
to be strong. Technical surface quality is important in that adding noise clearly degrades CRR.

Trial registration: This study does not cover the results of a controlled health care intervention as only plasticine was
used. Thus, there was no trial registration.

Background
A core task in forensic medicine is the classification of skin
injuries such as illustrated in the bottom row of Figure 1.
Injuries are classified to estimate their possible sequence
over time, possible causes, possible age or other details
of the events that may have accompanied their genesis.
Absence of an injury’s membership to a particular diag-
nostic group can be relevant. Also, a ’specificity paradox’
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[1] must be avoided – just because a particular injury can
be examined from very close up and high quality photo
prints are available its cause does not necessarily become
established in a more precise way.
Forensic experts’ opinions regarding classification of

injuries have to be considered state of the art but may dif-
fer according to individually variable experience or skill,
they may be unstable over time or even inadequately
stable (injury re-interpretation may have to achieve dif-
ferent results if new information becomes available, for
example). Experts’ opinions appear to depend on external
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Figure 1 Plasticine models versus real injuries. Surface geometry of injured skin surface (bottom image row) was modelled using plasticine
blocks that were then digitized (top image row). Abrasions during sliding or impacting on rough surface such as roads or walls typically result in an
irregularly shaped injury surface (A2) that can contain groves as well as rounded indented or protruding features, often with apparently poor
delineation. These are simulated by applying similar rough flat surface structures to plasticine (A1). Such injuries typically occur in road traffic
accidents, building or reconstruction sites or falls. Gunshot entry wounds (B2) are geometrically simulated with circular penetrating defects to a
plasticine block (B1). Patterned lacerations (C2) typically combine delineated edgy boundaries and indented or protruding skin flaps where straight
edges might still be identifiable. Using a longitudinal sharp-edged object, similar wound features result on plasticine (C1). Such injuries are found
after using sharply edged objects such as for example metal covers found in buildings or ventilation funnels, on trains or other vehicles. Strangulation
marks (D2) contain a longitudinal groove whose ’valley’ surface may or may not exhibit a finely striated substructure. This can reflect indentation of
the skin by a rope-like structure such as textured strangulation marks simulated in our plasticine model (D1). Bar length is 1 cm in all images.

conditions such as lighting [2], or they may be influ-
enced by strategic considerations. Furthermore, admitting
that a particular weapon-injury comparison is not conclu-
sive at all may be hard for some experts. All of that still
has to be accepted as essential part of forensic medicine:
interpretation of injuries can be conflicting, particularly
where an objective basis for finding conclusions is absent.
It is not the duty of experts to necessarily agree in any
such an opinion but there can be significant suffering
and cost as result. These concerns are neither new nor
solved [3].
What is clear is that it is the duty of forensic and

medico-legal experts alike to provide an objective basis
for later deliberations wherever possible. With a properly
set up automated system, an objective basis for wound
categorization can be explained, documented, shown,
modified, and new additional information may alter, con-
firm or leave open any present or absent membership
of a questioned injury to a particular diagnostic group.
Such a tool may be of useful assistance to the prac-
tice of forensic medicine. Capturing by 2D or 3D optical
techniques and manual reconstructive juxtapositioning of
relevant two-dimensional projection or cross section of

weapon and skin injury – assuming a non-deformed skin
imprint of the injury causing tool or weapon – for the
medico-legal illustration of match plausibility was first
published byWerkgartner (1935) [4] and later also applied
to 3D documentation using photogrammetric or other
3D capturing methods [5-10]. However, matching elasti-
cally deformed tool or weapon imprints on basis of shape
encoding and subsequent statistical methods has not
been established for medico-legal investigation of injuries
so far.
Objective classification methods using machine based

shape recognition nowadays can yield good results in a
number of fields [11], including the discrimination of bio-
logic shapes and the discrimination of shapes typically
compared in forensic sciences. In a study published 1991,
automated segmentation based on curvature yielded four
facial feature sets; depending on which set was used a
recognition rate of 70.8% to 100.0% resulted [12]. A more
recent technique for face recognition was designed to
be more robust with respect to factors such as aging
or illumination; the authors used weighted local binary
patterns and achieved a best correct recognition rate of
97% [13]. Details of technical coding and comparison
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play a major role in the success of classification meth-
ods in that rigid representations including eigenvalues
or eigenspectra [14] were found to be outperformed by
histogram based techniques with a best classification suc-
cess rate of 98.75 to 100% [15]. In one study, tool marks
produced with a range of screwdrivers and pliers at dif-
ferent angles on various relatively hard media (lead, brass,
steel, aluminum) could be automatically recognized with
error rates between 0.00% and 49.5% [16]. The fractal
nature of biologic shapes can be exploited for injured
regions and their bounding transition areas to surround-
ing unharmed skin: they contain relevant geometry on
multiple scale levels. In [17] dermatologists show an auto-
matic method for discrimination between melanoma and
less dangerous melanocytic nevi using two shape descrip-
tors: lacunarity, a measure for distribution and size of
holes, and fractal dimension, an irregularity measure of
the shape obtained by transforming the color hue of 2D
wound images into a third Cartesian coordinate. – In
another promising approach, shape outlines or silhouette
contours were analyzed by deriving skeleton-like informa-
tion by submitting the contours to the Poisson equation;
error rates were reported to range from 1.8 to 2.1% on 2D
data [18]; the method was later also applied to medical 3D
data [19]. Even at molecular levels, accurate identification
of protein binding sites is reported to succed in 85% using
shape descriptors [20]. Forensic evidence such as cartridge
case shear marks yielded a bootstrapped 0% error rate
in a descriptive study performing PCA on unpartitioned
data [21].
However, practice of forensic medicine does not incor-

porate these techniques for routine work. Generally, the
absence of widely available high-resolution digital 3D skin
surface data and ill-defined specifics of shape encoding
for that particular application domain appear to present
a major obstacle in using shape analysis for forensic
medicine. Histogram or distribution frequency based 3D
descriptors have attracted considerable attention [22] so
we combined a number of appealing concepts includ-
ing multi scale encoding, spherical frequencies, histogram
based techniques, autocorrelation and Fourier transforms
in this study.
Skin injuries exhibit shape and surface characteristics

that ideally can be recognized as specific for a particu-
lar injury cause. Our study uses plasticine block based
representative simulations of skin injury surfaces that rep-
resent ideal examples for injury caused by a range of
agents (Figure 1; explained in more detail below). We
use these to answer two questions: Can shape descrip-
tors that are automatically derived from 3D surface data
be used to reliably discriminate classes of simulated
skin injuries defined by respective common injury cause?
What is the performance of such shape descriptors in an
idealized setting?

Methods
Skin injury simulation using prototypes
Typical versus atypical injuries
Forensic pathology is a field that routinely employs prag-
matic injury categories such as blunt force, sharp force,
firearm injury or patterned injuries, to name a few. From
that we then assume a clear distinction in the appear-
ance of typical injuries whose distinct appearance, ide-
ally, leads to their cause. In this study we model skin
injuries using plasticine. We propose that these are suf-
ficiently representative of typical, so-called textbook or
ideally shaped injuries; four comparisons of typical real
skin injuries and our plasticine correlates are shown in
Figure 1. We resort to plasticine because that material
preserves shape. Persistent surface qualities are required
to arrive at a useful training set of injury shape based
3D mesh objects. Conversely, real skin injuries are not
useful to start method development: in vivo, real skin
injuries will heal, whereas post mortem, injury shape tends
to deteriorate, dry out and decay. In both instances,
characteristic features are lost over hours and days fol-
lowing injury [23-25]. And we need considerable time:
parameters of the 3D scanner and statistical evaluation
all require repeated evaluation at first. That is why we
use plasticine blocks to iteratively improve 3D scan-
ner setup, 3D mesh object consistency and optimal data
quality.
It is a fact that tools or instruments can cause injury

shapes that might appear to be hard or impossible to eval-
uate as to their true cause. Depending on their true cause
they might be termed atypical injuries, or the tools or
items used to produce them exhibit strong similarities
themselves. As an example, onemight argue that a superfi-
cial abrasion typically is caused by blunt force trauma. Yet,
tangential sharp force such as a knife or razor blade might
cause a similar appearance and also result in an abrasions
whereas one could contend that sharp force usually causes
incised wounds. There are injuries that can present a phe-
notype overlap and appear to allow no further distinction,
which is an issue that is often further complicated by post
mortem decay. So ultimately there might be injuries that
are best classified by placing them in between two or three
known categories.
To build classification systems also for shapes that are

hard to classify, one has to start with distinct and clear,
unambiguous samples that exhibit striking features. Hav-
ing said that, there do exist injury shapes that have to be
regarded as typical text book examples for the agent that
caused them. There are injuries that are representative
for a particular tool. In order to build a shape encod-
ing method for further statistical analysis, we employed
plasticine models that we judged as representative for
the 3D skin surface structure of typical text book type
injury categories.
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Injury classes
For each plasticine injury model we start with a flat,
straightened block of standard issue plasticine. Typical
injuries are then simulated by manually pressing or hit-
ting various tools into the flat plasticine surface. Simulated
skin injuries cover the following 6 injury classes that we
consider as ’typical’ for the causing instrument:

1. Incised wounds: A knife and the tip of a scissors’
blade are used to produce this type of plasticine
damage. – Generally, sharp force injury is defined to
be caused by relatively sharply edged objects; incised
wounds or cuts are differentiated from stab wounds
in that cuts are by definition longer than deep while a
stab wound is defined to be deeper than wide [23,26].
Sharp force injuries typically exhibit relatively
straight wound edges, tissue bridging as seen in
lacerations are absent.

2. Abrasions: Tearing the plasticine block across the
rough surface of a paved road is employed to model
abrasions. – By definition one would regard an
abrasion as a tangential graze or gravel rash which
may penetrate the full skin involving scattered or
confluent shapes of punctuate or streaky lacerations.
A typical abrasion might not be lined by straight
edges.

3. Gunshot entry wounds: We use a standard issue
pencil to pierce the plasticine block and obtain a
defect that resembles a penetrating round firearm
entry wound. – Gunshot entry wounds are bullet
entry wounds and typically, they constitute
penetrating injuries that may have the appearance of
gaping holes similar to impalement injuries.

4. Smooth strangulation marks: We pull a power cable
against the plasticine blocks to simulate smooth
(non-patterned) strangulation marks. – Strangulation
marks are longitudinal neck injuries on the neck
caused by compression through a cord, rope, cable,
wire, belt or other longitudinal flexible object. They
typically contain a combination of skin indentation
along with abrasion or bruising, skin drying or local
mummification particularly of ridge structures that
may also reflect any surface structure of the
strangulation tool through exhibiting a patterned
indented skin surface.

5. Textured strangulation marks: We apply a textile
shoe lace against plasticine blocks to simulate
textured strangulation marks.

6. Patterned injuries: We use a thin, L-shaped metal
structure to generate slashes or lacerations. In
forensic pathology, the term patterned injuries
typically is used to denote injury shapes that are
contained by defined contours. They may feature
abrasions or skin indentations that feature an

apparent geometrical match of a prominent part of
the causing instrument’s shape. Typical patterned
injuries are polygonal abrasions from a vehicle’s tyre,
or complex abrasions caused by tearing a chain-like
necklace to cause distinct chain patterned abrasions.

We create 108 plasticine models to obtain 6 classes of
equal size. Hence, each of the injury classes described
above will be represented by a group of 18 injuries. That
allows us to take out three injury instances of each group
to build a test set, use the remaining instances as training
set, and arrive at a k-fold cross-validation procedure with
6 partitions.

Digitization of plasticine models
We use a 3D surface scanner that employs collimated light
patterns to capture the shape of the modeled injuries.
Adaptively refined meshes are commonly obtained as

result of 3D scans. They combine surface detail for rela-
tively uneven data with data size reduction for relatively
even surface regions [27]. For this study however, spatial
frequency of various vertex derived parameters are calcu-
lated for feature specification. Instead of adaptive mesh
refinement, we obtain mesh objects that are evenly grid-
ded. Resulting mesh resolution is around 10 vertices per
millimetre in all directions, triangles are nearly equilateral.
Digitization of 108 plasticine blocks contains a sequence

of standardized work steps (capturing 3Dmesh parts, seg-
menting, registering, optimizing, mesh generation, mesh
optimization, noise reduction). This work flow produces
3D mesh surfaces that digitally represent the plasticine
models that were scanned.
Each mesh surface is given as a data structure consisting

of a 3 × n vector of vertices and a 3 × m vector of trian-
gles. In each instance there is a centrally located surface
feature, injury or lesion that is surrounded by peripheral
flat surface. For further analysis, surrounding flat surface
regions are manually clipped. Precise location and extent
of the manual clipping procedure remains without impact
on the results, as only convex and concave data pertaining
to the central feature lesion undergo further analysis (see
gray regions in Figure 2). Prior to computing all elements
of the initial shape descriptor vector (Table 1), mesh clips
are resized to fit into a unit square in an attempt to aim for
a size independent classification of the injuries.

Shape descriptors
Descriptor definition
Curvature – as opposed to other registration point
derived measures [34] such as depth maps or needle
maps [35] – is a viewpoint and rotation invariant local
surface characteristic. We compute curvature by esti-
mating the per-face Weingarten matrix for each vertex
[36]. A positive mean curvature value indicates local
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Figure 2Mesh objects and curvature maps. Untextured 3D mesh object surfaces of plasticine models containing an abrasion (A top) and a
patterned laceration (B top). At each vertex, mean curvature is mapped to a color (A bottom, B bottom; mean curvature values see color legend).
Convex regions range from green (flat) to red (strongly convex) and concave regions from green to violet (strongly concave). Flat regions exhibiting
a curvature magnitude below 0.17 are dark gray and excluded from further evaluation. Ridges, grooves and shape configurations can be visually
checked to be distinct for both 3D mesh objects now.

convexity, whereas locally concave regions exhibit nega-
tive mean curvature values. Resulting mean curvature can
be mapped onto the 3D mesh object surface as color map;

Table 1 Shape descriptors for each of the 12 curvature
subsets

Descriptors di Description

{d0, . . . , d39} Frequencies of Euclidean distance to other
vertices contained in the subset Sn with n ∈
{0, . . . , 11} , counted within boundaries of 40
bins.

{d40} Ratio of maximum and mean distance
between vertices [28,29].

{d41} Ratio of maximum and median distance
between vertices [28,29].

{d42} Volume of the convex hull for the vertices set
belonging to each curvature domain [30].

{d43} Surface of the convex hull for the vertices set
belonging to each curvature domain [30].

{d44} Ratio of maximum frequency to mean fre-
quency [28,29].

{d45} Total number of vertices [30].

{d46, . . . , d55} Number of vertices within each sphere of
a series of differently sized 10 concentric
spheres around the origin [31,32].

{d56, . . . , d95} Fourier transform of the frequency distribu-
tion in the curvature histogram [28].

{d96, . . . , d105} Fourier transform of the point distribution in
the spheres series [28,31,32].

{d106} Number of hyperbolic points [33].

Shape descriptors that are determined for each of the 12 curvature subsets (see
Table 2 for curvature subset details).

this is illustrated in Figure 2 for an abrasion (left) and a
patterned laceration (right). We partition vertices of each
mesh object into 13 subsets according to their approxi-
mated mean curvature values (Table 2) to achieve a type
of multiscale decomposition [31]. One of these subsets Sf
is comprised of flat areas mainly found surrounding the
actual injury or defect. We discard Sf and the remaining
12 subsets of vertices Sn with n ∈ {0, . . . , 11} are used

Table 2 Curvature subsets

Subset Description Mean curvature (mc)

Sf Flat 0.17 < mc ≤ 0.17

S0 Strongly convex mc > 0.8

S1 Highly convex 0.6 < mc ≤ 0.8

S2 Very convex 0.5 < mc ≤ 0.6

S3 Convex 0.4 < mc ≤ 0.5

S4 Slightly convex 0.25 < mc ≤ 0.4

S5 Little convex 0.17 < mc ≤ 0.25

S6 Strongly concave mc < −0.8

S7 Highly concave −0.8 ≤ mc < −0.6

S8 Very concave −0.6 ≤ mc < −0.5

S9 Concave −0.5 ≤ mc < −0.4

S10 Slightly concave −0.4 ≤ mc < −0.25

S11 Little concave −0.25 ≤ mc < −0.17

Range of curvature values used for partitioning vertices of our 3D mesh objects
into 12 subsets. These are divided in two groups: the first group, S0, . . . , S5 ,
contains sets of convex spots of similar magnitude decreasing along the indices,
whereas S6, . . . , S11 analogously encompass regions of increasingly concave
nature. Vertices pertaining to subset Sf of relatively flat regions containing a
mean curvature magnitude of |mc| ≤ 0.17 are excluded from further analysis.
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for further analysis. The precise subset definitions are
detailed in Table 2. Visual inspection of the mesh objects
textured according to vertex curvature yielded mc =
|0.17| as optimal value out of a range of |mc| ∈[ 0, 0.3].
Smaller threshold values appear to push too many vertices
into subsets S5 and S11 (see Table 2), thereby increas-
ing noise levels in these subsets. Larger threshold values
were found to mask regions belonging to what we regard
as ’specific injury surface’; this seemed to be relevant
particularly for 3D mesh objects showing low curvature
magnitude. In Figure 2 the areas filtered for Sf are dis-
played gray as opposed to the colored regions exhibiting
higher curvature magnitude that then are used for further
analysis.
For each vertex subset Sn with n ∈ {0, . . . , 11}, a

range of descriptors are derived from vertex properties.
A shape vector is assembled using a range i ∈[ 1, 106]
of descriptors di. We start injury descriptor generation
by determining all inter-vertex distances for every subset.
Distance frequencies are split into 40 equally sized bins
and stored as the first 40 vector elements of the shape vec-
tor. We then derive a range of further descriptors based
on aspect ratios [28-30], convex hulls [30], concentric
spheres [31,32], hyperbolic points [33] and Fourier trans-
forms [28]. Altogether we obtain 107 shape descriptors.
Technical details and references for our shape descriptors
are listed in Table 1. As we do that for every of the twelve
curvature domains (see Table 2), the final shape vector for
each injury model amounts to a total of 12 × 107 = 1284
shape vector elements.
This process yields a relatively large initial shape vec-

tor that then is narrowed down by selecting elements with
particularly promising discriminatory characteristics.

Descriptor reduction
Descriptor count reduction is based on analysis of the
training sets’ vector elements (see next section for details
regarding the k-folds).
The goal of reduction of dimensionality is a better

discrimination of subsequent DA (discriminant analysis)
[37], stability and performance. Cross correlation of vec-
tor elements is an impediment to DA. Furthermore, LDA
(linear DA) assumes multivariate normality. To narrow
down descriptor elements to the ones with the best dis-
criminatory power, we thus remove descriptor elements
that fall short of threshold values for an SNR (signal-to-
noise ratio) value, and that exceed threshold values for
skewness, for kurtosis and for the Kendall’s τb cross corre-
lation coefficient. This follows a Feature Selection strategy
of filtering [38].

• With 6 injury groups there are 15 pairs of groups. For
each pair of groups an SNR for each vector element
variable is computed. The difference of the means of

each variable over each group to another group is
divided by the maximum scatter of the analyzed
variable across both groups. We discard descriptors
that show an SNR of lower than an arbitrarily
selected threshold of 3.00.

• For all 6 injury groups, kurtosis and skewness are
obtained for each vector element. The highest of
these six results is evaluated for each vector element:
vector elements whose kurtosis exceed a threshold of
16.0 or whose skewness exceed a threshold of 13.4
are discarded.

• Kendall’s τb correlation coefficient is used to exclude
excessive cross correlation for all variable
combinations exhibiting τb > 0.95.

Varying across k-folds, descriptior subsets with an aver-
age of 41.5 ± 4.9 (35 to 49) descriptors remains. More
details are given in Table 3.

K-fold cross validation
Under the k-fold cross validation concept, the whole
database of 108 simulated skin injuries is split into a train-
ing set and a test set. We use 6 such k-fold partitions.
Training set consists of 90 skin injuries and the test set of
the remaining 18 skin injuries. For each k-fold partition,
the test set is changed. This effectively avoids the techni-
cal errors contained in single-step or step-wise selection
of classifiers based on the whole set of observations before
splitting it into training and test set [39].

Discriminant analysis
Discriminant analysis (DA) is a technique commonly used
in classification problems. Given a set of groups contain-
ing known members one wants to establish how likely
a particular group membership for a new and not yet
classified object is.

Data pre-conditioning
In order to eliminate effects of scale we standardize the
variables to have their mean value equal to 0 and their
standard deviation equal to 1.

Outliers
Initially, we identify two outliers that are found to
exhibit technically deficient mesh data: one is insuffi-
ciently clipped, the other appears to contain surface spikes
possibly as a result of reflection artifacts at 3D scanning.
After repairing these meshes, no outliers remained.

Multivariate normal distribution
Using Shapiro-Wilks test for our data, we establish a
significant result for absence of multivariate normal dis-
tribution (group specific p-values far below 0.01). Data
violating the normality assumption not due to outliers
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Table 3 k-fold derived shape vector elements

i SVi Par1 SVi Par2 SVi Par3 SVi Par4 SVi Par5 SVi Par6

1 c5 ca d96 c5 ca d96 c5 ca d96 c5 ca d96 c5 ca d96 c5 ca d106

2 c4 ca d94 c4 ca d106 c5 ca d52 c5 ca d51 c4 ca d106 c5 ca d96

3 c4 ca d58 c4 ca d96 c5 ca d43 c4 ca d96 c4 ca d96 c4 ca d51

4 c4 ca d43 c4 ca d52 c4 ca d42 c4 ca d52 c4 ca d59 c4 ca d49

5 c3 ca d94 c3 ca d42 c4 ca d43 c4 ca d43 c4 ca d52 c4 ca d48

6 c3 ca d43 c2 ca d43 c3 ca d96 c3 ca d106 c4 ca d43 c3 ca d106

7 c1 ca d52 c1 ca d43 c3 ca d43 c2 ca d43 c4 ca d42 c2 ca d106

8 c1 ca d45 c0 ca d43 c2 ca d106 c1 ca d43 c2 ca d43 c2 ca d43

9 c1 ca d43 c0 ca d41 c2 ca d43 c0 ca d41 c2 ca d42 c1 ca d43

10 c0 ca d51 c5 cx d90 c2 ca d42 c0 ca d40 c1 ca d53 c0 ca d43

11 c0 ca d43 c5 cx d53 c1 ca d106 c5 cx d106 c0 ca d41 c0 ca d41

12 c0 ca d41 c5 cx d52 c1 ca d43 c5 cx d96 c0 ca d40 c0 ca d40

13 c0 ca d40 c5 cx d48 c0 ca d106 c5 cx d90 c5 cx d105 c5 cx d106

14 c5 cx d106 c5 cx d45 c0 ca d43 c5 cx d53 c5 cx d90 c5 cx d96

15 c5 cx d64 c5 cx d43 c0 ca d41 c5 cx d52 c5 cx d52 c5 cx d88

16 c5 cx d63 c5 cx d42 c0 ca d40 c5 cx d48 c5 cx d48 c5 cx d63

17 c5 cx d62 c5 cx d41 c5 cx d106 c5 cx d43 c5 cx d45 c5 cx d62

18 c5 cx d53 c4 cx d106 c5 cx d96 c5 cx d42 c5 cx d43 c5 cx d53

19 c5 cx d52 c4 cx d96 c5 cx d90 c5 cx d41 c5 cx d42 c5 cx d48

20 c5 cx d50 c4 cx d52 c5 cx d49 c5 cx d40 c4 cx d106 c5 cx d43

Total 49 35 42 39 39 45

Resulting top 20 shape vector elements are listed for each of the six k-folds (six columns), total shape vector element dimension is shown at the bottom of each column;
that figure is based on a range of thresholds (SNR, kurtosis, skewness, Kendall’s τ ). The abbreviated naming of vector elements represents a specific combination of
coarseness of curvature scale (c0, . . . , c5), curvature type (convex cx, concave ca) and an index referring to a derived shape descriptor described in Table 1.

may still be suitable for particular techniques of DA such
as RDA but a higher misclassification rate can result [40].

Homoskedasticity assumption
LDA (linear discriminant analysis) assumes homoskedas-
ticity [41], ([42], e.g. p. 279). Several variables show dif-
ferent standard deviations of SNR between groups, which
points to differences in covariance matrices. This differ-
ence is uneven between variables, so we cannot assume
a proportional relationship. For the case of unequal
covariance matrices the RDA (regularized discriminant
analysis) or QDA (quadratic discriminant analysis) is
recommended.

LDA, RDA andQDA
Our data does neither fulfill the criteria of similar group
covariance matrices nor the criteria of containing a mul-
tivariate normal distribution as required by LDA. As we
consider QDA and RDA, pure QDA is not feasible because
of singularities in the covariance matrix.

RDA parameters
Descriptive RDA is performed over each training set for
λ, shrinkage to common covariance, and γ , shrinkage to

diagonal of the covariance matrices, to estimate optimal
parameters for an optimal CRR (correct recognition rate)
as described by Lu et al. (2003) [43]. We only test about
ten combinations of λ and γ so this evaluation is rather
crude. Best CRR under varying RDA parameters λ and γ

is achieved with {λ = 0.99, γ = 0.001}. Larger numbers of
descriptor variables (in relation to the observation count)
would require a higher shrinkage parameter but with the
selected rather small shape vector size of an average of 41
elements, there is no need to dispense with information
by employing higher values for the shrinkage parameters.

Application of RDA under k-fold
Our application of RDA may be split into two steps.
The first step involves deriving discriminant functions df
based on the training set. These discriminant functions
are used to describe group differences within a designated
training set of objects. In a second step training set derived
functions df are used to calculate discriminant scores
ds for new objects given in the test set; as their group
membership is not declared to the statistics software, that
second step constitutes a test. The second step is used to
establish a correct recognition rate (CRR) to quantify the
classification power of the method.
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CRR (correct recognition rate)
CRR is determined using six folds in a k-fold based eval-
uation of 6 test sets consisting of 18 objects respectively,
previously neither used for variable selection nor for the
optimal parameter search. Each time, we count the num-
ber of misclassified objects within the current test set.
After RDA of all six partitions, we average resulting cor-
rect recognition rates.

Robustness under added noise
Since injury peculiarities and operations during data
acquisition and processing may deteriorate data accuracy,
documenting decay of performance is of interest [44]. We
add uniform noise within the range of N ∈[−σ , σ ] to the
original shape vector data. Each shape vector is changed
according to a uniform noise generator. The resulting per-
turbed data matrix is analyzed again in the context of
descriptive and predictive DA.

Software and hardware
We use a 3D surface scanner (QTSculptor, Polygon Tech-
nology, Darmstadt, Germany) that provides vertex point
resolutions below 100μm with good depth-of-field and
speed. Integrated software allows for segmentation, ren-
dering, post-processing and exports to various 3D file
formats. File export using the VRML 2.0 file format.
3D model manipulation and curvature are programmed

in IDL (Interactive Descriptive Language, Exelis Visual
Information Solutions, Boulder, Colorado, USA). 3Dmod-
els are imported to IDL via a customized 3D data structure
import parser.
For multivariate normal distribution testing, the pack-

age R is employed. For all other statistical evaluation and
discriminant analysis, JMP (SAS Institute, Cary NC, USA)
is used. Noise addition with Excel (Microsoft, Redmond,
Washington, USA) and IDL.

Results and discussion
Descriptive RDA
We perform RDA with a data matrix containing 108
injuries. This database is partitioned 6 times into a train-
ing set of 90 and a test set of 18 injuries. Descriptive RDA
is performed with a limited number of variables to esti-
mate the best combination of parameters for RDA. The
optimal parameter pair is λ = 0.99 and γ = 0.001 indi-
cating a nearly linear DA with almost no shrinkage to the
covariance matrix diagonal.
Descriptive RDA of all 6 training sets produce a per-

fect result [42]. Mahalanobis within-group distances are
significantly smaller for each of the 108 modelled skin
injuries than between-group distances. Receiver operating
characteristic yields an ideal Area Under the Curve of 1.0
for all groups.

Predictive RDA and CRR
For each of the 6 partitions in the k-fold validation, shape
vector composition is optimized for the training set and
then the CRR is calculated based on the number of mis-
classified items within the 18-element test set.We obtain 6
CRRs which subsequently are averaged yielding an overall
CRR of 97.22%.

Robustness under added noise
Adding uniform noise within the range of N ∈[−σ , σ ]
to both training and test sets prior to evaluation for all 6
partitions produces a degraded correct recognition rate of
CRRN = 71.3%.

Alternative DAmethods
Predictive LDA produces a CRR of 96.3% which is slightly
less than the result of predictive RDA.

Injury differentiation in the forensic context
Tools or weapons used to cause skin injuries may be
distinguishable by their shape. While some items that
are commonly employed to injure people are relatively
deformable (e.g., fists, shoe soles, whips, cords used for lig-
ature strangulation) others are relatively rigid (e.g., knives,
axes, screw drivers, hammers, pliers). Even when instru-
ments of similar appearance - two hammers, for example -
are under investigation, it may be important to pay atten-
tion to details. Subtle defects of tool surfaces such as
scratches or sharp edges are known to add specific fea-
tures of injuries, such as tears, angles or abrasions [45].
Skin might exhibit variable amounts of deformation upon
impact, depending on thickness, underlying tethering to
bone, and depending on angle of impact.
Forensic juxtapositioning represents an illustrative

method to investigate mostly rigid shape imprints. How-
ever, less rigid shape imprints are hard or impossible
to match using that method. While forensic molecular
biology dubbed “DNA fingerprinting” provides extremely
helpful data to investigating authorities, genetic code
comes pre-encoded. Statistical shape matching of skin
injuries however can only be performed once analog
injury shapes are digitally encoded. Digital shape encod-
ing of injuries can offer the advantage of libraries [46] that
can be queried automatically. One can exploit the encod-
ing step to suppress noise while increasing descriptive
uniqueness or discriminatory power. Statistical methods
also can be applied in single instances for investigation of
specific discriminatory questions.
This study bases its data on idealized, exaggerated and

accurately digitized shapes. They are mostly easy to tell
apart by eye. Yet our method shows no or little difficul-
ties also in discriminating between smooth and textured
strangulationmarks. These could present a challenge were
one to tell them apart by visual inspection.
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We assume that injury shapes caused by distinct agents
fall into distinct categories. While this assumption cer-
tainly is true for our plasticine block test set, it may not
be seen as true for a range of real-life injuries. Abra-
sions, for example, could be graded just as burns can be
graded. As that, some of their morphological aspects may
be viewed as exhibiting continuity along some scale and
for some concepts of causation and classification of injury,
that could make it difficult to provide a clear distinction
using methods such as discriminant analysis [41]. How-
ever, good forensic practice always provides - and has to
provide - two or more hypotheses that are distinct, con-
taining a complete set of explanations when combined
and at the same time containing no overlap [47], as oth-
erwise, not even a clear qualitative answer is possible. It
thus is the requirement of a good legal investigation to
provide correctly worded hypotheses as only for these,
clear answers – e.g. by proper injury categorization –
can be sought. Concerns regarding documentation qual-
ity and establishing quantified shape matches for forensic
bite mark analysis have already been expressed [48].
Using the presented statistical method, it is possible

to discriminate between group membership of injury-like
surface deformations. Moreover, it is possible to obtain
quantified information such as scores or likelihood ratios
for a skin injury belonging to a particular suspected or
assumed injury class given an alternative hypothesis. As a
general rule in forensics, providing such quantified mem-
bership information is regarded as the job of the expert,
while laying down cut-off levels for these likelihood ratios
is seen as the task of the court or investigating legal
body [49]. So far, only qualitative or evasive estimates
were given by injury experts as to actual probability or
likelihood ratios pertaining to shape matches.
However, we were recently confronted with the task

of actually quantifying a morphological match for a dis-
trict attorney’s office [50] where we applied similar shape
vector based techniques for the identification of videoed
finger shapes. There are a number of cases causative con-
clusions about injury shapes [51,52] seemed to provide
determining angles for judicial verdicts.

Morphological classifiers
With a best CRR of 97.22%, our classification results are
comparable to what other investigators in the field of
biometrics achieve. Results are obtained with injuries of
different size, orientation in space, varied markedness and
different placement of the injured region within each 3D
mesh that underwent analysis.
We exploit curvature properties. More than a decade

ago [53] and also for two-dimensional curves, curvature
derived classifiers were found to exhibit robustness to
scale, to rotation and to noise as a peculiar feature. Cur-
vature derived information appears to successfully classify

shapes also when extracted from two-dimensional images
[13].
We use distance histograms for curvature range subsets

of 3D surfaces. Histogram based techniques are known
to exceed other approaches with respect to the power of
biometric classification [15].
We exploit various scale levels of the 3D surface curva-

ture while dealing with what appear to be partly fractal
surfaces [17,54]: with limited resolution, we are not able to
fully populate any scale level so we work with bins or range
subsets to obtain at least minimally populated data. Using
3D curvature also allows us to exploit the whole injury
data captured by 3D surface scanning; by restricting our
analysis to contours (such as used for matching based on
the Poisson equation [18,19]) we would not take advan-
tage of shape details that are located at the center (and not
the perimeter or contour) of the injuries that we examine;
penetrating injuries, gravel rashes or lacerations all are not
nearly as easily distinguished by their contours as they are
by the geometry of their full surface (see Figure 2).
We optimize the statistical test. A relevant factor that

contributes to the good result is that we optimize our
choice of λ and γ parameters for RDA [43]. Better results
may be obtained when analysing the covariance matrix
structure according to [55].
We use excessive descriptive data to start with. Instead

of starting with small shape vectors and extending them
until a satisfying classification result was achieved, we
start out with rather large curvature data based shape
vectors containing 1284 descriptors. We then proceed to
restrict the selection of variables down to an average of
41. For that, we use a signal-to-noise-type classifier that
resembles a modified version of Wilks’ λ along with other
data quality markers previously published by Richiardi
et al. (2007) [37]. Employing an initially large array of
shape descriptors to subsequently narrow features down
to a small subset, also while maintaining a high corre-
late for SNR (signal-to-noise ratio) has become current
practice also in forensics [56].
We use some particularly successful shape descriptors,

as it turns out. The saddle-shape of hyperbolic points
appears to constitute a relatively powerful descriptor
given their rather frequent occurrence among the top
classifiers in our study across all 6 partitions of the k-
fold (Table 3, see also Table 1). Their intrinsic difference
to other geometrical descriptors appears to be that only
there do first order derivatives vanish at least in both two-
dimensional projections [33] which is a feature that is
exploited also for shape matching approaches based on
Morse theory [57-59].
Another particularly successful concept seems to be the

surface area and volume of the convex hull of vertices per-
taining to particular curvature subsets (Table 3). Convert-
ing what appear to be abstract point sets to 3-dimensional
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surface structures (γ -surface [60], α-surfaces [61]) has
long been recognized as important step in characterizing
not just geometrical [62] but also data with no apparent
geometrical significance [63]. Their usage for shape char-
acterization does appear to introduce shape properties
into statistical shape evaluation that were, so far, untapped
which warrants further exploration [64].

Conclusions
Limitations of this study and application on real skin
injuries
This study achieves a relatively good statistical discrim-
ination of simulated surface injuries pertaining to six
different categories. Each group was created to be highly
distinct. In real life forensic pathology, textbook examples
of real injuries are just as distinct as shown in Figure 1
and with that, our modeled plasticine models reflect clear
cut reality well with regard to that aspect. However, real
injuries also can appear to take a place between textbook
categories and end up being hard or impossible to classify.
In our view, that is a conceptual and not a technical prob-
lem. This study does not address this conceptual issue but
focuses on data conditioning and feasibility evaluation.
First results of using similar descriptors based on 3D

injury surface scans were promising [65-67]; descriptive
RDA yielded very good results with almost perfect dis-
crimination for clearly distinct injury categories when
discriminating deep lacerations (caused by a hammer)
from superficial abrasions (as consequence of contact
with road tarmac). Data noise was not a relevant issue
as we employed ample re-scan averaging and pre-scan
treatment of the skin such as shaving and drying.

Outlook
Our results are obtained with an optical 3D scanner cali-
brated to a close scanning range. It captures a lateral point
resolution of about 100μm. Noise massively degrades sta-
tistical discrimination so further improvement of data
quality seems to be mandatory. The shape vector can be
enhanced with additional automatically extracted quan-
tifiable shape features, also with color information. First
results obtained with two groups of 3D mesh objects
captured from real skin injuries are promising [66].
Quantitative results to supplement expert considera-

tions in forensic pathology might become more popular
once they are reliable and once data analysis techniques
become available as simple-to-use turnkey systems. This
then might provide further incentive to document sur-
face injuries three-dimensionally – a process that started
with data acquisition through forensic photogramme-
try [5-8], surface scanning [9,68] or CT-data-derived 3D
surface extraction [69,70] to undergo subsequent anal-
ysis by virtual [71-74] or physical [75] forensic juxta-
positioning spearheaded by the Virtopsy project [76-78]

and recent anthropological developments [79] also using
shape matching techniques [80-82].
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