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Abstract
Purpose  To evaluate the predictive capabilities of MRI-based radiomics for detecting lymphovascular space invasion 
(LVSI) in patients diagnosed with endometrial carcinoma (EC).

Materials and methods  A retrospective analysis was conducted on 160 female patients diagnosed with EC. The 
radiomics model including T2-weighted and dynamic contrast-enhanced MRI (DCE-MRI) images was established. 
Additionally, a conventional MRI model, which incorporated MRI-reported FIGO stage, deep myometrial infiltration 
(DMI), adnexal involvement, and vaginal/parametrial involvement, was established. Finally, a combined model was 
created by integrating the radiomics signature and conventional MRI characteristics. The predictive performance was 
validated by the area under the curve (AUC) of the receiver operating characteristic (ROC) curves. A stratified analysis 
was conducted to compare the differences between the three models by Delong test.

Results  In predicting LVSI, the radiomics model outperformed the clinical model in the training cohort (AUC: 
0.899 vs. 0.8862) but not in the test cohort (AUC: 0.812 vs. 0.8758). The combined model demonstrated superior 
performance in both the training and test cohorts (training cohort: AUC = 0.934, 95% CI: 0.8807–0.9873; testing cohort: 
AUC = 0.905, 95% CI: 0.7679-1).

Conclusions  The combined model exhibited utility in preoperatively predicting LVSI in patients with EC, offering 
potential benefits for clinical decision-making.
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space invasion
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Introduction
Gynecological cancers are one of the most common 
tumor types in women and a major cause of cancer-
related mortality in high-socioeconomic nations [1]. 
Endometrial carcinoma (EC) is one of the most fre-
quently diagnosed gynecological cancers, accounting for 
over 400,000 new cases and roughly 100,000 deaths every 
year [1]. Not all gynecological cancers have the benefit of 
efficient screening programs, which emphasizes the sig-
nificance of preventing these illnesses from developing 
or, at the very least, detecting them early to enable timely 
and successful treatment [1]. The majority of treatment 
for early-stage EC involves surgical procedures such as 
bilateral salpingo-oophorectomy and complete hysterec-
tomy, with or without lymphadenectomy. When consid-
ering adjuvant radiation therapy for high-risk variables, 
individuals in stages I–II and stage III who lack lymph 
nodes are considered. For these cases, the overall survival 
rate is about 90% [2, 3].

The presence of malignancy in the uterine myometri-
um’s lymphatic and/or vascular compartments is known 
as lymphovasular space invasion (LVSI) [4]. LVSI is a 
significant prognostic factor and an independent predic-
tor of lymph node metastases and a poor outcome in EC 
[5]. LVSI has gained significance in cancer staging, with 
the FIGO 2023 staging system incorporating it as a key 
factor for categorization [6]. However, the evaluation of 
LVSI is limited to samples acquired during hysterectomy. 
Given the strong correlation between a positive LVSI sta-
tus and para-aortic lymph node metastases, determining 
an individual’s LVSI status prior to surgery can therefore 
have a substantial impact on clinical treatment decisions, 
including whether para-aortic lymph node resection is 
required in cases of LVSI positivity. Therefore, it is essen-
tial to correctly diagnose LVSI prior to surgery to assist 
gynecologists in creating appropriate treatment plans 
and preventing overtreating patients. A common modal-
ity for preoperative EC testing is magnetic resonance 
imaging (MRI). It is accurate in assessing the extent of 
disease locally and the dissemination of extrauterine 
malignancies [7, 8]. Despite this, it is still difficult to diag-
nose LVSI before surgery using MRI or biopsy, and the 
only way to get a conclusive assessment is after hysterec-
tomy [6, 9]. Therefore, it becomes essential to precisely 
diagnose LVSI utilizing the three-dimensional MR imag-
ing before surgery.

Considerable attention has been drawn to recent 
advancements in radiomics. Radiomics can establish 
correlations between characteristic features detected in 
images and phenotypic or gene-protein properties by 
constructing descriptive and predictive models. Based 
on a comprehensive review and meta-analysis carried out 
by Di Donato V et al. [10], it was determined that pre-
operative MRI-radiomics evaluations were found to be a 

valid marker for tumor grading, significant myometrial 
penetration, LVSI, and nodal metastasis in patients with 
EC. Significant progress has been made in the molecu-
lar classification and genetic mapping of EC in the last 
few years. The use of cutting-edge strategies, such as 
artificial intelligence (AI), to detect histopathological 
indications of prognosis has grown in popularity and is 
anticipated to make it easier to customize the best course 
of treatment [11, 12]. In order to provide the best pos-
sible patient treatment, a comprehensive approach inte-
grating imaging, pathology, and molecular insights is 
highlighted by the use of MRI in the diagnosis and stag-
ing of EC [6]. The primary limitation of both genetic and 
clinicopathological prognostic markers is the require-
ment for post-surgical specimens obtained through 
thorough surgical staging. The application of machine 
learning to radiomics, which provides a non-invasive 
method of obtaining both quantitative and qualitative 
data from pre-treatment imaging, is gaining momen-
tum in the scientific community. The ability to discern 
beyond the human eye’s reach is praised for this [10]. 
These machine learning models have the potential to pro-
vide important insights into tumor identification, differ-
ential diagnosis, and therapy response assessment in the 
context of malignancies [13–17]. Compared to conven-
tional MRI, radiomics features provide superior stability 
and accuracy for LVSI diagnosis. However, a few studies 
have restricted its analysis to the region of interest (ROI) 
of a complete three-dimensional (3D) cancer image [18]. 
Thus, the primary objective of our study was to create 
and validate MRI-based radiomics models for the accu-
rate prediction of LVSI in a cohort of 160 EC patients 
from a single center.

Materials and methods
Study design and population selection
The Ethics Committee of our hospital waived the require-
ment for informed consent and allowed this retroac-
tive investigation. The study comprised 180 consecutive 
women with histologically confirmed EC who underwent 
a pelvic MRI before initiating therapy between January 
2017 and January 2023. Surgical pathological staging was 
carried out for each patient utilizing the global FIGO 
2009 staging guidelines [19].

Inclusion criteria were as follows:

(1)	Patients diagnosed with EC have undergone surgical 
and pathological examination.

(2)	Patients who had a pelvic MRI two weeks before 
surgery.

(3)	Patients who were untreated prior to surgery.

Patients were excluded for the following reasons:
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(1)	Tumors with a maximum diameter of less than 1 cm 
or those without detectable tumors on MRI (n = 22).

(2)	Incomplete MRI examination (n = 15).
(3)	Poor quality of imaging (n = 5).
(4)	Incomplete pathology reports (n = 8).
(5)	Receiving chemoradiotherapy or prior neoadjuvant 

therapy (n = 7).
(6)	Clinical characteristic data is missing (n = 42).
(7)	Other malignant tumors are present (n = 10; 6 with 

breast cancer and 4 with thyroid cancer).

The final study cohort consisted of 160 women. A flow-
chart illustrating patient demographics and exclusion cri-
teria is presented in Fig. 1.

MRI protocols
A 3.0 T MRI scanner (MAGNETOM Skrya; Siemens 
Healthineers, Erlangen, Germany) with an 8-channel 
phased array body coil was used to scan each patient. 
In order to reduce intestinal peristalsis, patients were 
instructed to fast for at least 4 h prior to the MRI.

The axial T1-weighted images (T1WI), T2-weighted 
images (T2WI), diffusion-weighted images (DWI), axial 
oblique dynamic contrast-enhanced MRI (DCE-MRI), 
and axial T2-weighted fat-saturation images were all part 
of the MRI examination. Utilizing a power injector, a 
gadolinium-based contrast agent (gadoterate meglumine, 

Hengrui) was injected intravenously at a dose of 0.2 mL/
kg at a rate of 2 mL/s. This was followed by a 20-mL 
saline flush at a rate of 2 mL/s. The MRI protocol is out-
lined in Table 1.

Lesion segmentation
For radiomics feature extraction, we extracted Digital 
Imaging and Communications in Medicine (DICOM) 
images from our Picture Archiving and Communica-
tion System (PACS) workstation. These pictures included 
axial oblique T2-weighted and axial oblique DCE-MRI 
from the second phase (55 s after injection). Upon being 
blinded to the clinical and pathological results, two radi-
ologists, each with ten and fifteen years of experience in 
gynecological tumor imaging, independently evaluated 
all MR imaging data and randomly assigned cases. The 
tumor diameter related to MRI, FIGO staging, adnexal 
involvement, cervical stromal invasion (CSI), deep myo-
metrial infiltration (DMI), and vaginal/parametrial 
involvement were all reported by the radiologists. We 
utilized the free and open-source program 3D Slicer (ver-
sion 4.10.2; http://download.slicer.org/) for manual seg-
mentation. T2WI and/or DWI served as our demarcation 
reference. Two 3D segmentations of the entire tumor 
were produced by defining the region of interest (ROI) 
on each slice of the tumor using both the axial T2WI and 
DCE-MRI. The plane with the best picture quality (least 

Table 1  MRI protocol
Parameters Axial T1 Axial T2 Diffusion weighted imaging (DWI) Axial oblique DCE
Repetition Time/Echo Time (ms) 670/10 5500/100 8000/52 7/2
Number of slicers 30 30 30 30
Thickness (mm) 8 8 8 5
FOV (mm) 24 24 32 24
Interslice gap 0.8 0.8 0.8 1
NSA 1 1 1 1
Flip angle (°) 90 90 90 15
b value (s/mm2) 0,800
DCE: Dynamic contrast-enhanced; TR: Repetition time; TE: Echo time; FOV: Field of view; NSA: No. of signals acquired. DCE imaging was performed after intravenous 
administration of gadoterate meglumine (0.2 mL/kg) at a rate of 2 mL/s, followed by a 20 mL saline flush

Fig. 1  Flow chart shows selection process of the study population and exclusion criteria
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artifact) was utilized to define the outline of the tumors. 
In order to choose repeatable radiomics features, we then 
analyzed the intra- and interclass correlation coefficients 
(ICC), with ICC > 0.75 denoting strong agreement. Before 
collecting radiomics characteristics, we performed MRI 
preprocessing, including normalization, resampling, dis-
cretization, and image filtering.

Feature selection and model construction
Radiomics features were calculated using the 
“Pyradiomics” package in Python v.4.2.1. From the T2WI 
and DCE-MRI, a total of 2218 radiomics features were 
retrieved and classified as original features and filtered 
features. Gray-level co-occurrence matrix (GLCM), 
gray-level independence matrix (GLDM), gray-level run 
length matrix (GLRLM), neighborhood gray-tone differ-
ence matrix (NGTDM), and gray-level size zone matrix 
(GLSZM) were among the original features. Following 
the application of various filters and transformations, 
the original images were used to compute filtered fea-
tures. First-order and texture features were computed 
after eight filters (wavelet, logarithm, square, square root, 
local binary pattern 2D, Laplacian Gaussian, exponential, 
and gradient) were applied to the original MR images. 
Detailed information regarding each feature and the cal-
culation process can be found in the Pyradiomics docu-
mentation (Fig. 2).

Stepwise sampling was used to randomly split the data-
set into a training group and a test group at a 7:3 ratio. 
We used Student t-tests or Mann-Whitney U tests to 
evaluate robust features between the LVSI-positive and 
LVSI-negative groups. All imaging characteristics were 
ranked ascendingly based on the p values, and the top 
5% were selected. Every pair of features was then given 
a Pearson correlation coefficient (r), which allowed us 
to identify couples with p-values that were lower and r 
values greater than 0.85. Finally, we identified the key 

features for LVSI status prediction using the Gaussian 
Naive Bayes (GaussianNB) model.

Multivariate logistic regression analysis was used to 
identify independent predictors for LVSI in EC using the 
collected clinical-MRI characteristics. To find out if there 
was multicollinearity between each parameter, LASSO 
regression was used. The MRI-reported FIGO stage, 
DMI, adnexal involvement, and vaginal/parametrial 
involvement were used to build the clinical prediction 
model, and the results indicated significant differences 
(p < 0.05) between the LVSI-positive and LVSI-negative 
groups in the training or test cohort (Table 2).

After building the combination model using the logistic 
regression method with forward stepwise selection based 
on the clinical-MRI and radiomics features, we evalu-
ated the performance of the combination, radiomics, and 
clinical-MRI models using the DeLong test and receiver 
operating characteristic curve (ROC) analysis. The model 
development workflow and the model selection decision-
making process are shown in Fig. 2.

Statistical analysis
SPSS 27.0 software and the R programming language 
(in R Studio Desktop version 4.2.1) were used for all sta-
tistical analyses. Independent sample t-tests were used 
to compare quantitative data, which were expressed as 
mean ± standard deviation (SD). The Mann-Whitney U 
test was used to compare skewed data, which were repre-
sented by R-scores and were shown as the median (inter-
quartile range). Using Fisher’s exact test or chi-square 
(χ2) test, differences in categorical variables between the 
training and test groups were evaluated. Logistic regres-
sion (LR) with LASSO penalty and the GaussianNB 
model built in Python 4.0 were used to build prediction 
models. We employed the area under the curve (AUC) 
of the ROC curve with a 95% confidence interval (CI) to 
assess the prediction accuracy of the created models. We 
also evaluated the specificity, sensitivity, and accuracy. 

Fig. 2  Radiomics workflow
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All hypothesis tests had two sides, and a statistically sig-
nificant outcome was defined as a p-value of less than 
0.05.

Results
Patients characteristics of clinical and histopathological 
results
A total of 160 patients with a mean age of 57.0 ± 9.7 (SD) 
years, ranging from 33 to 80 years. Each patient had a 
bilateral salpingo-oophorectomy and a complete hys-
terectomy. The 2009 FIGO staging system was used for 
supra-pathological staging [19]. All of the patients in the 
training and test cohorts have their clinical and MRI-
reported features listed in Table 2. The training and test 
groups did not differ significantly from one another. In 
both the training and test cohorts, significant correla-
tions (p < 0.05) were found between the LVSI-positive 
and LVSI-negative groups in MRI-reported FIGO stage, 
DMI, adnexal involvement, and vaginal/parametrial 
involvement.

Model performance
MRI-reported FIGO stage, DMI, adnexal involvement, 
and vaginal/parametrial involvement were found to be 
independent predictors of LVSI in EC (p < 0.05) using 

multivariate binary logistic regression analysis. As a 
result, the clinical-MRI model had these four factors. For 
both the training and test sets, the clinical-MRI mod-
el’s AUC values for predicting LVSI were 0.8862 (95% 
CI = 0.783–0.9894; accuracy = 90.2%, sensitivity = 81.0%, 
specificity = 92.3%) and 0.8758 (95% CI = 0.7688–0.9827; 
accuracy = 77.1%, sensitivity = 60.0%, specificity = 84.8%), 
respectively.

In order to predict LVSI in EC, 20 radiomics fea-
tures remain intact and chosen for the radiomics model 
(Table 3). The radiomics model performed better in the 
training cohort than the clinical model (AUCs 0.899 
vs. 0.8862, p < 0.05). However, the radiomics model 
did not surpass the clinical model in the test cohort 
(AUCs = 0.812 vs. 0.8758, p < 0.05). The training cohort 
(AUC = 0.934, 95% CI = 0.8807–0.9873; accuracy = 90.2%, 
sensitivity = 81.5%, specificity = 92.9%) and the test cohort 
(AUC = 0.9053, 95% CI = 0.7679-1; accuracy = 79.2%, sen-
sitivity = 90.0%, specificity = 76.3%) both showed the high-
est AUC for the combined model (Table  4). Significant 
variations were found between the three models in the 
training and test cohorts, as indicated by the Delong tests 
(p < 0.05). ROC curves of the three models in the training 
and test cohorts are shown in Fig. 3.

Table 2  The clinical and MR-Reported characteristics of all patients in the training and test cohorts
Variable Training group (n = 112) P Test group (n = 48) P

LVSI (+)(n = 26) LVSI(-) (n = 86) LVSI (+) (n = 10) LVSI (-)(n = 38)
Age, years
(mean ± SD)

57.3±9.72 57.3±10.07 0.993 57.3±7.72 55.79±9.50 0.646

CA125 (ng/ml) 107.95±146.92 34.40±58.40 0.019 175.00±432.8 25.73±19.66 0.304
MR-reported Tumor diameter (mm) 3.75±2.03 3.01±1.90 0.089 4.45±2068 3.55±2.86 0.376
MR-reported FIGO staging <0.001* <0.001*
I 8(%) 68(%) 2 34
II 4(%) 15(%) 0 4
III 10(%) 2(%) 6 0
IV 4(0%) 1(%) 2 0
MR-reported DMI <0.001* 0.002*
< 50% 6 70 1 25
≥ 50% 20 16 9 13
MR-reported
CSI

0.011 0.093

No 14 (%) 68(%) 6 32
Yes 12(%) 18(%) 4 6
MR-reported Adenexal involvement <0.001* <0.001*
No 18 85(%) 7 38
Yes 8 1 (%) 3 0
MR-reported Vaginal /Parametrial involvement <0.001 <0.001
No 20 84 6 38
Yes 6 2 4 0
Values are given as or mean± SD

CA125, cancer antigen 125; CSI, cervical stromal invasion; FIGO, International Federation of Gynecology and Obstetrics; LVSI, lymphovascular space invasion; DMI, 
Depth of myometrial invasion; CSI, Cervical stromal invasion; *, P<0.05

CA125 level was acquired within 1 week before surgery with a threshold value between 0 and 35 U/ml
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Discussion
In our work, the LVSI status in EC was ascertained by 
radiomics analysis of T2WI and DCE-T1WI, with an 
AUC of 0.812 in the testing cohort and 0.899 in the train-
ing cohort. The combined model’s AUC, which was 0.934 
in the training cohort and 0.9053 in the test cohort, was 
the best among all published research on LVSI in EC. 
Combining the accurate LVSI prediction with personal-
ized treatment may be beneficial for patients with early-
stage EC.

The histopathological diagnosis known as LVSI, or 
tumor emboli inside microvessels, has repeatedly been 
shown to be an independent, adverse prognostic factor 
for survival and recurrence [20]. Even though it is invisi-
ble to the naked eye on MR imaging, it has been shown to 
have a direct and substantial impact on the formulation 
of EC treatment plans, evaluation of lymph node metas-
tasis, and general prognostic assessment [21]. Radiomics 
capabilities provide important novel insights into the 
tumor microenvironment by allowing the extraction of 
large, high-dimensional data sets from clinical radiogra-
phy pictures [10]. One reliable predictor of LVSI in EC 
patients is preoperative MRI-radiomics research [22]. 
Our findings have, in part, confirmed the effectiveness of 
MRI-radiomics in predicting LVSI in patients with EC. 

Table 3  Features for constructing models
Features Feature 

contribution
t1c_wavelet-LLH_ngtdm_Coarseness 0.04
t1c_logarithm_ngtdm_Coarseness 0.07
t1c_logarithm_glrlm_GrayLevelNonUniformity 0.22
t1c_wavelet-LLH_glszm_LargeAreaEmphasis 0.24
t1c_squareroot_glszm_LargeAreaHighGrayLevelEm-
phasis

0.29

t1c_wavelet-HHH_gldm_SmallDependenceEmphasis 0.32
t1c_wavelet-LHH_gldm_SmallDependenceHighGray-
LevelEmphasis

0.40

t2_wavelet-LHH_gldm_SmallDependenceLowGray-
LevelEmphasis

0.62

t1c_wavelet-LHH_glszm_LargeAreaEmphasis 0.66
t2_logarithm_gldm_GrayLevelNonUniformity 0.75
t1c_gradient_ngtdm_Coarseness 0.76
t1c_wavelet-HLL_glszm_GrayLevelNonUniformity 0.79
t1c_square_glrlm_RunLengthNonUniformity 0.82
t1c_wavelet-LLH_glrlm_GrayLevelNonUniformity 0.87
t1c_original_shape_SurfaceVolumeRatio 0.93
t1c_wavelet-HHH_glszm_ZoneVariance 0.99
t1c_logarithm_gldm_GrayLevelNonUniformity 1.02
t1c_wavelet-LHH_gldm_SmallDependenceEmphasis 1.02
t1c_original_shape_LeastAxisLength 1.13
t1c_wavelet-LHL_glszm_GrayLevelNonUniformity 1.65

Table 4  Performance of 3 predictive models in the training and test groups
Model AUC (95%CI) Accuracya Sensitivitya Specificitya

Clinical
  Training group 0.8862 [0.783–0.9894] 0.9018 0.8095 0.9231
  Test group 0.8758 [0.7688–0.9827] 0.7708 0.6 0.8485
GussianNB
  Training group 0.899 [0.8354–0.9627] 0.8378 0.8519 0.8333
  Test group 0.812 [0.6231-1] 0.7292 0.7778 0.7179
Combined
  Training group 0.934[0.8807–0.9873] 0.9018 0.8148 0.9294
  Test group 0.905 [0.7679-1] 0.7919 0.9 0.7632
AUC: Area under the receiver operating characteristics curve; CI: Confidence interval. aAccuracies, sensitivities and specificities are expressed in percentages; 
numbers in parentheses are proportions; numbers in brackets are 95% confidence intervals

Fig. 3  Comparison of ROC curves for different prediction models in deafferenting LVSI-positive and LVSI-negative EC patients in the training cohort (A) 
and test group (B)
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Nevertheless, prior research has discussed the usefulness 
of contrast in EC [23]. Most guidelines identify multi-
phase T1-weighted postcontrast fat-suppressed images 
as optional [6]. As a result, the main focus of this investi-
gation was the radiomics model’s predictive effectiveness 
for LVSI in EC, which was developed from DCE-MRI. In 
our future work, we’ll incorporate DWI radiomics ele-
ments prospectively.

The complexity of radiomics properties, which are 
associated with basic traits, may be a hindrance to using 
these qualities as indicators for cancer identification [22]. 
Previous studies have shown that intertumoral character-
istics can predict LVSI in EC. Ueno et al. developed a ran-
dom forest (RF) model with 12 radiomics characteristics 
to evaluate LVSI, and it had an accuracy of 76.6% and an 
AUC of 0.80 [24]. Using an MRI-based nomogram, Luo 
et al. reported that the training and test cohorts’ AUCs 
were 0.820 and 0.807, respectively [25]. Liu et al. devel-
oped a nomogram based on multiparameter MRI scans 
(T1WI, T2WI, DCE-MRI, DWI, and ADC) to predict 
LVSI in early-stage EC. The AUCs for the test and train-
ing cohorts were 0.85 and 0.89, respectively [25]. By 
incorporating radiomics features from DCE-MRI and 
T2WI, our investigation yielded similar results. Accord-
ing to a recent study by Long et al., based on histologic 
grading, FIGO staging, RadScore, and computer vision 
score, the AUC values of their nomogram for predicting 
LVSI in patients with EC in the training and test groups 
were 0.98 and 0.92, respectively [26]. These are intrigu-
ing results. However, evaluating FIGO staging—a surgi-
cal histopathological staging done before surgery—might 
be difficult. In a previous study, 19% of patients with 
grade I EC had deterioration after surgical resection [27]. 
Therefore, there are certain disadvantages to employing 
postoperative indicators for modeling. If FIGO staging 
and tumor grading were disregarded, their model pre-
dicted LVSI in EC patients with AUC values of 0.93 and 
0.81 in the training and test cohorts [26], respectively. 
This is lower than the value we found (AUCtest = 0.905, 
AUCtrain = 0.934).

There are various potential benefits to this study. First 
off, the influence of various histological subtypes on 
the outcomes of MRI-based radiomics was eliminated 
because all patients had endometrioid histology. Further-
more, our prediction models for sentinel lymph nodes 
(SLN) will be useful to patients with negative pelvic 
lymph nodes. Previous studies suggest that low detection 
rates or imprecise definitions of paraaortic SLNs, which 
might be problematic from a lymphatic anatomical per-
spective, are the main reasons why it is difficult to predict 
LVSI in these patients. Therefore, our prediction models 
are a valuable supplement to SLN mapping. Currently 
available methods for determining the best accurate 
prognosis for patients with EC include molecular and 

genomic profiling. However, doing these molecular anal-
yses costs at an elevated charge and requires a lengthy 
waiting period. By applying data characterization tech-
niques, Bogani G et al. [22] suggest that ex vivo molec-
ular and genomic profiling of endometrial cancer may 
not be as necessary if in vivo radiomics is used instead. 
The radiomic data, obtained through quantitative image 
analysis, will be integrated into clinical decision support 
systems to enhance the decision-making process for EC 
patients.

However, this study has a number of limitations. Firstly, 
this was a retrospective study with a relatively small sam-
ple size at a single center, which would raise the possi-
bility of biased results. External validations of the model 
should be necessary in bigger multicenter cohort studies 
to show its robustness. Secondly, instead of using auto-
mated or semi-automated techniques, we physically 
segmented entire tumors. Even though we evaluated 
reader consistency, errors can happen at any time and 
are subject to subjectivity. Thirdly, the majority of recent 
research solely employed AUC to assess the classification 
models [28–31], despite the fact that AUC has a num-
ber of drawbacks [32], including its susceptibility to class 
imbalance. Notwithstanding the aforementioned limita-
tions, our study’s independent validation cohort reduced 
the likelihood of overfitting. Last but not least, EC signi-
fies a fundamental change in the way we characterize and 
categorize risk by amalgamating pathological and molec-
ular attributes, data on patient outcomes and biological 
conduct, as well as molecular and genetic discoveries. 
This comprehensive approach is designed to identify 
prognostic subgroups and establish sub-stages that are 
directly relevant to the application of surgical, radiation, 
and systemic therapies more precisely. The exploration 
of these elements through the application of AI merits 
inclusion in our subsequent studies.

In conclusion, the combined radiomics-based model 
fared well in the prediction of EC LVSI. This would help 
patients’ clinical decision-making and the choice of the 
best therapeutic strategy.
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