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Abstract 

Background The cost of labeling to collect training data sets using deep learning is especially high in medical 
applications compared to other fields. Furthermore, due to variances in images depending on the computed tomog-
raphy (CT) devices, a deep learning based segmentation model trained with a certain device often does not work 
with images from a different device.

Methods In this study, we propose an efficient learning strategy for deep learning models in medical image seg-
mentation. We aim to overcome the difficulties of segmentation in CT images by training a VNet segmentation model 
which enables rapid labeling of organs in CT images with the model obtained by transfer learning using a small num-
ber of manually labeled images, called SEED images. We established a process for generating SEED images and con-
ducting transfer learning a model. We evaluate the performance of various segmentation models such as vanilla 
UNet, UNETR, Swin-UNETR and VNet. Furthermore, assuming a scenario that a model is repeatedly trained with CT 
images collected from multiple devices, in which is catastrophic forgetting often occurs, we examine if the perfor-
mance of our model degrades.

Results We show that transfer learning can train a model that does a good job of segmenting muscles with a small 
number of images. In addition, it was confirmed that VNet shows better performance when comparing the perfor-
mance of existing semi-automated segmentation tools and other deep learning networks to muscle and liver seg-
mentation tasks. Additionally, we confirmed that VNet is the most robust model to deal with catastrophic forgetting 
problems.

Conclusion In the 2D CT image segmentation task, we confirmed that the CNN-based network shows better perfor-
mance than the existing semi-automatic segmentation tool or latest transformer-based networks.

Keywords Medical image segmentation, CT image segmentation, Deep learning, Convolutional neural network

Introduction
Automatic medical image segmentation has long been 
a research topic for a long time because organ labe-
ling consumes a lot of time and effort from experts 
[1]. After the development of UNets [2], similar net-
works have been presented, and their performance has 
improved steadily. In addition, public datasets have 
been released for research, serving as benchmarks to 
compare performance in an equivalent environment 
[3, 4]. However, the data is only helpful if there is a 
label on the part to be segmented in the public data-
set. In the actual clinical model deployment process, 
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data may be collected from different institutions using 
varying imaging protocols and scanner suppliers. 
Since their data distributions do not match, perfor-
mance degradation occurs during testing [5]. Further-
more, research is underway to enhance the accuracy of 
models by integrating CT images and clinical demo-
graphics in the machine learning process [6]. Even if a 
model trained from images taken by a specific device 
is distributed, a user cannot use it as it is. Briefly, deep 
learning-based segmentation technology is challenging 
to use in many institutions because it requires a large 
amount of learning data.

In this study, we present a learning strategy using 
transfer learning to alleviate practical difficulties in 
training a CNN-based neural network to perform seg-
mentation on the muscle and liver in 2D CT images 
collected of various organs. There are three things we 
want to confirm through transfer learning. First, we 
check whether the performance can converge when we 
perform transfer learning using a small number of data 
on a model trained with data from different devices. 
Second, by observing the learning curve according 
to whether or not transfer learning was performed, it 
was confirmed that the performance converged faster, 
and higher division performance could be achieved. 
Third, after performing transfer learning, we checked 
whether catastrophic forgetting occurs on the previ-
ously learned dataset. Experiments were performed on 
CNN-based networks, and the latest transformer-based 
models and their performances were compared.

In the muscle segmentation task, we compare the 
performance of deep neural networks with the existing 

popular segmentation tool, BMI TOOL [7]1 additionally, 
which does not require training. Existing tools can seg-
ment muscle and abdominal fat without needing a learn-
ing process. However, segmentation can be performed on 
only one CT image at a time, and Hounsfield Units for 
focusing on muscle and fat must be entered each time 
the operation is performed. In addition, it takes a sig-
nificant amount time to perform segmentation because a 
dividing line must be drawn manually to distinguish the 
inside and outside of the abdomen. Finally, since the out-
put result cannot be saved, the work has to be performed 
again whenever the segmentation result is needed, even 
for an image that has already been segmented. After 
training, artificial neural network models are competi-
tive with existing technologies because they can quickly 
perform segmentation on multiple images and store the 
output results.

The difference in the learning process depending on 
whether transfer learning is performed is shown in Fig. 1. 
When transfer learning is used, we could improve the 
performance of a neural network model with only a small 
amount of data taken from other devices. In addition, the 
annotator can save time and effort by using the model’s 
output before transfer learning as the prelabel.

The goal of segmentation tasks in medical imaging 
includes studying anatomical structure, identification of 
regions of interest, measurement of tissue volumes, and 
assisting in treatment planning prior to radiation ther-
apy [8]. However, pixel-level annotation is a laborious 
and costly task requiring trained clinicians [9]. The deep 
learning model training strategy proposed in this study 

Fig. 1 Comparison of model training process according to whether transfer learning is used

1 https:// sourc eforge. net/ proje cts/ muscle- fat- area- measu rement/

https://sourceforge.net/projects/muscle-fat-area-measurement/
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can help reduce the labeling costs required for model 
training.

The contribution of our study is summarized as follows:

• We collected data for muscle segmentation, trained 
the CNN-based model VNet, and compared the per-
formance with a baseline that did not require train-
ing, and the latest transformer-based networks.

• We measured the model’s performance on CT 
images taken by other devices and observed the per-
formance improvement while additionally training 
the data.

• We performed transfer learning on several datasets 
for the liver segmentation task and observed the 
learning curve to confirm the advantages of transfer 
learning.

• After transfer learning, we observed how much the 
performance changed for the previously learned data.

• Through our experimental results, we demonstrate 
the potential to reduce labeling costs by utilizing a 
pretrained network, as shown in Fig.  1, to generate 
pseudo labels.

The remaining sections of this paper consist of a total 
of five sections. “Related work” section provides an over-
view of related studies in the field of medical image seg-
mentation using deep learning. “Automatic CT image 
labeling for organ segmentation by transfer learning” sec-
tion describes the method employed for muscle labeling 
in CT data. Furthermore, “Experiment settings”  section 
elucidates the configurations for experiments, including 
datasets, deep learning models, and evaluation metrics 
used in transfer learning experiments. The experimental 
results are then discussed in “Experimental results” sec-
tion. Finally, the findings of this study are summarized in 
the last section.

Related work
This section covers research related to medical image 
segmentation. First, we deal with deep learning-based 
medical image segmentation methods. Second, studies 
that applied transfer learning in medical image segmen-
tation tasks are introduced.

Medical image segmentation
Manual segmentation requires outlining structures slice 
by slice and visual inspection, which is mentally demand-
ing and a highly time consuming process [10]. Many 
studies have been conducted to perform segmentation 
in medical images using deep learning to overcome these 
disadvantages [2, 11]. Among them, UNet is a repre-
sentative network. After the success of UNet on medical 
image segmentation tasks, many studies have attempted 

to utilize its architecture or applying additional tech-
niques to improve performance [12, 13]. Zhou et al. [12] 
proposed  UNet++ network modified from the UNet 
network and demonstrated higher segmentation perfor-
mance than UNet in cell nuclei, colon polyp, liver, and 
lung nodule datasets through experiments. Huang et  al. 
[13] proposed  UNet 3+ network to reduce the number 
of parameters of UNet++ and improve segmentation 
accuracy. The experiment showed better performance 
than previous studies in the liver segmentation task using 
the LiTS 2017 dataset.

There is also a semi-automatic segmentation method 
that does not require machine learning [7]. This method 
is difficult to perform with a large amount of segmenta-
tion because a person must directly mark the ROI for 
each slice of the CT image. However, it has the advan-
tage of not requiring a large amount of training data. Kim 
et al. [14] used it as a tool to measure the skeletal muscle 
index (SMI) in the L3 region of the spine.

Neural networks for muscle segmentation on medical 
images
Kanavati et al. [15] detected a slice near the L3 vertebra 
using a UNet-like network structure, and segmented 
the muscle using manually labeled CT images. Similarly, 
Edwards et al. [16] performed muscle segmentation from 
CT data of 33 adult patients. Some studies segmented 
muscles by simultaneously segmenting multiple CT slices 
or inputting 3D CT images instead of segmenting a sin-
gle image. 2.5D CNN automatically searches for skeletal 
muscles near L3 in 3D CT images and performs mus-
cle segmentation in [17]. The 2.5D CNN receives three 
images simultaneously as input, including the CT slice 
adjacent to the L3 region. In [18], 3D UNet was used 
to confirm the segmentation performance on several 
images. There is also a study that labels muscle, subcu-
taneous fat, and visceral fat and trains a deep-learning 
model [19, 20]. In addition, Castiglione et al. [21] collects 
and learns CT data of children to diagnose sarcopenia. 
There are also studies proposing a network structure that 
is not based on UNet to segment muscles at the L3 and 
T4 levels [22]. Lee et al. [23] also proposed a CNN struc-
tured network rather than UNet, but performs segmenta-
tion only at the L3 level of the spine. Fu et al. [24] used 
a CNN-based network to segment the abdominal cavity 
and the muscles through post-processing. There are also 
studies that segmented muscles from MRI images [25, 
26]. In [25], labeling is performed on 13 types of mus-
cles in MRI images ,and CNN-based network segmented 
them. Li et  al. [26] segmented multifidus and erector 
spinae using deformed UNet. In [27], segmentation of 
muscle, subcutaneous fat, and abdominal fat as well 
as abdominal region prediction were performed using 
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UNet. Nishiyama et al. [28] used a generative adversarial 
network(GAN) based model to train it to produce realis-
tic segmentation results.

Research is also underway to provide insights into 
building reliable artificial intelligence systems in health-
care systems. Albahri et al. [29] systematically categorize 
various studies aimed at constructing trustworthy artifi-
cial intelligence in healthcare systems and investigate the 
feasibility of explainable AI (XAI) application. Alzubaidi 
et al. [30] address strategies to tackle the problem of data 
scarcity.

Research aiming to enhance the performance of deep 
learning networks in the medical field also exists. Sham-
rat et  al. [31] improved various networks for classifying 
lung diseases through transfer learning. Sutradhar et  al. 
[32] proposed a method to increase the classification 
accuracy of thyroid diseases using ensemble techniques. 
Shamrat et  al. [33] proposed a modified network called 
AlzheimerNet, based on the InceptionV3 network [34] to 
improve the classification accuracy of disease of alzhei-
mer stages and normal control classes.

Recently, research has been conducted to enhance per-
formance by combining transformer and CNN network 
architectures. Sun et  al. [35] proposed a network struc-
ture combining CNN and transformer, demonstrating 
high performance in the task of segmenting organs from 
abdominal CT images. Heidari et  al. [36] introduced 
Hiformer, which combines CNN and transformer, show-
ing superior performance in organ segmentation from 
abdominal CT images and skin lesion segmentation 
tasks. Li et  al. [37] proposed ATTTransUNet, a combi-
nation of transformer and CNN, exhibiting high seg-
mentation performance on three types of medical image 
datasets, including thyroid ultrasound (ThyroidUS). Yang 
et  al. [38] proposed CSwin-PNet, connecting CNN and 
Swin Transformer, and demonstrated high performance 
in breast lesion segmentation tasks from ultrasound 
images. Kawamoto et  al. [39] proposed a site-specific 
3D segmentation method of skeletal muscle in L3 slices 
from CT images. Kamiya et al. [40] discuss the necessity 
of musculoskeletal analysis and the necessary image pro-
cessing techniques and introduce deep learning-based 
segmentation techniques from CT images. Ashino et al. 
[41] improved performance in the segmentation of the 
sternocleidomastoid and other skeletal muscles by using 
multiclass learning.

Transfer learning for medical imaging
Collecting training data is particularly challenging when 
training deep learning models on medical images. Many 
studies have conducted transfer learning to solve this 
problem. Chen et al. [42] pretrained a CNN-based model 
on multiple medical image datasets and then performed 

transfer learning with a small number of labeled images 
to segment the lungs and liver. The model achieved better 
performance through transfer learning. In [43], transfer 
learning was performed with both identical and non-
identical domain data respectively for the diabetic foot 
ulcer (DFU) classification task. The experiments showed 
that transfer learning with identical domain data signifi-
cantly improves performance. Raghu et  al. [44] showed 
that the performance improvement is not significant 
when transfer learning is performed on medical data-
sets using networks pretrained on ImageNet dataset. To 
obtain a model trained with the same domain data while 
reducing the labeling effort, Alzubaidi et al. [45] trained 
a model with unlabeled medical image data. Then, trans-
fer learning was performed with a few labeled images. 
Also, transfer learning was conducted for the red blood 
cell classification task in [46]. The performance of the 
model was improved by performing same domain trans-
fer learning. Heker et al. [47] conducted transfer learning 
using the ImageNet and LiTS datasets for deep learn-
ing models that perform classification and segmentation 
tasks. Experiments showed that models pretrained with 
the same domain data (LiTS dataset) show higher per-
formance after transfer learning. Unlike previous stud-
ies, our research performs transfer learning with various 
deep learning models and datasets, comparing the train-
ing process and performance across different aspects. 
We also compare the results of segmentation tasks from 
semi-automatic segmentation tools and deep learning 
models in terms of segmentation speed and performance.

Automatic CT image labeling for organ 
segmentation by transfer learning
First, we segment the muscle on CT images using a 
CNN-based model and the BMI TOOL, which does not 
require training, and compare their performances. Then, 
we check whether performance can be improved with 
fewer data through transfer learning. To do this, we label 
muscles in the BTCV dataset. Then training was per-
formed while increasing the training data in the fully ini-
tialized and pretrained models, and the performance was 
observed. In addition, we quantitatively compared the 
performance with the latest transformer-based models to 
confirm that the CNN-based model is competitive.

In addition, we conducted experiments on scenarios 
in which transfer learning was performed by collect-
ing data from various institutions. Transfer learning 
was conducted with three public datasets labeled for 
the liver, and the learning curve and final performance 
were confirmed. Then, by checking the performance 
on the untrained dataset, the possible reusability of the 
model is explored. Finally, when a model trained on a 
specific dataset was transfer-learned to another dataset, 
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we observed a change in performance on the previously 
trained data. This section explains the methods used in 
the experiments for each task.

Labeling tool to collect training data
To proceed with labeling manually, we created an appli-
cation that allows manual labeling in the Windows oper-
ating system. This program displays CT images with 
overlapping labels. Since the label is shown as translu-
cent, it is possible to work while checking which area of 
the CT image has been labeled. Users can mark muscle, 
subcutaneous fat, and visceral fat by zooming in and 
moving the photo. In this application, muscle tissue is 
expressed in green, subcutaneous fat in red, and visceral 
fat in blue. Figure 2 shows how to use the labeling tool we 
made.

The manufactured labeling tool requires a CT image 
and a prelabel image file. The CT image and the prelabel 
are overlapped, and the prelabel is translucent, so a user 
can work while checking the contour of the CT image 
behind it. Enlarging or reducing the image by scrolling 
with the mouse is possible. Moreover, the labeling tool 
can work in units of files and units of folders. In the file 
unit operation, a user can select one CT image and a pre-
label image file and then save the corrected label image. 
For folder unit work, folders containing CT images, pre-
labels, and modified label images in one folder should be 
located in subfolders, respectively. Also, CT images and 
prelabel images should be prepared in the same order and 
the same number. In that state, if a user selects a folder 
in the labeling tool, the first CT and prelabel images are 

displayed on the screen. Suppose a user clicks the button 
to work with the next file after working with the previ-
ous one. In that case, the label file a user is working on 
is saved, and the next image is output so that a user can 
perform the work sequentially.

VNet network
We trained the currently popular VNet [48] CNN-based 
network for muscle segmentation on CT images which 
can approve baseline weakness. VNet is a neural network 
model composed of an encoder-decoder architecture 
with a structure similar to UNet. The architecture of the 
VNet is shown in Fig.  3. The encoder-decoder extracts 
the feature map by performing downsampling and 
upsampling four times and determines the class belong-
ing to each pixel by applying the softmax function on the 
output of the last layer. Like UNet, a residual connection 
directly connects the encoder output to the decoder. Such 
an architecture reduces information loss due to multiple 
downsampling, enabling more accurate segmentation. 
VNet was originally studied to perform segmentation on 
3D MRI data. However, in this study, all convolution lay-
ers were modified to be two-dimensional to perform seg-
mentation on 2D CT data. The model’s input is a size 512 
* 512 grayscale image, and the model’s output is the same 
size. In VNet, the authors proposed a dice loss function 
and the network structure for performing segmenta-
tion on 3D images. Dice loss is effective when training a 
model that segments a target that occupies a small por-
tion of the entire image. However, there was little differ-
ence between dice loss function and cross-entropy since 

Fig. 2 Execution screen of proposed labeling application. Users can edit CT and prelabel images after uploading them. We marked muscles 
in green, subcutaneous fat in red, and visceral fat in blue
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muscles are distributed over a large area on CT images. 
In this study, we used cross-entropy as the loss function.

Experiment settings
This section explains the performed experiments, data-
sets we used, implemented models, and evaluation 
metrics.

Baseline and implemented models
We used BMI TOOL as the baseline to compare perfor-
mance with the neural network model. BMI TOOL was 
developed for the semi-automatic segmentation of sub-
cutaneous fat, visceral fat, and muscle in CT images. 
Users can segment muscle and fat by uploading a single 
Dicom file to the application. First, the preprocessing 
step removes the background image from the CT image. 
Secondly, the boundaries between muscles and inter-
nal organs are distinguished in the boundary step. BMI 
TOOL transforms the initial curve manually drawn by a 
user using the active contour method [49]. Finally, sub-
cutaneous fat, muscle, and visceral fat are detected in the 
preprocessed CT images in the identification step. Then, 
it calculates the BMI index by multiplying the number 
of pixels for each type by the pixel surface area value to 
obtain the area. We show the execution screen of BMI 
TOOL in Fig. 4.

The baseline technique has the advantage of not requir-
ing a learning process and can segment muscle and fat. 
Still, it is difficult to use to perform tasks on many CT 
images. First, the baseline can only segment one CT 
image at a time. It is necessary to input the Hounsfield 
Unit for each image and draw a line to distinguish sub-
cutaneous and visceral fat. As a result, it takes at least 
2-3 minutes to perform segmentation on one CT image. 
Moreover, because the baseline cannot save the output, 
a user has to perform segmentation again whenever it is 
needed. Finally, the baseline will only measure correctly if 
the split line is drawn correctly because the user cannot 
modify it.

UNETR [50] is a network developed to perform 3D 
medical image segmentation tasks. UNETR differs from 
existing UNet-based networks in that the transformer 
architecture is used as an encoder. However, it shares 
similarities in that the encoder delivers outputs to the 
decoder and has a “U-shaped” structure. The encoder 
consists of 12 transformers. An input image and the 
encoder outputs of the 3rd, 6th, and 9th encoder are 
delivered to the decoder. In this study, 2D CT images 
were used for muscle and liver segmentation tasks to test 
the segmentation performance in 2D data.

Swin-UNETR [51] is a network based on the swin 
transformer developed to compensate for the vision 
transformer’s shortcomings that follow the transformer’s 

Fig. 3 The architecture of VNet network
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structure for natural language processing. The swin 
transformer is a network suitable for computer vision 
work with fewer calculations than the existing vision 
transformer. After performing the convolution operation, 
the input image and the output of the encoder are con-
nected to the decoder. The encoder consists of four swin 
transformer blocks, and the decoder consists of CNNs.

ParaTransCNN [35] achieved high performance in 
organ segmentation tasks on abdominal CT images by 
combining CNN and Transformer architectures. It con-
sists of an encoder composed of transformers and an 
encoder composed of CNNs arranged in parallel. The 
outputs of both encoders are passed through a channel 
attention module to the decoder. For ParaTransCNN, the 
input image size was adjusted to 224*224 to utilize the 
pretrained ResNet34 encoder.

VNet utilizes all convolutional layers within the 
encoder and decoder as 2D convolutional layers. On the 
other hand, UNETR and Swin-UNETR were adjusted to 
receive two-dimensional patches from the transformer 
encoder, and then constructed the decoder’s convolu-
tional layers as 2D convolutional layers.

Dataset
Training data collected for muscle segmentation
The data set collected for learning consists of 6 CT data 
sets, each of which differs in whether one patient used 
the contrast agent and the shooting time. Among them, 
we used five sets of CT data as the training dataset and 
the remaining one as the test dataset. For labeling, first, 
the output result of the existing BMI TOOL was cap-
tured and used as a prelabel. Then, an expert manually 

modified the prelabel and constructed the ground truth 
data using the suggested labeling tool.

Additionally, the BTCV dataset2 was used for perform-
ing transfer learning and measuring performance. Since 
the data set is 3D CT data and there is no label for mus-
cles, the image was sliced to make 2D data and labeled 
with BMI TOOL. For two CT images, labeling was per-
formed using BMI TOOL, transfer learning was per-
formed using the first CT image, and performance was 
measured using the second CT image as test data.

Datasets for observing effects of transfer learning
We trained the models on three datasets and observed 
their performance. All datasets are 512 * 512 in size when 
converted to 2-dimensional data. Preprocessing of CT 
data involved clipping the images from DICOM data 
within the range of [-175, 250] based on HU(Houndsfield 
Unit) values, followed by rescaling the pixel values to the 
range of [0, 1]. When conducting muscle segmentation 
experiments, the experiments were conducted using the 
original DICOM data size (512 * 512). However, para-
transCNN conducted experiments by resizing CT images 
to 224 * 224 to utilize the CNN encoder, ResNet34, 
within the model.

For liver segmentation experiments using LiTS, BTCV, 
and Chaos datasets, experiments were conducted after 
resizing the data size to 128 * 128 to facilitate efficient 
training for various learning scenarios.

Fig. 4 Execution screen of BMI TOOL. A user must input the Houndsfield Unit values for fat and muscle, and draw an ROI to separate the inside and 
outside of the abdomen after uploading the CT image in Dicom format. The image on the right shows the segmentation result

2 https:// www. synap se. org/# !Synap se: syn31 93805/ wiki/ 217789

https://www.synapse.org/#%21Synapse:syn3193805/wiki/217789
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LiTS dataset The LiTS dataset [3] consists of 201 sets 
of CT data, of which 131 sets can be used publicly. In 
the CT images, labeling is performed for liver and liver 
tumors. The image data was collected from seven clinical 
sites all over the world. In this study, a model was trained 
using only liver labels to perform transfer learning on the 
liver segmentation task. We used 118 sets as training data 
and 13 sets as test data. The capacity of the LiTS dataset 
is about 50 GB after decompression.

The dataset is provided in the 3D NIFTY format. 
Since we had to perform segmentation on a 2D CT 
image, we extracted pixel data and converted it into 
2D NumPy(.npy) data. The total number of converted 
data is 58,638. We used 52,188 data as training data and 
6,450 as test data.

BTCV dataset The 30 sets of 50 CT images can be used 
as training data in the BTCV dataset. The remaining 20 
sets are test data, and their labels have not been revealed 
publicly. People with expertise conducted manual labe-
ling on 13 types of organs in the abdomen. We extracted 
only the liver label and trained deep-learning models in 
this study. Among the total dataset, we used 26 sets as 
training data and the others as test data. The size of the 
used BTCV dataset before resizing is about 1GB. This 
dataset was collected at Vanderbilt University Medical 
Center (VUMC).

Because the BTCV dataset is provided in 3D NIFTY 
format, we converted it into 2D data for our use. 
Among the total of 3,779 data, we used 3,295 for train-
ing and 484 for testing.

Chaos dataset We used CT data and labels for segmen-
tation from the Chaos dataset [4], which consists of 20 
sets of CT data. We used 17 sets as training data and 3 
sets as test data. Among the Chaos datasets, the size of 
the dataset we used is about 1GB. The Chaos dataset was 
collected from the Department of Radiology, Dokuz Eylul 
University Hospital.

The dataset consists of 2,874 data in 2D DICOM 
(.dcm) format. We changed only the data format to 
NumPy for our use. Of the total data, we used 2,568 for 
training and 306 for testing.

Evaluation metrics
To compare the performance of the VNet and base-
line, we used the dice score as an evaluation scale. The 
expression for the dice score is as follows,

where |P| and |G| mean predicted pixels and ground 
truth pixels, respectively. The more the model’s predic-
tion matches the ground truth, the higher the dice score.

In addition, we measured accuracy and precision. 
Measurements should be calculated after obtaining the 
values of TP, TN, FP, and FN. TP and TN signify true pos-
itive and true negative, respectively. The two values rep-
resent correctly predicted pixels. False positive and false 
negative refer to pixels incorrectly predicted as positive 
and negative, respectively. The equations of accuracy and 
precision are as follows. Accuracy represents the number 
of correctly segmented pixels out of the total number of 
pixels that have been segmented.

Hausdorff Distance refers to the maximum distance 
among the shortest distances from points in one set to 
the nearest points in another set. It is mathematically 
expressed as shown in Eq.  2. In this study, we calculate 
the Hausdorff Distance between the predicted segmenta-
tion region and the ground truth region to further assess 
segmentation accuracy. To mitigate the influence of outli-
ers, we use the 95% Hausdorff Distance.

Accuracy is not good as a measure of performance 
when the number of pixels corresponding to the target 
class is unbalanced in the segmentation operation. This 
is because even if all data is predicted as true or false, the 
performance will be measured as high. So, to overcome 
this, precision was additionally measured.

Precision is the percentage of the number of pixels 
predicted to be true that are actually true. In this study, 
the accuracy value can be high even if the muscle is not 
appropriately segmented because the number of muscle 
pixels is fewer than background pixels. Therefore, it is 
necessary to correctly count the number of pixels divided 
into muscle.

Transfer learning on multiple datasets
Transfer learning aims to extract knowledge from one 
or more source tasks and apply that knowledge to a tar-
get task. In this study, there are two main experiments 
conducted using transfer learning. First, to segment 

(1)DICE =
2(P ∩ G)

|P| + |G|

(2)Hausdor f f Distance = max{max
x∈X

min
y∈Y

d(x, y), max
y∈Y

min
x∈X

d(x, y)}

(3)Accuracy =
TP + TN

TP + FP + TN + FN

(4)Precision =
TP

TP + FP
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muscles, labeling was performed on CT images through 
BMI TOOL, and modified by experts. After labeling, 
we trained the VNet and compared its performance to 
that of BMI TOOL. Additionally, to explain the reason 
for using a CNN-based neural network model in 2D CT 
images, performance was compared with the latest trans-
former-based models. Then, we tested the performance 
on data collected from other institutions, performed 
labeling on a few data, and performed transfer learning to 
observe the performance.

Then, to confirm the effect of transfer learning on a 
large-scale dataset, the neural network was trained for 
the number of all cases for the three datasets in which 
liver labeling was performed, and various aspects of the 
performance were observed. The first performance meas-
ures are the learning curve and the final performance. 
For each dataset, we observed the difference in learning 
curve and final performance according to transfer learn-
ing. Next, we checked the performance of a completely 
untrained model on a specific dataset. Finally, we observe 
the performance change of the models on which transfer 
learning has been performed. A total of 15 models were 
trained, and the types are shown in Table 1.

Transfer learning strategy
Transfer learning for muscle segmentation involved 
training the VNet network, trained on datasets collected 
from hospitals, on a small subset of BTCV datasets. A 
learning rate of 0.0005 and Adam optimizer were used 
for all model architectures. Regardless of the number of 
data used for transfer learning, training was conducted 
for 500 epochs. When performing transfer learning for 
the liver, the same learning rate and optimizer were uti-
lized. Upon observing the learning curve, convergence 
was faster for the liver compared to muscles. Thus, train-
ing was conducted for a total of 200 epochs. In this paper, 
for transfer learning, additional training was conducted 
for all layers without freezing any part of the network.

Experimental results
In this section, we describe the experiments and results 
performed in the environment described in the previous 
section.

Segmentation speed comparison between baseline 
and VNet
In this section, we compare the segmentation perfor-
mance speed of VNet and the baseline to determine 
whether the trained artificial neural network has an 
advantage in segmentation speed. Table  2 shows the 
average and standard deviation of the time taken when 
5 people who were trained to use the baseline technique 
performed segmentation on 50 CT images. It took an 

average of 19 to 39 seconds for humans to perform the 
split. However, VNet consumed an average of about 
0.033 seconds per sheet. Experimental results show that 
neural network models require a lot of time and effort to 
construct training data, but can quickly segment many 
CT images after training.

Performance comparison between BMI TOOL 
and deep‑learning‑based models
Figure  5 shows the results of comparing the muscle 
segmentation performance of VNet and BMI TOOL. 
The BMI TOOL may misclassify a part of an organ as a 
muscle because it needs to manually separate the inside 
and outside of the abdomen and segments based on the 
HU(Hounsfield Unit) value. It can also misclassify the 
spinal cord as a muscle. However, the trained model no 
longer segments organs or the spinal cord as the mus-
cle. We tried to measure the performance using a con-
fusion matrix and it illustrated in Fig.  6. In the case of 
precision, VNet was more dominant with a score of 
0.876713 and BMI tool 0.759561. In many cases, these 
results are shown because the BMI tool misclassified the 
organ region and spinal cord. For accuracy, VNet scored 
0.986411, and the BMI tool scored 0.979780, confirming 
that VNet better performed than the BMI tool.

Moreover, the quantitative performance comparison 
is shown in Table  3. Deep learning-based models dem-
onstrate superior segmentation performance compared 
to traditional semi-automatic techniques. Although 
deep learning models require time for training, they can 
save time compared to traditional semi-automatic tools 
when performing segmentation tasks on a large volume 
of images (the time required for segmentation using the 
semi-automatic model is shown in Table 2). Additionally, 
CNN-based models still exhibit competitive performance 
compared to Transformer-based models.

Transfer learning to BTCV dataset
In the previous section, we compared the segmenta-
tion performance of baseline and VNet for muscles in 
terms of speed and accuracy. Through the experimen-
tal results, VNet showed faster and better segmenta-
tion performance than the baseline after training. In this 
section, transfer learning was performed on CT images 
from other devices with the already trained network. 
The training curve is compared with the initialized VNet 
model, and the performance advantage of using the pre-
trained network is verified through experiments.

Transfer learning aims to extract knowledge from one 
or more source tasks and apply that knowledge to a tar-
get task. Even for a trained model, it can be challenging 
to expect good performance if the model is trained on a 
dataset taken from another device. For this scenario, we 
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sought to determine how many images must be used in 
training to reach the desired performance through trans-
fer learning.

The distribution of pixels for CT images differs 
depending on the filming equipment. Therefore, we can-
not be convinced that a model will perform as well if 
another institution has trained it. We experimented to 
determine how much data is needed to improve perfor-
mance. We assume that transfer learning will improve 
the model’s performance by collecting additional labeled 
CT data taken by another device. We constructed the 
training dataset by labeling the BTCV dataset. Transfer 
learning was performed and performance was measured 
while increasing the training data by 5 to 30. The results 
are shown in Fig. 7. As a result, we confirmed that per-
formance can be significantly improved even if transfer 
learning is performed with only a small number of data.

Through experimental results, it can be inferred that 
models trained on SEED data collected from different 
devices outperform initialized models in terms of seg-
mentation performance. Utilizing the trained model for 
pseudo labeling during additional labeling tasks for train-
ing presents the potential to reduce labeling costs.

Observing the learning curve of deep learning models
In this section, we perform transfer learning for the seg-
mentation task using VNet, transformer-based UNETR, 
and Swin-UNETR. We observe the model’s learning 
curve and segmentation performance. Our primary focus 
is on two aspects: first, that the convergence speed of 
performance is faster with transfer learning; second, that 
transfer learning yields similar or better segmentation 
performance.

VNet The learning curve and division performance 
for the VNet network are shown in Fig.  8. First, for the 
LiTS dataset, it was found that the model trained through 
transfer learning converged faster, and the performance 
did not differ significantly between the models. Next, 
for the BTCV dataset, the model that  conducted trans-
fer learning using other data performed better than 
the model trained with only BTCV data. For the Chaos 
dataset, similar to the learning curve for the BTCV 
dataset, the models trained through transfer learning 
showed significantly faster convergence and better final 
performance.

UNETR The learning curve and final performance of 
the UNETR model are shown in Fig.  9. In the learning 
curve for the LiTS dataset, the convergence rate of the 
model trained only on the LiTS dataset was low. In addi-
tion, models trained on the BTCV dataset showed rela-
tively better performance and faster performance conver-
gence than those trained by transfer learning. Similarly, 
for the Chaos dataset, the transfer learning model after 
learning with other datasets performed better, and the 
convergence speed of performance was faster than the 
model trained only with the Chaos dataset.

Swin‑UNETR Finally, the learning curve and final 
performance of the Swin-UNETR model are shown in 
Fig.  10. As a result of training the Swin-UNETR model 
on the LiTS dataset, there was no significant difference 
in convergence speed or performance. However, for 
the BTCV and Chaos datasets, the models trained with 
transfer learning converged faster and had a better final 
performance. Among the models trained with trans-
fer learning, models trained with the LiTS dataset show 
higher performance.

Table 1 Order of models trained to observe the effect of transfer 
learning on multiple medical image datasets

Model No. Training dataset

1 LiTS

2 LiTS BTCV

3 LiTS Chaos

4 LiTS BTCV Chaos

5 LiTS Chaos BTCV

6 BTCV

7 BTCV LiTS

8 BTCV Chaos

9 BTCV LiTS Chaos

10 BTCV Chaos LiTS

11 Chaos

12 Chaos LiTS

13 Chaos BTCV

14 Chaos LiTS BTCV

15 Chaos BTCV LiTS

Table 2 Comparison of segmentation speed of the VNet and baseline

Person 1 Person 2 Person 3 Person 4 Person 5 VNet

Avg 19.80s 29.28s 26.04s 33.80s 39.46s 0.03s

SD 2.84s 6.37s 3.34s 6.74s 8.47s 0.001s
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Fig. 5 The segmentation results using VNet and BMI TOOL

Fig. 6 Confusion matrix of BMI TOOL and VNet
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Observation of performance on untrained dataset
In the previous section, we observed the performance 
convergence speed and final performance of each model 
according to whether or not transfer learning was per-
formed. In this section, the performance of each dataset 
is compared according to whether or not it is trained. 
Experimental results demonstrated that models trained 
on the LiTS dataset achieved relatively high accuracy on 
previously unseen datasets across all models. Unlike the 
CHAOS and BTCV datasets, which were collected from 
a single institution, the LiTS dataset was gathered from 
multiple institutions and contains the largest volume of 
data. This indicates that models trained on large amounts 
of data collected from various institutions achieve better 
generalization.

VNet First, the performance comparison for the VNet 
network is shown in Table 4. Models not trained on the 

LiTS dataset showed relatively low performance on the 
LiTS dataset. However, in the performance compari-
son on the BTCV dataset, there were cases with higher 
performance. The high-performing models had all been 
trained on the LiTS dataset before. Finally, for the Chaos 
dataset, the model trained on the Chaos data showed 
the best performance. However, unlike the results 
for the LiTS dataset, the performance difference was 
insignificant.

UNETR Secondly, the same experiment was per-
formed on the UNETR model, and the results are shown 
in Table  5. Regarding the LiTS dataset, the models that 
were not yet trained on the LiTS dataset have relatively 
low performance compared to the trained models. Next, 
a model that performed better than the model trained 
on the BTCV dataset was observed. These models had 
all been trained on the LiTS dataset. Finally, we can see 

Fig. 7 Model performance according to the number of additional training data for transfer learning

Table 3 Comparison of segmentation performance of BMI TOOL and neural network models

Model Dice cofficient 95%HD Accuracy Precision Training time

BMI TOOL 0.84 17.1793 0.9798 0.7595 -

VNet 0.8846 5.3277 0.9864 0.8767 1.133hr

UNETR 0.8663 5.7770 0.9840 0.8563 3.213hr

Swin-UNETR 0.8595 6.9311 0.9836 0.8630 2.292hr

UNET 0.8737 6.8585 0.9853 0.8858 1.237hr

ParaTransCNN 0.8637 4.0527 0.9837 0.8564 3.036hr
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Fig. 8 The learning curves of all VNet networks trained in the order presented in Table 1 (L : LiTS, B : BTCV, C : Chaos). When performing transfer 
learning across all datasets, the convergence speed of performance is faster. Moreover, in cases of small training data sizes, employing transfer 
learning results in better final performance

Fig. 9 The learning curves of UNETR models. The performance convergence speed of the models trained through transfer learning is generally 
faster, and the final performance is similar or better. In both the BTCV and Chaos datasets, there is a significant performance difference depending 
on whether transfer learning is applied. Performance is notably better when transfer learning is employed (L : LiTS, B : BTCV, C : Chaos)
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that the untrained model performs better on the Chaos 
dataset. Among them, the performance was better in the 
model trained on the LiTS dataset.

Swin‑UNETR Finally, the experimental results for the 
Swin-UNETR model are shown in Table  6. Models not 
trained on the LiTS dataset performed relatively poorly 

Fig. 10 Graphs illustrating the learning curve of the Swin-UNETR model. As with other models, the convergence speed of models trained 
through transfer learning is faster, and the final performance is similar or better (L : LiTS, B : BTCV, C : Chaos)

Table 4 Performance comparison of the VNet models trained 
with one dataset and models that were never trained with it

a Performance on the last trained dataset

Trained datasets Dataset

LiTS BTCV Chaos

LiTS 0.8940a 0.8736 0.9124

BTCV→LiTS 0.8865a - 0.9205

Chaos→LiTS 0.8833a 0.8602 -

BTCV→Chaos→LiTS 0.8772a - -

Chaos→BTCV→LiTS 0.8876a - -

BTCV 0.6849 0.8107a 0.8999

LiTS→BTCV - 0.8843a 0.9193

Chaos→BTCV 0.7321 0.8845a -

LiTS→Chaos→BTCV - 0.8903a -

Chaos→LiTS→BTCV - 0.8763a -

Chaos 0.6083 0.7631 0.9310a

LiTS→Chaos - 0.8538 0.9466a

BTCV→Chaos 0.6420 - 0.9354a

LiTS→BTCV→Chaos - - 0.9489a

BTCV→LiTS→Chaos - - 0.9503a

Table 5 Performance comparison of the UNETR models trained 
with one dataset and models that were never trained with it

a Performance on the last trained dataset

Trained datasets Dataset

LiTS BTCV Chaos

LiTS 0.8371a 0.6857 0.8729

BTCV→LiTS 0.8654a - 0.8798

Chaos→LiTS 0.8021a 0.6379 -

BTCV→Chaos→LiTS 0.8582a - -

Chaos→BTCV→LiTS 0.7710a - -

BTCV 0.6408 0.5768a 0.7994

LiTS→BTCV - 0.7704a 0.8868

Chaos→BTCV 0.6260 0.5902a -

LiTS→Chaos→BTCV - 0.7423a -

Chaos→LiTS→BTCV - 0.7665a -

Chaos 0.4613 0.5668 0.7782a

LiTS→Chaos - 0.8126 0.9127a

BTCV→Chaos 0.6019 - 0.8118a

LiTS→BTCV→Chaos - - 0.9212a

BTCV→LiTS→Chaos - - 0.9326a
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compared to the trained models. For the BTCV dataset, 
the models that had been trained on the LiTS dataset 
performed relatively well. Finally, the model trained on 
the Chaos dataset performed better than the non-trained 
model, but the difference was insignificant.

We observed that the VNet performs better seg-
mentation on similar domain data that has not been 
trained.

Observing the effect of transfer learning and catastrophic 
forgetting
In this section, we observe the segmentation performance 
on previously trained datasets after transfer learning. 

Experimental results showed that performance on the 
datasets trained before transfer learning generally declined 
slightly. These results highlight the limitations of transfer 
learning and suggest directions for future research.

VNet First, the performance change of the VNet net-
work is shown in Table 7. It shows that models trained on 
the LiTS dataset and then transferred learning to other 
datasets show lower performance on the LiTS dataset. 
In the BTCV dataset, we confirmed that the model’s per-
formance was well preserved without significant change. 
The performance of the models trained on the Chaos 
dataset and then subjected to transfer learning is shown 
on the right of the table. Although the performance was 
lower than the model trained only on the Chaos dataset, 
the performance gap was insignificant.

UNETR Next, the results of observing the performance 
change of the models that performed transfer learn-
ing on the UNETR network are shown in Table  8. The 
transfer learned models trained once on the LiTS data-
set show degraded performance on the LiTS dataset. In 
addition, the performance of the models trained on the 
BTCV dataset and transferred to other datasets is shown 
in the center of the table. We found cases where the 
models with transfer learning performed better than the 
model trained with only the BTCV dataset. However, the 
increased performance was not competitive compared to 
the VNet network. Finally, the performance on the Chaos 
dataset is shown on the right of the table. We found cases 
where the transfer learned model’s performance on the 
chaos dataset improved. However, the improved perfor-
mance did not exceed that of the other networks.

Swin‑UNETR The performance changes of the mod-
els that performed transfer learning on the Swin-
UNETR network are shown in Table  9. The transfer 

Table 6 Performance comparison of the Swin-UNETR models 
trained with one dataset and models that were never trained 
with it

a Performance on the last trained dataset

Trained datasets Dataset

LiTS BTCV Chaos

LiTS 0.8721a 0.8467 0.8909

BTCV→LiTS 0.8636a - 0.8652

Chaos→LiTS 0.8662a 0.8093 -

BTCV→Chaos→LiTS 0.8663a - -

Chaos→BTCV→LiTS 0.8800a - -

BTCV 0.7013 0.8331a 0.8823

LiTS→BTCV - 0.8660a 0.8876

Chaos→BTCV 0.7104 0.8077a -

LiTS→Chaos→BTCV - 0.8610a -

Chaos→LiTS→BTCV - 0.8492a -

Chaos 0.5933 0.8494 0.9143a

LiTS→Chaos - 0.7733 0.9343a

BTCV→Chaos 0.6804 - 0.9272a

LiTS→BTCV→Chaos - - 0.9356a

BTCV→LiTS→Chaos - - 0.9393a

Table 7 Performance measurement of transfer learned VNet models on the previously trained dataset

a Performance on the last trained dataset

LiTS BTCV Chaos

Trained dataset Dice score Trained dataset Dice score Trained dataset Dice score

LiTS 0.8940a BTCV 0.8107a Chaos 0.9310a

LiTS → BTCV 0.8288 BTCV → LiTS 0.8533 Chaos → LiTS 0.8937

LiTS → Chaos 0.7728 BTCV → Chaos 0.8032 Chaos → BTCV 0.9056

LiTS → BTCV → Chaos 0.7902 BTCV → LiTS → Chaos 0.8608 Chaos → LiTS → BTCV 0.9178

LiTS → Chaos → BTCV 0.7996 BTCV → Chaos → LiTS 0.8240 Chaos → BTCV → LiTS 0.9164

BTCV → LiTS 0.8865a LiTS → BTCV 0.8843a LiTS → Chaos 0.9466a

BTCV → LiTS → Chaos 0.6744 LiTS → BTCV → Chaos 0.8638 LiTS → Chaos → BTCV 0.9143

Chaos → LiTS 0.8833a Chaos → BTCV 0.8845a BTCV → Chaos 0.9354a

Choas → LiTS → BTCV 0.8146 Chaos → BTCV → LiTS 0.8621 BTCV → Chaos → LiTS 0.8946
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learned models trained once on the LiTS dataset show 
low performance on the LiTS dataset. In the results 
for the BTCV dataset, the performance of transfer 
learned models was well preserved or slightly improved 
compared to the results on the LiTS dataset. In the 
results for the BTCV dataset, the performance of 
transfer learned models was well preserved or slightly 
improved. The experiment result of the Chaos dataset 
is shown on the right of the table. After transfer learn-
ing was conducted, the models showed slightly lower 
segmentation performance on the Chaos dataset. The 
overall performance was not significantly different 
from the VNet.

Through experimental results, it can be observed that 
the 2D CNN-based model demonstrates competitive seg-
mentation performance across various scenarios. Addi-
tionally, it is noted that even after further training with 
additional datasets, the model maintains its performance 
at a competitive level.

Conclusion
In this section, we summarize the experimental results, 
point out the limitations, and propose directions for 
future research. This study assumes a scenario where 
training data is scarce in clinical settings. We first com-
pared the performance of existing semi-automatic 
segmentation methods and deep learning-based meth-
ods. Then, we observed the performance of various 
deep learning models for segmentation tasks on 2D CT 
images. Finally, we demonstrated through experiments 
that learning strategies using transfer learning are effec-
tive across different deep learning models.

The experimental results indicated that deep learn-
ing-based methods surpassed semi-automatic seg-
mentation methods in both segmentation speed and 
performance. Although deep learning-based models 
require training time, their advantage becomes more 
apparent when a large amount of labeling is needed, as 
the time required for manual segmentation exceeds the 
time needed for training.

Table 8 Performance measurement of transfer learned UNETR models on the previously trained dataset

a Performance on the last trained dataset

LiTS BTCV Chaos

Trained dataset Dice score Trained dataset Dice score Trained dataset Dice score

LiTS 0.8371a BTCV 0.5768a Chaos 0.7782a

LiTS → BTCV 0.8322 BTCV → LiTS 0.6790 Chaos → LiTS 0.8189

LiTS → Chaos 0.7441 BTCV → Chaos 0.8140 Chaos → BTCV 0.8112

LiTS → BTCV → Chaos 0.7161 BTCV → LiTS → Chaos 0.7493 Chaos → LiTS → BTCV 0.8750

LiTS → Chaos → BTCV 0.7883 BTCV → Chaos → LiTS 0.6966 Chaos → BTCV → LiTS 0.8135

BTCV → LiTS 0.8654a LiTS → BTCV 0.7704a LiTS → Chaos 0.9127a

BTCV → LiTS → Chaos 0.7307 LiTS → BTCV → Chaos 0.8249 LiTS → Chaos → BTCV 0.8957

Chaos → LiTS 0.8021a Chaos → BTCV 0.5902a BTCV → Chaos 0.8118a

Choas → LiTS → BTCV 0.7754 Chaos → BTCV → LiTS 0.4617 BTCV → Chaos → LiTS 0.8696

Table 9 Performance measurement of transfer learned Swin-UNETR models on the previously trained dataset

a Performance on the last trained dataset

LiTS BTCV Chaos

Trained dataset Dice score Trained dataset Dice score Trained dataset Dice score

LiTS 0.8721a BTCV 0.8831a Chaos 0.9143a

LiTS → BTCV 0.8501 BTCV → LiTS 0.8264 Chaos → LiTS 0.8970

LiTS → Chaos 0.7913 BTCV → Chaos 0.8455 Chaos → BTCV 0.8938

LiTS → BTCV → Chaos 0.8012 BTCV → LiTS → Chaos 0.8522 Chaos → LiTS → BTCV 0.9012

LiTS → Chaos → BTCV 0.8461 BTCV → Chaos → LiTS 0.8324 Chaos → BTCV → LiTS 0.9140

BTCV → LiTS 0.8636a LiTS → BTCV 0.8660a LiTS → Chaos 0.9343a

BTCV → LiTS → Chaos 0.8223 LiTS → BTCV → Chaos 0.8519 LiTS → Chaos → BTCV 0.8975

Chaos → LiTS 0.8662a Chaos → BTCV 0.8077a BTCV → Chaos 0.9272a

Choas → LiTS → BTCV 0.8409 Chaos → BTCV → LiTS 0.8539 BTCV → Chaos → LiTS 0.9072
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In the segmentation of 2D CT images with lim-
ited training data, CNN-based models were found to 
achieve competitive performance compared to the lat-
est transformer-based models. The CNN-based VNet 
showed similar or better performance than trans-
former-based models under the proposed scenario. We 
proposed a learning strategy utilizing transfer learning 
to effectively train deep learning-based models in situ-
ations with limited training data. To demonstrate the 
effectiveness of this strategy across various networks, 
we conducted training and performance verification on 
multiple networks. The experimental results showed 
that transfer learning yielded good segmentation per-
formance in all networks. In actual clinical environ-
ments, when new segmentation is required for data 
captured with different devices, models can be effi-
ciently trained through transfer learning. If CT images 
captured with different devices and pre-trained models 
are available, they can be utilized to train segmentation 
models with better performance.

However, there are limitations to this study. More 
experiments with a wider range of comparison models 
are needed. Numerous model architectures have been 
proposed for medical image segmentation, and new 
architectures continue to emerge. Investigating the util-
ity and exploring the  reasons for the effectiveness of 
transfer learning across more model architectures could 
be a future research task. Additionally, research could 
focus on achieving more precise model generalization 
by integrating collected medical information for each 
patient into the segmentation process. Finally, addressing 
the performance degradation on the data trained before 
transfer learning remains a challenge that needs to be 
resolved.
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