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Abstract
Background Breast cancer is one of the leading diseases worldwide. According to estimates by the National Breast 
Cancer Foundation, over 42,000 women are expected to die from this disease in 2024.

Objective The prognosis of breast cancer depends on the early detection of breast micronodules and the ability 
to distinguish benign from malignant lesions. Ultrasonography is a crucial radiological imaging technique for 
diagnosing the illness because it allows for biopsy and lesion characterization. The user’s level of experience and 
knowledge is vital since ultrasonographic diagnosis relies on the practitioner’s expertise. Furthermore, computer-
aided technologies significantly contribute by potentially reducing the workload of radiologists and enhancing their 
expertise, especially when combined with a large patient volume in a hospital setting.

Method This work describes the development of a hybrid CNN system for diagnosing benign and malignant breast 
cancer lesions. The models InceptionV3 and MobileNetV2 serve as the foundation for the hybrid framework. Features 
from these models are extracted and concatenated individually, resulting in a larger feature set. Finally, various 
classifiers are applied for the classification task.

Results The model achieved the best results using the softmax classifier, with an accuracy of over 95%.

Conclusion Computer-aided diagnosis greatly assists radiologists and reduces their workload. Therefore, this 
research can serve as a foundation for other researchers to build clinical solutions.

Keywords Breast cancer detection, Hybrid CNN framework, InceptionV3, MobileNetV2, Computer-aided diagnosis 
(CAD), Ultrasonography
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Introduction
Currently, the most malignant tumor in the world is 
breast cancer, which is a highly heterogeneous tumor 
[1, 2]. The biomarker expression assessed by immuno-
histochemistry (IHC) was used by the 2013 St. Gallen to 
divide breast cancer into five subtypes [3]. Breast cancer 
biomarker expression and various subtypes are signifi-
cant prognostic factors [4]. After lung, stomach, liver, and 
colon cancers, breast cancer is the fifth most prevalent 
cause of cancer-related fatalities in the modern era. It is 
the leading cause of cancer death in women [5]. In 2005 
alone, 519,000 deaths from breast cancer were reported 
[6]. This indicates that breast cancer caused one in every 
100 fatalities globally and nearly one in every fifteen 
deaths from cancer. Among females, one in four cancer 
diagnoses is breast cancer, and one in six cancer fatali-
ties is related to breast cancer [7]. Breast cancer also car-
ries a hefty financial cost. The yearly cost of healthcare 
for women with breast cancer is $13,000 more than that 
of those without the disease [8]. In 2020, there were 
10.9 million cancer-related deaths (9.9 million excluding 
NMSC, excluding basal cell carcinoma) and 19.3  mil-
lion new cases of cancer (18.1 million excluding NMSC, 
excluding basal cell carcinoma) worldwide [7].

A tumor can be classified as malignant (cancerous) or 
benign (uncancerous). Benign tumors are not harmful 
because they do not spread cancer; their cells develop 
slowly, resemble normal tissue, and do not invade nearby 
tissues or injure other body components. On the other 
hand, cancerous tumors pose a threat. They eventually 
grow larger than the initial tumor and target other body 
areas if they are not treated [9].

One crucial non-radiation imaging method for iden-
tifying and categorizing breast tumors is breast ultraso-
nography. Patients tolerate it well and integrating it into 
interventional procedures for patient treatments is a 
simple process [10]. Breast US accuracy depends on the 
operator’s technical proficiency and experience; however, 
it is still limited. A standardized vocabulary and report-
ing system for evaluating breast mass and characterizing 
its characteristics are provided by the Breast Imaging 
Reporting and Data System (BI-RADS). Although several 
BI-RADS US descriptors are linked to both benign and 
malignant lesions, especially category 4 breast masses, it 
has been demonstrated to be an excellent approach for 
discriminating between benign and malignant masses 
[11].

The identification of breast tumors using combined 
B-mode and ultrasound elastography is currently limited. 
The experience of the doctors has a major impact on how 
ultrasounds operate [11]. It is indisputable that measure-
ment errors result from differences in probe placement/
orientation and annotation across and among observers 
[12, 13]. Furthermore, it can be challenging to determine 

the boundary between benign and malignant lesions as 
well as between normal and tumor tissue. Necrosis and 
liquefaction in malignant lesions or mechanization or 
calcification in benign lesions might compromise the 
accuracy of the malignancy rating method [14, 15].

Many computer-aided diagnosis (CAD) systems have 
been created in the literature for different medical diag-
noses [16–18] and to help diagnose breast cancer patients 
by differentiating between benign and malignant tumors 
on images [19–21]. These methods have previously 
been shown to improve diagnostic precision and reduce 
observer variability [22–24]. Feature extraction, selection, 
and classification are involved in the classification pro-
cess when utilizing conventional CAD systems [25, 26]. 
Effective feature extraction is the main challenge with 
these systems, as noted by [27], and it has an impact on 
total performance. Radiologists manually segmented the 
region of interest (ROI) without using any pre-processing 
techniques, as reported by Moon et al. [28]. Following 
various pre-processing methods, manual segmentation 
was performed in the work presented in [29]. The GAD 
and response diffusion (RD) based level set segmentation 
were combined by Zhang et al. [30]. Yu et al.‘s [31] impor-
tant addition was the pre-processing procedures they 
took, which included dyadic wavelet transform, active 
contour, and k-means clustering. A suggested method 
[32] used a deep learning architecture and included fea-
ture extraction, segmentation, and classification, with 
a focus on Convolutional Neural Networks (CNNs). A 
variety of CNN models, such as Xception [19], Incep-
tionV3 [21], InceptionNesNetV2 [33], DenseNet1 [20], 
DenseNet161 [34], and NASNetMobile [20], were tested 
and compared by Fujioka et al. [35]. Misra et al. [36], 
in contrast, used two CNN models (AlexNet [37] and 
ResNet [38]) and used ensemble learning to combine the 
models with ultrasound modalities (B-mode and SWE). 
However, even though CNN was used, Zhang et al. [39] 
and Zhou et al. [40] configured the feature extraction and 
classifier independently. Many of the recent studies [41–
43] have also performed the diagnosis of diseases using 
various deep-learning techniques and achieved good 
results in this area. Identifying significant elements in an 
image requires a lot of work and effort. Furthermore, it 
might be difficult to optimize conventional CAD’s overall 
performance.

In this research, we have proposed a Hybrid Convolu-
tional Neural Network (HCNN) system for the diagnosis 
of benign and malignant breast cancer lesions. The mod-
els InceptionV3 and MobilenetV2 serve as the foundation 
for the hybrid framework. These models’ characteristics 
are retrieved and concatenated individually. As a result, 
more features can be utilized. Finally, various classifiers 
are applied to the classification task.
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The remaining structure of the manuscript is as fol-
lows: the second section contains details about the data-
set as well as the detailed research techniques. The third 
section highlights the important results of the manu-
script along with a discussion of the given results. Finally, 
the fourth section concludes the research.

Materials and methods
Dataset
One of the most crucial techniques for determining the 
sensitivity and efficacy of a screening modality is ultraso-
nography. The dataset used in this work is publicly avail-
able and was published in 2020 [44]. Breast ultrasound 
images were collected from women between the ages of 
25 and 75 as part of the baseline data collection which 
was collected in 2018. There are 600 female patients in 
total. The collection contains 780 images, with an aver-
age pixel size of 500 by 500. The images are in PNG for-
mat. Original images are displayed with the ground truth 
images. The images are divided into three categories: 
normal, benign, and malignant. The benign class contains 
437 images, malignant contains 210 images, and the nor-
mal contains 133 images. Fig. 1 shows the sample images 
from the ultrasonography images dataset.

Methodology
The initial step involved preprocessing the images which 
is followed by applying the transfer learning techniques 
to extract relevant features using the Inception V3 
and MobileNet V2 models. Next, a serial-based fusion 
approach was employed to combine the extracted fea-
tures which enhanced the model capability to capture the 
enriched patterns. The fused features are then used for 
classification in the final step. The overall methodology is 
illustrated in Fig. 2.

In the pre-processing step, the number of images is 
increased through the data augmentation task and the 
image quality is also enhanced.

Dataset preprocessing
Images from breast ultrasonography are included in the 
dataset, which is utilized for testing and training. A few 
preparation processes must be completed before the 
dataset is passed to the models. The steps taken as part of 
the dataset preparation are listed below:

1. Initially, the dataset is divided into various ratios 
for training and testing, i.e. 90/10, 80/20, 70/30, 
and 60/40. This step helps the model to generalize 
the data and provide the actual performance of the 
model using variation in the train-to-test ratio.

2. Images are resized to match the models’ input 
dimensions.

3. A special filter is applied to remove additional 
information from the images, such as lines etc. In 
this step, we used a long horizontal probing element 
to remove the vertical lines from the images and 
a long vertical probing element to remove the 
horizontal lines from the images.

4. Data augmentation is applied using geometric 
transformations. The geometric augmentations 
applied include rotation with multiple values, scaling, 
shifting width and height, and zooming in as well 
as out. After applying data augmentation, images 
increased to 500 images in each class.

5. To ensure that the pixel values fall within a range 
that works with the selected model, normalization 
is applied. While pre-trained models are designed to 
handle images in the range of (0, 255), scratch CNN 
models are built to use input in the range of (0, 1) 
floating point.

6. The contrast of the images is enhanced and stretched 
using the gray-level contrast stretching technique.

7. It was confirmed that preprocessing methods did 
not alter the dataset images and that they remain 
relevant.

Fig. 1 Sample images from dataset
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Pre-trained deep models
Because of their excellent performance over the last sev-
eral years—state-of-the-art networks have gone from 
having ten layers to over a thousand layers—CNNs have 
become increasingly complex. By using some of these 
cutting-edge architectures that have already been trained 
on ImageNet, we applied transfer learning from natural 
images to images from breast cancer ultrasonography in 
this study. The main advantage of MobileNet V2 is that 
it handles the gradient vanishing problem much better; 
moreover, it is also a lightweight model. Furthermore, the 
motivation for choosing the Inception V3 model is that it 
also reduces the parameters set and is also helpful in the 
case of smaller datasets.

Inception V3
Research suggests that the Inception V3 model may be 
effectively utilized for the identification and categoriza-
tion of novel images by modifying the fully connected 
layer design and preserving the convolution layer param-
eters. On the ImageNet dataset, the image recognition 
model Inception V3 has demonstrated accuracy levels 
above 78.1%. The model is the result of several concepts 
that have been developed over time by various scholars.

In terms of object recognition, the Inception V3 
model performs better than GoogleNet’s Inception V1. 
The enhanced Inception module, the classifier, and the 

fundamental convolutional block make up the Inception 
V3 model. For feature extraction, the fundamental con-
volutional block that alternates between convolutional 
and max-pooling layers is utilized. The improved Startup 
module is based on Intra-Mesh, which further cascades 
the convolution results of each branch and performs 
multi-scale convolution in parallel. The auxiliary group is 
used to improve gradient convergence and produce con-
sistent training results while also minimizing overfitting 
and underfitting problems. Inception V3 mainly uses a 
1*1 convolution kernel to reduce the number of unique 
channels and speed up training. Additionally, dividing 
the large convolution into smaller convolutions reduces 
the computational cost and number of parameters. In 
conclusion, Inception V3’s state-of-the-art object iden-
tification performance is a result of its distinctive Incep-
tion architecture. Therefore, this approach is frequently 
employed for transfer learning.

Basic convolutional blocks enhanced Inception mod-
ules, and task-specific classifiers are cascaded based on 
the Inception-v3 model. Particularly low-performance 
maps were learned by the ensemble method using 1 × 1 
and 3 × 3 kernels. In the initial module, the multi-scale 
feature representation is combined and fed to an auxil-
iary classifier using a set of convolution kernels (i.e. 1 × 1, 
1 × 3, 3 × 1, 3 × 3, 5 × 5, 1 × 7, and 7 × 7 filters to improve 
convergence). Eleven inception modules act as a linked 

Fig. 2 Methodology for Classification of Breast Ultrasonography
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process and transform multiple performance vectors into 
a single vector. Finally, the Softmax classifier produces a 
heat vector. Figure 3 shows the Inception v3 architecture. 
The model extracts a total of 2048 features.

MobileNet V2
MobileNet is a CNN-based model that is widely used for 
image classification, in contrast to MobileNet V2. The 
primary benefit of utilizing the MobileNet architecture 
is that, in comparison to the traditional CNN model, 
it requires significantly less computing power, which 
makes it appropriate for use with mobile devices and 
PCs with less processing power. The convolution layer of 
the MobileNet model, which is a streamlined structure, 
is useful for differentiating details based on two control-
lable parameters that efficiently flip between latency and 
accuracy. Reducing the size of the network is a benefit of 
the MobileNet architecture.

The architecture of MobileNet is as effective while 
using as few resources as possible, including Palmprint 
Recognition. MobileNet is designed in a depth-wise 
manner. The basic structure is built on several abstrac-
tion layers, which are a part of various convolutions that 
appear to be the quantized configuration that thoroughly 
evaluates the difficulty of a typical problem. Point-wise 
complexity is the complexity of a 1 × 1 convolution. In-
depth platforms are made with abstraction layers that 
pass through a conventional rectified linear unit (ReLU) 
and feature deep structural elements. To reduce the 

dimensionality of the input image and the internal repre-
sentation of each layer, the resolution multiplier variable 
𝜔 is applied.

Depending on the context, two hyperparameters, width 
multipliers and a resolution multiplier help translate the 
ideal viewing area into a more accurate estimate. The rec-
ommended input image size in the model is 224 × 224 × 3. 
This value must be greater than 32. It can be seen that 
there are three dimensions as the third value. The size of 
each of the 32 filters in the design is 3 × 3 × 3 × 32.

The idea behind MobileNet architectures is to replace 
complex convolutional layers with simpler ones. Each 
layer consists of a size 3 × 3 convolutional layer that buf-
fers the input data and a size 1 × 1 pointwise convolu-
tional layer that uses these filtered parameters to create a 
new component, as seen in Fig. 4. Simplifying the model 
and making it quicker than the standard convolutional 
model is the idea outlined above. There are 1,210 features 
that have been extracted from this model in total.

After the features of both models are extracted, these 
features are fused using a serial-based approach. The 
primary benefit of serial-based fusion is that it produces 
significant information reduction and enables real-time 
processing. The total features after fusion are 2,458. For 
reliable prediction, these fused features are then fed 
through a few classifiers, including Softmax, linear sup-
port vector machine (SVM), and Bayesian. The Softmax 
classifier utilizes cross-entropy loss for its computations. 
The Softmax classifier is named after the Softmax func-
tion, which transforms raw class scores into normalized 

Fig. 3 Inception V3 Architecture. The model takes an input in the format 299 × 299 × 3 and outputs the 8 × 8 × 2048. Inception V3 introduced the factor-
ized 7 × 7 convolutions as well as batch normalization in the auxiliary classifier and performed label smoothing
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positive values that sum to one, making it possible to 
apply cross-entropy loss effectively. SVMs are effective 
across a wide range of tasks because they can handle 
high-dimensional data and capture non-linear relation-
ships efficiently. The success of SVMs lies in their ability 
to find the optimal hyperplane that maximizes the sepa-
ration between different classes in the dataset. Bayesian 
classifiers rely on Bayes’ decision theory and use funda-
mental statistical principles. The core idea is that if the 
class is known, the values of the other characteristics 
may be predicted. Conversely, if the class is unknown, 
Bayes’ rule can be applied to predict the class label based 
on the provided feature values. These classifiers employ 
probabilistic models to determine the class label for new 
samples.

Results and discussion
The dataset is split into various train-to-test ratios to 
facilitate experimentation. Keras, PyTorch, and Matplot-
lib are the primary tools and libraries used in this pro-
cess. This study evaluates the proposed method using 
several performance criteria commonly used in breast 
ultrasonography categorization techniques. Accuracy 
and F-measure are the performance measures. Accuracy 
is a reliable assessment metric for evenly distributed, 

non-skewed classification tasks without any class imbal-
ance. Generally speaking, accuracy can dangerously show 
exaggerated and overly optimistic results, particularly 
in imbalanced datasets. Since the F-measure is the har-
monic mean of recall and accuracy, it maintains the clas-
sifier’s balance between the two [45].

The results are collected on different train-to-test 
ratios. Initially, results are collected on a 90 to 10 train/
test ratio as shown in Table  1. The best results are 
achieved using the Softmax classifier with 81.26% F-mea-
sure and 82.31% accuracy. However, the Bayesian classi-
fier produced the second-best results.

The results collected on an 80 to 20 train/test ratio are 
shown in Table 2. The best results are achieved using the 
softmax classifier with 83.71% F-measure and 85.62% 
accuracy. The performance of the Bayesian classifier can’t 
be overlooked as it produced the second-best results.

The results obtained on a 70 to 30 train/test ratio are 
shown in Table 3. The best results are achieved using the 

Table 1 Classification performance on 90/10 Train/Test ratio
F-Measure Accuracy

Softmax 81.26% 82.13%
Linear SVM 71.82% 70.32%
Bayesian 75.33% 78.61%

Fig. 4 MobileNet V2 Architecture. The model takes an input of 224 × 224 × 3, and it is based on inverted residual connections between the bottleneck 
layers. The model in intermediately uses the depth-wise convolutions as a source of non-linearity
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Softmax classifier with 93.99% F-measure and 95.82% 
accuracy. In a 70/30 ratio distribution, we can see that 
linear SVM produced the second-best results, and the 
results are notable; therefore, the performance of this 
classifier cannot be ignored.

The results obtained on a 60 to 40 train/test ratio are 
shown in Table 4. The best results are achieved using the 
Softmax classifier with 83.99% F-measure and 95.82% 
accuracy. In a 70/30 ratio distribution, we can see that 
linear SVM produced the second-best results.

As we have collected the results on different train/test 
ratios, we can see that the results achieved with a 70/30 
train/test ratio are the best, while those with a 90/10 
train/test ratio are the worst. This is because the model 
might be overfitted with a 90/10 train/test ratio. The best 
results are achieved with a 70/30 train/test ratio because 

the model gets the best fit and provides a perfect balance 
between bias and variance. This happens because the 
70/30 split shows its effectiveness by training the model 
on a large portion of the dataset while still maintaining 
sufficient data for validation/testing. Moreover, we can 
see that the softmax classifier performed best overall. 
The softmax classifier provides a well-defined probability 
distribution as it reacts to low simulations with a normal 
distribution and high simulations with near to zero or 
one.

To compare the train and test accuracies among the 
70/30 train/test ratio, which also provided the best 
results, a comparative graph is shown in Fig. 5. Upon 
analyzing the graph, it is evident that initially, the model 
accuracy increased along with epochs. Moreover, train-
ing and testing accuracies did not differ significantly 
throughout the training process, which shows the model 
is generalizing well. Another thing to note is that the 
model accuracies remained constant after 250 epochs so 
it is justified to stop the training at 300 epochs otherwise 
model may start overfitting on the data.

Ablation study
To compare the results on individual models, we have 
performed ablation studies. Initially, we gathered the 
results separately for both Inception V3 and MobileNet 
V2 models. Table  5 shows the classification results 

Table 2 Classification performance on 80/20 Train/Test ratio
F-Measure Accuracy

Softmax 83.71% 85.62%
Linear SVM 72.02% 73.19%
Bayesian 77.46% 79.41%

Table 3 Classification performance on 70/30 Train/Test ratio
F-Measure Accuracy

Softmax 93.99% 95.82%
Linear SVM 89.63% 91.29%
Bayesian 87.77% 89.01%

Table 4 Classification performance on 60/40 Train/Test ratio
F-Measure Accuracy

Softmax 84.67% 86.64%
Linear SVM 78.74% 80.02%
Bayesian 76.36% 77.33%

Table 5 Classification performance on Inception V3 Model
F-Measure Accuracy

Softmax 80.12% 80.73%
Linear SVM 70.01% 70.99%
Bayesian 72.88% 74.32%

Fig. 5 Accuracy Comparison on 70/30 Train/Test Ratio
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obtained on the Inception V3 model. It can be seen that 
accuracy is not up to par.

The classification performance on the MobileNet V2 
model is shown in Table 6.

The results without the preprocessing steps are shown 
in Table  7 which provides a detailed analysis and high-
lights the need for the steps.

Fig. 6 illustrates the accuracy comparison obtained in 
this work. It is evident that after feature fusion, the per-
formance of the model improved significantly. The model 
can be used to explore further research and for initial 

clinical trials. In future work, exploring further research 
as well as improving the explainability of the model may 
be considered.

Conclusion
Breast cancer has a high occurrence worldwide and is 
life-threatening. Computer-aided diagnosis greatly helps 
radiologists and reduces their workload. Therefore, in 
this research, we have proposed a hybrid CNN system 
for the diagnosis of benign and malignant breast cancer 
lesions. The models InceptionV3 and MobilenetV2 serve 
as the foundation for the hybrid framework. These mod-
els’ characteristics are extracted and concatenated indi-
vidually. As a result, more features are utilized. Finally, 
various classifiers are applied to the classification task. 
The model has achieved the best results using a softmax 
classifier and a 70/30 train/test ratio. In future work, we 
will explore explainable AI techniques on the data pres-
ent the findings. We will also investigate multi-modal 
data.
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