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Abstract
Objectives To establish a nomogram for differentiating malignant and benign focal liver lesions (FLLs) using 
ultrasomics features derived from contrast-enhanced ultrasound (CEUS).

Methods 527 patients were retrospectively enrolled. On the training cohort, ultrasomics features were extracted 
from CEUS and b-mode ultrasound (BUS). Automatic feature selection and model development were performed 
using the Ultrasomics-Platform software, outputting the corresponding ultrasomics scores. A nomogram based on 
the ultrasomics scores from artery phase (AP), portal venous phase (PVP) and delayed phase (DP) of CEUS, and clinical 
factors were established. On the validation cohort, the diagnostic performance of the nomogram was assessed and 
compared with seniorexpert and resident radiologists.

Results In the training cohort, the AP, PVP and DP scores exhibited better differential performance than BUS score, 
with area under the curve (AUC) of 84.1-85.1% compared with the BUS (74.6%, P < 0.05). In the validation cohort, the 
AUC of combined nomogram and expert was significantly higher than that of the resident (91.4% vs. 89.5% vs. 79.3%, 
P < 0.05). The combined nomogram had a comparable sensitivity with the expert and resident (95.2% vs. 98.4% vs. 
97.6%), while the expert had a higher specificity than the nomogram and the resident (80.6% vs. 72.2% vs. 61.1%, 
P = 0.205).

Conclusions A CEUS ultrasomics based nomogram had an expert level performance in FLL characterization.
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Introduction
Focal liver lesions (FLLs) are masses or areas of tis-
sue that are considered to be abnormal parts of liver 
[1]. Accurate differential of the benign and malignant 
of FLLs was necessary to determine the most effective 
treatment. In most cases, FLLs are initially detected 
during conventional ultrasonography (US) examina-
tion [2, 3], while it can only provide limited informa-
tion in definitive diagnosis [1, 4]. Contrast-enhanced 
ultrasound (CEUS) outperformed US by providing 
real-time perfusion information of FLL [5]. According 
to the study of Guang Y et al. [6]. , CEUS shows simi-
lar diagnostic value (Area under the receiver-operating 
characteristic curve, AUC: 94%, sensitive: 88%, speci-
ficity: 81%) for the characterizing of a defined FLL, 
compared with contrast-enhanced computed tomog-
raphy (CECT) (AUC: 93%, sensitive: 90%, specific-
ity: 77%) and contrast-enhanced magnetic resonance 
imaging (CEMRI) (AUC: 92%, sensitive: 86%, specific-
ity: 81%).

However, the performance of CEUS depends on the 
clinicians’ experience which is subjective and leads 
to great intra- and inter-observer variance especially 
in facing atypical imaging characteristics of lesions 
[7, 8]. Radiomics is a powerful tool for extracting 
clinically relevant information from medical images 
[9–13]. Compared with conventional qualitative vis-
ible features extracted by radiologists, radiomics 
can extract high-throughput quantitative features to 
reflect inter-tumoral heterogeneity and provide a more 
accurate diagnosis [14]. Liang et al. reported using 
a radiomics score model based on US images to dis-
criminate malignancy from benign thyroid nodules. 
The model showed good discrimination performance 
with an AUC of 93.1%, which was higher than junior 
radiologists (AUC: 82.9%) [15]. Wang et al. developed 
a radiomics model to differentiate uterine sarcoma 
from atypical leiomyoma based on apparent diffusion 
coefficient maps of MRI. The radiomics model showed 
higher diagnostic efficacy than experienced radiolo-
gists (AUC: 83.0% vs. 75.2%) [16]. Guo et al. reported 
a radiomics signature based on MRI showing better 
performance than a radiology resident in differentia-
tion ocular adnexal lymphoma from idiopathic orbital 
inflammation (AUC: 73.0% vs. 62.4%, P < 0.05 ) [17].

Ultrasomics is the specified application of radiomics 
in ultrasonography, utilizing ultrasound specified fea-
tures and selected computerized algorithm [18]. In 
this study, we intended to develop a nomogram based 
on ultrasomics for differentiating malignant from 
benign FLLs on multiphase CEUS and to compare 
the diagnostic efficacy between radiologists and the 
nomogram.

Materials and methods
Patients
This study was approved by the Institutional Commit-
tee on Ethics (ICE) for Clinical Research and Animal 
Trials of the First Affiliated Hospital of Sun Yat-sen 
University (NO. [2015]106). Informed consents of 
patients to participate in the study and for publica-
tion were waived for its retrospective nature. Between 
January 2014 and September 2015, we retrospectively 
analyzed 1525 patients referred to our hospital with 
FLLs. The clinic-pathological data and images were 
collected from the data system of our hospital. Figure 1 
displayed the flow chart of patient recruitment and the 
inclusion and exclusion criteria. The inclusion criteria 
were: patients with FLLs underwent CEUS. Exclusion 
criteria were as follows: (1) treatments were performed 
before CEUS; (2) cases without a definitive diagnosis 
or follow up of less than 1 year; (3) cases with missing 
data of any needed CEUS phases or CEUS recorded 
for less than 3 min [19]; (4) lesions covered by acoustic 
shadow for more than 1/3 on the images.

Finally, 527 patients were included. The train-
ing cohort consisted of 364 patients obtained from 
January 2014 to May 2015 (263 men and 101 women, 
median age 55 years, age range 46–64 years). The vali-
dation cohort consisted of 163 patients obtained from 
June 2015 to September 2015 (132 men and 31 women, 
median age 56 years, age range 33–80 years). Baseline 
information and clinical data collection included: age, 
gender, size, history of hepatitis B or hepatitis C, his-
tory of malignancy, hepatocirrhosis and final diagnosis 
based on pathology or follow-up.

CEUS examination
The following ultrasound equipments were used: (1) 
Aixplorer Ultrasound system (SuperSonic Imagine, 
Aix-en-Provence, France) equipped with the SC6-1 
convex probe with frequency range of 1.0 to 6.0 MHz. 
(2) Acuson Sequoia 512 (Siemens Medical Solutions, 
Mountain View, CA, United States) with a 4V1 vec-
tor transducer with frequency range of 1.0 to 4.0 MHz. 
(3) Aplio SSA-770 or Aplio 500 (Toshiba Medical Sys-
tems, Tokyo, Japan) with a 375BT convex transducer 
with frequency range, of 1.9 to 6.0 MHz. Patients were 
asked to lie in a supine position and keep relaxation 
during the whole examination. The entire liver was 
first scanned with the b-mode US (BUS) and the infor-
mation of the targeted lesion was recorded (including 
the echo, largest diameter, location, shape and bound-
ary). Then, the imaging mode was changed to CEUS, 
and a bolus of 2.4 mL SonoVue (Bracco, Milan, Italy) 
was injected intravenously. After that, a flush with 5 ml 
of 0.9% normal saline solution was injected immedi-
ately. The targeted lesion was observed for 3–6  min, 
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and digital cine clips of artery phase (AP, 10–30  s 
after injection), portal venous phase (PVP, 31–120  s 
after injection) and delayed phase (DP, 121–360 s after 
injection) were stored on the hard disk [19].

Image preparation
First, the BUS image was selected. Then CEUS clips 
were converted into consecutive frames. And three 
representative frames of lesion’s largest cross section 
corresponding to the AP, PVP and DP were selected for 
extracting ultrasomics features. A radiologist with 8 
years’ experience who was unaware of any clinical data 
of patients selected all images from study population.

Ultrasomics analysis
Tumor segmentation
The regions of interest (ROIs) were drawn on images 
of four phases (BUS, as well as AP, PVP and DP of 
CEUS) for each patient, and were delineated along the 
targeted lesion margin to cover the entire lesion. Two 
radiologists (W. Wang and L.D. Chen, with experi-
ence of 10 and 8 years respectively) independent delin-
eated ROIs using ITK-SNAP soft (http://www.itksnap.
org) in 50 randomly chosen patients, basing on which 
the inter-observer reproducibility was assessed using 
interclass correlation coefficient (ICC). And the rest 
ROIs of images were delineated by one radiologist (W. 
Wang). The ultrasomics features with ICC > 0.75 were 
used for further analysis.

Automatic ultrasomics signature construction
Feature extraction, feature selection, ultrasomics 
score development and evaluation were automatically 
performed using an in-house designed Ultrasomics-
Platform (Version 2.1, Ultrasomics Artificial Intelli-
gence X-lab, Guangzhou). A total of 5936 ultrasomics 
features of each phase were extracted, including First-
order, grey level co-occurrence matrix (GLCM), grey 
level run-length matrix (GLRLM), gray level size zone 
matrix (GLSZM), Neighbouring Gray Tone Difference 
Matrix (NGTDM), Gray Level Dependence Matrix 
(GLDM), Co-occurrence of Local Anisotropic Gradi-
ent Orientations (CoLIAGe) and wavelets transform 
(Supplementary Table 1). After feature normalization 
with z-score method, spearman correlation, and least 
absolute shrinkage selection operator (LASSO) were 
used to reduce the redundancy and select optimal fea-
tures. According to the ultrasomics features from the 
four phases respectively, the Ultrasomics-Platform 
constructed and evaluated internally the ultrasomics 
scores automatically. Finally, the optimal performing 
models were output and used to calculate the ultra-
somics scores. We constructed 4 single-phase ultra-
somics scores (BUS score, AP score, PVP score, and 
DP score, respectively) from the image of each phase. 
We also developed a CEUS ultrasomics score which 
extracted from tri-phases of CEUS images.

Fig. 1 Flow chart of enrolling the study population
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Development and validation of the ultrasomics-based 
nomogram
In the training cohort, univariable and multivariable 
logistic regression analysis were used to screen out 
significant factors for FLL discrimination from clini-
cal factors and the 4 single-phase ultrasomics scores. 
Factors with a P value less than 0.05 were included 
for nomogram construction. A nomogram combined 
the ultrasomics scores and clinical factors was devel-
oped. In the validation cohort, the performance of the 
nomogram was assessed by the differential efficiency, 
calibration power, and clinical usefulness.

Imaging analysis by the radiologists
To compare the diagnostic performance between the 
ultrasomics based nomogram and radiologists, CEUS 
clip of each patient in the validation cohort was inde-
pendently reviewed by an expert radiologist (W.W. 
with experience of 10 years) and a resident radiolo-
gist (R.S.M. with experience of 2 years). Both radiolo-
gists only knew the patient’s clinical information but 
were unware of the pathological results. The readers 
were asked to record the enhancement appearances of 
the lesion, including arterial phase enhancement and 
its pattern; presence, timing, and degree of washout. 
For high-risk patients, the lesions were categorized as 
CEUS LR-1 to LR-5 or LR-M according to American 
College of Radiology (ACR) CEUS LI-RADS version 
2017 [20]. Then, we assigned LR-5, LR-4, LR-M lesions 
as malignant, and LR-1, LR-2, LR-3 lesions as benign. 
For non-high-risk patients, the lesions were assigned 
malignant or benign according to World Federation for 
Ultrasound in Medicine and Biology- European Feder-
ation of Societies for Ultrasound in Medicine and Biol-
ogy (WFUMB-EFSUMB) criteria [19].

Statistical analysis
Statistical analysis was conducted with SPSS 22.0 for 
Windows (Chicago, IL) and R software (version 3.4.4, 
https://www.r-project.org/). Qualitatively, receiver 
operating characteristic (ROC) curve analysis was 
plotted to illustrate the discriminatory power of the 
ultrasomics score, nomogram and radiologists [21]. 
The calibration curve was plotted to descript the 
agreement of the nomogram outputs and the observed 
outcome [22]. The diagnostic efficacy of radiologists 
and nomogram were compared by sensitivity (SEN), 
specificity (SPE), positive predictive value (PPV), and 
negative predictive value (NPV). Estimated values of 
SEN, SPE of nomogram and radiologists were com-
pared by using the McNemar test, the value of PPV 
and NPV were compared by Generalized Score Statis-
tic test. Decision curve analysis (DCA) was conducted 
to compare the clinical usefulness of the nomogram 

and radiologists at different threshold probabilities 
[23].

Categorical variables were expressed with numbers 
or percentages and analyzed with χ2 test. The con-
tinuous variables were expressed with mean ± SD, or 
median, and analyzed with t test for the normal dis-
tribution variables or Mann-Whitney U test for the 
abnormal or unknown distribution variables. A P val-
ues less than 0.05 was considered as statistically signif-
icant using two-sided testing.

Results
Clinic-pathological characteristics
The ratio of patients with malignant to benign FLLs 
was 77.2%/22.8% (280/84) and 77.9%/22.1% (127/36) in 
the training and validation cohort (P = 0.517), respec-
tively. In addition, there were no significant differ-
ences between the training cohort and validation 
cohort in other clinic-pathological characteristics such 
as hepatitis (P = 0.423), cirrhosis (P = 0.767), and size 
(P = 0.405). The details of patient characteristics in the 
training cohort and validation cohort were presented 
in Table 1.

Ultrasomics score construction
In the training cohort, according to the feature selec-
tion with inter-observer ICC > 0.75, 449, 425, 473, and 
501 features were selected for the next analysis from 
the BUS, AP, PVP, and DP, respectively. After optimal 
feature selection using spearman rank correlation and 
LASSO regression, 10 features from BUS images were 
ultimately left for BUS ultrasomics score construction. 
For CEUS images, 21, 23 and 20 features were left for 
the construction of AP, PVP and DP scores, respec-
tively (Fig.  2). A detailed description of selected fea-
tures was provided in Supplementary Tables 2–5.

Using logistic regression, the AP, PVP and DP scores 
exhibited better differential performance than BUS 
score, with AUC of 85.3%, 84.1%, 84.3% compared 
with the BUS (74.6%, P < 0.05) in the training cohort. 
The CEUS ultrasomics score established by combining 
AP, PVP and DP features exhibited the higher AUC of 
89.5%, compared with that of each single-phase score 
(PAP=0.07, PPVP=0.17, PDP=0.11).

Nomogram construction and validation
In the training cohort, univariable and multivariable 
logistic regression results (Table  2) showed gender, 
age, AP score, PVP score, DP score, history of chronic 
hepatitis and history of malignancy were the signifi-
cant predictive factors associated with classification of 
malignant and benign FLLs (P < 0.05). The combined 
nomogram was developed with AP, PVP, DP scores, 
gender, age, history of chronic hepatitis and malignant 

https://www.r-project.org/
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history (Fig.  3). In both cohorts the combined nomo-
gram exhibited best diagnostic performance, which 
significantly improved compared with 4 single-phase 
score and CEUS score in validation cohort (AUC 
91.4% vs. 75.9%, 76.2%, 75.1%, 66.1%, 81.4%, P < 0.001) 
(Table 3; Fig. 4).

In the training and validation cohort, the calibra-
tion curves indicated that the combined nomogram 
showed good agreement between the nomogram and 
final diagnosis.

Comparison of diagnostic performance between combined 
nomogram and radiologists
In the validation sets, the ROC analysis demonstrated 
that the AUC of the combined nomogram and expert 
were 91.4% and 89.5%, respectively, which was signifi-
cantly (Delong test P < 0.05) higher than that of the 
resident (AUC: 79.3%). (Table 4; Fig. 4). The sensitivity, 
specificity, PPV, and NPV of the combined nomogram 

were calculated according to the Youden cutoff to 
quantize the predictive ability of the predictive models 
in validation cohorts. Under the optimal cutoff (0.683), 
the sensitivity, specificity, PPV, and NPV of the com-
bined nomogram achieved 95.3%, 72.2%, 92.36%, 
81.3%, respectively (Table 5).

The expert yielded the highest sensitivity (98.4%), 
specificity (80.6%), NPV (94.7%), PPV (93.5%) in 
validation cohort. Among the expert, combined 
nomogram and resident, there were no significant 
differences in sensitivity, PPV and NPV in validation 
cohort. However, the specificity of the expert (80.6%) 
was significantly higher than the resident (61.1%, 
P = 0.01). Although there was no significant differ-
ence (P = 0.21) between combined nomogram (72.2%) 
and resident (61.1%) in specificity, a tendency towards 
strikingly higher specificity was observerd for com-
bined nomogram compared to the resident (Table 5).

Table 1 Clinic-pathologic characteristics and focal liver lesions types in the training and validation cohorts
Training cohort Validation cohort P
(n = 364) (n = 163)

Gender (male/female)(n) 263/101 132/31 0.051
Age, n(%)
 < 40 57(15.6) 32(19.6) 0.123
 40–60 188(51.6) 87(49.6) 0.393
 > 60 119(32.6) 44(26.9) 0.157
Size 5.84 ± 3.89 5.56 ± 3.49 0.405
Viral hepatitis(with/without)(n) 257/107 121/42 0.423
Cirrhosis (yes/no)(n) 110/254 46/117 0.767
History of Malignant (yes/no)(n) 25/339 11/152 0.877
Malignant/Benign(n) 280/84 127/36 0.517
Malignant, n(%)
 HCC 239(65.6) 106(65.0) 0.921
 ICC 13(3.5) 7(4.2) 0.688
 Combined HCC and ICC 3(0.8) 2(1.2) 0.659
 Hepatosarcoma 2(0.5) 0(0) 0.343
 Neuroendocrine tumor 2(0.5) 1(0.6) 0.928
 Metastasis 21(5.7) 11(6.7) 0.669
Benign lesion,n(%)
 Hemangioma 35(9.6) 17(10.4) 0.897
 Focal nodular hyperplasia 12(3.2) 7(4.3) 0.615
 Abscess 10(2.7) 3(1.8) 0.843
 Nodule regenerative hyperplasia 9(2.4) 4(2.4) 0.986
 Angioleiomyolipoma 7(1.9) 2(1.2) 0.566
 Adenoma 6(1.6) 2(1.2) 0.712
 Benign indeterminate 5(1.3) 1(0.6) 0.447
Radiomics score[median (IQR)]
 CEUS-Arterial phase 1.53[0.95,2.08] 1.47[1.01,2.15] 0.921
 CEUS-Portal vein phase 1.44[1.01,1.58] 1.46[0.90,2.00] 0.964
 CEUS-Delay phase 1.41[0.83,2.11] 1.49[0.81,2.16] 0.764
 Baseline US 1.28[1.03,1.54] 1.27[0.99,1.53] 0.809
Unless otherwise indicated, data are the number of nodules, with percentages in parentheses. Abbreviations: CEUS: Contrast-enhanced ultrasound; HCC: 
Hepatocellular carcinoma; ICC: Intrahepatic cholangiocarcinoma; IQR: Interquartile range
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In the high-risk and non-high-risk subgroups, the 
AUC of combined nomogram (89.8%, 88.2%) and 
expert (87.1%, 88.7%) was significantly higher than 
that of the resident (74.5%, 77.4%, P < 0.001) (Table 4). 
The high-risk and non-high-risk subgroups analyses 
indicated that expert still had the highest sensitiv-
ity (99.2%, 94.2%), specificity (75.0%, 83.3%), NPV 
(90.0%, 95.2%), PPV (97.3%, 80.0%). The specificity of 
expert (75.0%) was significantly higher than the com-
bined nomogram (50.0%, P = 0.04) and resident (50.0%, 

P = 0.04) in the high-risk group. In the non-high-risk 
group, the specificity of expert (83.3%) and combined 
nomogram (83.3%) was significantly higher than the 
resident (66.3%, P = 0.05) (Table 5).

The DCA curves (Fig. 5) showed that the expert had 
the highest net benefit. If the threshold probability 
was setted as over 70%, using the combined nomo-
gram added 0.012 net benefit (NB) than the resident 
for discriminating malignant from benign FLLs in vali-
dation [23]. When the threshold probability was setted 

Table 2 The results of the univariate and multivariate analyses based on the training set
Factors Univariate analysis Multivariate analysis

OR (95% CI) P OR (95% CI) P
Gender 4.319(2.572,7.032) < 0.01* 4.944(2.041, 12.583) < 0.01*
Age 2.816(1.587,5.257) < 0.01* 4.433(1.67, 13.081) 0.012*
Cirrhosis 5.260(2.577,12.267) < 0.01* 1.305(0.467, 3.362) 0.616
History of hepatitis 16.967(9.498,36.431) < 0.01* 30.348(12.438, 83.231) < 0.01*
History of malignancy 7.657(1.581,137.945) < 0.01* 262.536(12.042, 3.141 × 104) 0.011*
AP score 5.617(3.785,8.784) < 0.01* 3.791(2.036, 7.587) < 0.01*
PVP score 7.983(4.911,13.741) < 0.01* 1.492(0.640, 3.586) 0.047*
DP score 5.949(3.886,9.663) < 0.01* 2.658(1.191, 4.438) < 0.01*
BUS score 11.314(5.489,24.835) < 0.01* 1.001(0.841, 9.456) 0.089
The significant factors at the P > 0.10 level in the univariate analysis were selected to perform the multivariate logistic regression analysis. In the multivariate analysis, 
P values below 0.05 (indicated with asterisk) were considered significant

AP: arterial phase: PVP: portal vein phase: DP: delay phase: BUS: baseline ultrasound

Fig. 2 Feature selection using the spearman and least absolute shrinkage and selection operator (LASSO) method. Finally, the classification ability of 
the ultrasomics scores was evaluated by the receiver-operating characteristics (ROC) curves obtained in both the training and validation cohort. Feature 
selection process using LASSO regression for BUS (A), AP (B), PVP (C) and DP (D) scores, respectively
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as over 19%, using the combined nomogram added net 
benefit (NB) than resident for discriminating malig-
nant from benign FLLs in non-high-risk subgroup.

Discussion
In the present study, we employed CEUS and BUS 
images to investigate the diagnostic performance of 
ultrasomics features in discriminating malignancy 
from benign FLLs. we developed four single-phase 
ultrasomics scores based on CEUS/BUS images. AP, 

Table 3 The diagnostic performance of the single phase ultrasomics score, tri-phases contrast-enhanced ultrasound score and 
combined nomogram based on training and validation cohort

Training (n = 364) Validation (n = 163)
AUC 95%CI P AUC 95%CI P

AP_Score 0.853 0.810–0.906 < 0.001* 0.759 0.660–0.859 <0.001*
PVP_Score 0.841 0.799–0.891 < 0.001* 0.762 0.675–0.849 <0.001*
DP_Score 0.843 0.794–0.892 < 0.001* 0.751 0.650–0.851 <0.001*
BUS_Score 0.746 0.684–0.813 < 0.001* 0.661 0.563–0.760 <0.001*
CEUS Score 0.895 0.851–0.933 < 0.001* 0.814 0.725–0.904 <0.001*
Combined Nomogram 0.972 0.957–0.987 - 0.914 0.859–0.968 -
P value reference of the combined nomogram. AP: arterial phase; PVP: portal venous phase; DP: delay phase; BUS: baseline ultrasound; AUC: area under the curve; 
CEUS: contrast enhanced ultrasound

Table 4 Compared of the area under the receiver-operating characteristics curve between combined nomogram, expert radiologist 
and resident radiologist in distinguishing malignant from benign lesions in validation cohort

Validation cohort (n = 163) High-Risk (n = 122) Non-high-Risk (n = 41)
AUC 95%CI P AUC 95%CI P AUC 95%CI P

Combined nomogram 0.914 0.859–0.968 - 0.898 0.815–0.982 - 0.882 0.782–0.982 -
Expert 0.895 0.829–0.961 0.606 0.871 0.742–0.999 0.594 0.887 0.792–0.983 0.941
Resident 0.793 0.712–0.876 0.009* 0.745 0.597–0.894 0.034* 0.774 0.650–0.899 0.036*
Expert vs. Resident 0.031* 0.056 0.022*
P values were combined nomogram vs. expert and resident, or expert vs. resident

Fig. 3 Nomograms developed from the training cohort. The combined nomogram incorporated the artery phase (AP), portal venous phase (PVP) and 
delayed phase (DP) ultrasomics scores and independent clinical factor (CF)
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PVP, DP ultrasomics scores were demonstrated to be 
independent factors for differentiating malignant and 
benign FLLs. The combined nomogram integrated 
ultrasomics scores (AP, PVP, DP) and clinical factors 
significantly improved the diagnostic performance 

compared with CEUS scorein training and validation 
cohort. Our results also showed that the diagnostic 
performance of the combined nomogram was com-
parable with the expert radiologist, which was signifi-
cantly better than the resident radiologist.

Fig. 4 Receiver-operating characteristics (ROC) curves of the combined nomogram (red curves), contrast-enhanced ultrasound (CEUS) ultrasomics score 
(orchid curves), artery phase (AP) score (blue curves), portal venous phase (PVP) score (green curves), delayed phase (DP) score (goldenrod curves), and 
baseline ultrasound (BUS) score (black curves) derived from the validation cohorts (A). ROC curves of the combined nomogram (red curves), expert 
radiologist (blue curves) and resident radiologist (green curves) derived from the total validation cohort (B), high-risk subgroup (C) and non-high-risk 
subgroup (D) in validation cohort
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Widely applied in Asian countries, CEUS was con-
sidered an ideal imaging modality for the differentia-
tion of benign and malignant FLLs [24, 25]. Compared 
with BUS, CEUS exhibited higher accuracy in the dif-
ferentiating malignant from benign FLLs [5]. Similar 
results were presented in our study, the diagnostic effi-
cacy of ultrasomics scores based on AP, PVP, DP con-
trast images were superior to that based on BUS image. 
It meant that the contrast-enhanced images may con-
tain more information reflecting the heterogeneity of 
benign and malignant FLLs. In the daily process of 
diagnosis, radiologists usually integrated the perfor-
mance of three-phase contrast imaging to make a diag-
nosis. Therefore, we had established a CEUS score by 
combining three contrast phases scores and validated 
in validation cohort. The results showed that the diag-
nostic efficiency of the CEUS scorelightly improved 
than single-phase score.

Previous studies have shown that patients with older 
age, men, a history of chronic hepatitis, and a history 
of malignant tumors have a higher risk of developing 
malignant liver tumors than general patients [26, 27], 
and similar results were obtained in our study. A diag-
nosis based on a multivariable model was considered 
a more reliable way, as the way that doctors naturally 
integrated patient clinical information and image fea-
tures to make an optimal diagnosis. In present study, 
patient’s age, gender, history of chronic hepatitis and 
history of malignancy were independent clinical fac-
tors associated with FLLs discrimination. We inte-
grated above clinical risk factors and three ultrasomics 
scores (AP, PVP, DP) into a combined nomogram, the 
nomogram had a significantly higher classification 
performance than CEUS score(AUC: 91.4% vs. 81.4%, 
P < 0.001). The result showed that clinical factors can 
provide complementary information to ultrasomics 
score.

Compared with the features based on visual analy-
sis, a lot of image information such as the intensity 
features, texture features and wavelet decomposition 
forms can be captured by using computer analysis [28, 
29]. Many studies reported that the image informa-
tion can reflect genomic and phenotypic information 
of the tumors [9, 30]. Radiomics facilitates the integra-
tion of multiparametric ultrasound (including b-mode 
ultrasound, color Doppler, elastography, CEUS, etc.), 
enabling the extraction of quantitative features from 
medical images and videos, and facilitating a compre-
hensive analysis of image data [31]. We compared the 
diagnostic efficacy of the combined nomogram with an 
expert radiologist and a resident radiologist. According 
to results, combined nomogram and the expert radi-
ologist had higher diagnostic efficiency than the resi-
dent in validation cohort and non-high-risk subgroup. Ta
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In non-high-risk subgroup, combined nomogram had 
remarkable higher specificity than resident radiologist 
(P = 0.05), but the sensitive was rather low (P = 0.41). It 
illustrated the resident radiologist tended to misdiag-
nose the benign FLL in non-high-risk patients which 
may increase the burden on patients. In the high-risk 
group, the combined nomogram had a lower specific-
ity, partly because of the fewer benign patients in the 
high-risk group. The decision curves analysis dem-
onstrated that the combined nomogram added clini-
cal benefits to the resident with higher diagnostic 
efficiency.

The present study has several limitations. First, as 
a retrospective study, it was inevitable to raise selec-
tion bias. Although we used random grouping and 
ten-fold cross-validation to reduce the risk, a prospec-
tive study is warranted. Second, reproducibility was a 
common deficiency in current radiomics researches, 
and the generalizability of reported findings was lim-
ited. Although we calculated ICC values of the ultra-
somics features and selected features with ICC values 
greater than 0.75 to develop our models, different US 
machines and parameter settings may affect image fea-
tures. The reliability and stability of our nomogram 
needed further validation with multi-center datasets. 
Thirdly, reproducibility poses a significant challenge 
in ultrasomics, particularly due to the operator-
dependent nature of ultrasound. Operator experience 
not only influences ROI delineation but also impacts 
the selection of representative frames from CEUS 
videos and the acquisition of ultrasound images dur-
ing CEUS examination. In this study, all ROIs were 
manually drawn by 2 radiologists; although good 
inter-observer agreement was reached, automatic seg-
mentation would provide a more objective assessment 
and also save time [32]. And future studies on bridg-
ing data heterogeneity in ultrasound is important. 

Specifically, we acknowledged that by computing ult-
rasomics scores separately for each CEUS phase, we 
may have overlooked the crucial sequential diagnostic 
information provided by CEUS. This oversight could 
potentially limit the comprehensive understanding of 
lesion characteristics. We recognize the importance of 
future studies that focus on extracting CEUS’s sequen-
tial diagnostic information, as it would be invaluable 
for improving FLL differentiation.

In conclusion, the nomogram based on contrast-
enhanced ultrasomics and clinical factors had a good 
performance of classifying malignancy and benign 
FLLs. A CEUS ultrasomics based nomogram had an 
expert level performance in FLL characterization. 
Ultrasomics could be a useful and practicable tool for 
FLL diagnosis, especially for less experienced sonog-
raphers. Further validation in future studies would be 
needed.
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AP  Artery phase
AUC  Area under the curve
BUS  B-mode ultrasound
CECT  Contrast-enhanced computed tomography
CEMRI  Contrast-enhanced magnetic resonance imaging
CEUS  Contrast-enhanced ultrasound
CoLIAGe  Co-occurrence of Local Anisotropic Gradient Orientations
DP  Delayed phase
FLL  Focal liver lesion
GLCM  Grey level co-occurrence matrix
GLDM  Gray Level Dependence Matrix
GLRLM  Grey level run-length matrix
GLSZM  Gray level size zone matrix
ICC  Interclass correlation coefficient
LASSO  Least absolute shrinkage selection operator
NB  Net benefit
NGTDM  Neighbouring Gray Tone Difference Matrix
NPV  Negative predictive value
PPV  Positive predictive value
PVP  Portal venous phase
ROC  Receiver operating characteristic
ROI  Region of interest
SEN  Sensitivity

Fig. 5 Decision curve analysis for the combined nomogram (blue curve), expert radiologist (red curves) and resident radiologist (yellow curves) in the 
total validation cohort (A), high-risk subgroup (B) and non-high-risk subgroup (C) in validation cohort. The y-axis represents the net benefit, and the x-axis 
represents the threshold probability
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