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Abstract
Background This study aims to utilize the deep learning method of VB-Net to locate and segment the trigeminal 
nerve, and employ radiomics methods to distinguish between CTN patients and healthy individuals.

Methods A total of 165 CTN patients and 175 healthy controls, matched for gender and age, were recruited. All 
subjects underwent magnetic resonance scans. VB-Net was used to locate and segment the bilateral trigeminal nerve 
of all subjects, followed by the application of radiomics methods for feature extraction, dimensionality reduction, 
feature selection, model construction, and model evaluation.

Results On the test set for trigeminal nerve segmentation, our segmentation parameters are as follows: the mean 
Dice Similarity Coefficient (mDCS) is 0.74, the Average Symmetric Surface Distance (ASSD) is 0.64 mm, and the 
Hausdorff Distance (HD) is 3.34 mm, which are within the acceptable range. Analysis of CTN patients and healthy 
controls identified 12 features with larger weights, and there was a statistically significant difference in Rad_score 
between the two groups (p < 0.05). The Area Under the Curve (AUC) values for the three models (Gradient Boosting 
Decision Tree, Gaussian Process, and Random Forest) are 0.90, 0.87, and 0.86, respectively. After testing with DeLong 
and McNemar methods, these three models all exhibit good performance in distinguishing CTN from normal 
individuals.

Conclusions Radiomics can aid in the clinical diagnosis of CTN, and it is a more objective approach. It serves as a 
reliable neurobiological indicator for the clinical diagnosis of CTN and the assessment of changes in the trigeminal 
nerve in patients with CTN.
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Introduction
Trigeminal neuralgia (TN) is a debilitating chronic facial 
pain disease, which is typically characterized by tran-
sient, paroxysmal, and electric shock-like unilateral pain 
attacks, mostly on the right side [1]. It is called the most 
unbearable pain for human beings. The pain is distrib-
uted in one or more branches of the trigeminal nerve, 
mainly the second branch (maxillary branch) or the 
third branch (mandibular branch). The incidence of TN 
is higher in women than in men and increases with age 
[2–4]. It is estimated that the annual incidence of TN is 
approximately 4 to 13 per 100,000 people [5]. The onset 
of TN can be caused by some daily actions, such as talk-
ing, eating, brushing teeth, washing face, etc., or it can 
occur without any inducement [6]. TN patients often 
feel nervous or fearful of the pain that may come at any 
time. If they endure this huge pressure for a long time, 
they may develop anxiety and depression, leading to a 
continuous decline in their quality of life. Therefore, it is 
of great clinical significance to distinguish TN patients 
from normal people earlier and treat patients in a timely 
manner.

According to the International Classification of Head-
ache Disorders (ICHD-3) [7], TN is divided into three 
subtypes: classic trigeminal neuralgia (CTN), second-
ary TN and idiopathic TN. Neurovascular compression 
(NVC) is considered to be the main cause of CTN, and 
NVC can be treated by microvascular decompression 
(MVD) surgery [8], although most CTN patients with 
NVC experience pain after MVD. are relieved, but NVC 
can also be observed in asymptomatic people [9, 10]. 
Studies have shown that 25–49% of healthy individuals 
and 14–39% of cadavers also have this anatomical vari-
ation [11]. Therefore, NVC is only one of the causes of 
CTN.

In 2012, Dutch scholar Lambin and others first pro-
posed the concept of radiomics in the European Jour-
nal of Cancer [12]. Radiomics is a high-throughput data 
mining method that can use computer technology to 
fully mine the information hidden in images, and then 
combine this hidden information to analyze different 
clinical phenotypes of the disease. In recent years, there 
have been an increasing number of studies related to 
radiomics and TN. Zhong et al. [13] used a linear support 
vector machine algorithm to distinguish inter-regional 
normalized streamline counts between TN and HC. The 
algorithm successfully distinguished TN and HC with an 
accuracy of 88%. Willsey et al. [14] used pontine radial 
diffusivity (RD) and symptom duration (DS) classifiers 
to accurately predict the recurrence of trigeminal neu-
ralgia after microvascular decompression, and the accu-
racy of the 2 classifiers in predicting pain-free remission 
and eventual recurrence It was 85%, the sensitivity was 
83%, and the specificity was 86%. Chen et al. [15] used 

a Gaussian process classifier to discover changes in the 
bilateral trigeminal nerve, distinguishing them from con-
trols with an accuracy of 80%, and could distinguish the 
affected side from the unaffected side with an accuracy 
of 75%. affected side. Ge et al. [16] of this research team 
used machine learning (ML) to explore the risk factors 
of unilateral CTN or ITN-nvc (UC-ITN) with bilateral 
NVC, and found that in addition to NVC, the texture 
characteristics of the cisternal segment of the trigeminal 
nerve and responsible vessel (Ofv) are also risk factors for 
UC-ITN. It can be seen that radiomics plays a positive 
role in the prediction of diagnosis and treatment and the 
exploration of the cause of CTN.

This study pioneered the utilization of VB-Net’s deep 
learning method to accurately locate and segment the tri-
geminal nerve. Subsequently, a classification model was 
constructed through radiomics to distinguish between 
CTN patients and healthy individuals, ultimately aiding 
in the clinical diagnosis and treatment of CTN.

Materials and methods
Image acquisition
Clinical data
This study was approved by the Ethics Committee of 
Hangzhou First People’s Hospital Affiliated to Zhejiang 
University School of Medicine (IRB# NO.202107002). 
Clinical and imaging data were collected from CTN 
patients who were treated at the hospital from April 2021 
to April 2022 and underwent MRI scans. The inclusion 
criteria were: (1) Meeting the diagnostic criteria for clas-
sic TN according to the International Classification of 
Headache Disorders (ICHD-3) [7]; (2) Completion of 
a comprehensive MRI scan, including at least 3D vol-
ume interpolation body examination (3D-VIBE) and 3D 
short-term inversion recovery sequence (3D-STIR); (3) 
Being right-handed. The exclusion criteria were: (1) Hav-
ing undergone TN-related surgical treatment; (2) Hav-
ing a clear history of neurological diseases such as brain 
trauma, cerebral hemorrhage, or brain tumors; (3) The 
presence of heavy image artifacts or poor quality affect-
ing the final evaluation; (4) Symptoms occurring on both 
sides. Ultimately, 165 patients were included in this study 
(see Fig. 1 for details). Healthy individuals matching the 
patient group in gender and age were also included. The 
inclusion criteria for healthy controls were: (1) No previ-
ous history of neurological, psychiatric, or pain diseases; 
(2) No previous history of major central nervous system 
surgery; (3) No contraindications to MRI scanning. Ulti-
mately, 175 healthy controls were included in this study. 
There was no statistically significant difference in gender 
and age between the patient group and the healthy con-
trol group (p > 0.05) (see Table 1 for details).
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Inspection method
All scans were performed using a 3.0T MRI scanner (Dis-
covery MR Verio, Siemens, Germany) equipped with an 
8-channel head coil, with participants positioned in the 
supine position. Foam pads and headphones were uti-
lized to minimize head movement and reduce scanner 
noise. The acquisition protocol comprised the following:

(1) 3D-VIBE sequence: repetition time of 10ms, echo 
time of 3.69ms, flip angle of 12°, field of view of 220 × 220, 
voxels of 0.8 × 0.8 × 0.8, slice thickness of 0.8 mm, encom-
passing 60 axial slices.

(2) 3D-STIR sequence: repetition time of 3800ms, echo 
time of 194ms, flip angle of 12°, field of view of 230 × 230, 
voxels of 0.9 × 0.9 × 0.9, slice thickness of 0.9 mm, encom-
passing 64 axial slices.

All scanned images were transferred to a research plat-
form, the uAI research portal (https://www.uii-ai.com/
en/uai/scientific-research) [17].

Image segmentation
The two-stage framework for the root entry zone of 
trigeminal nerves segmentation
The proposed framework employs a two-stage segmenta-
tion strategy. First, a VB-Net [18, 19] is used to segment 

the pons region on the brain images. Since the root entry 
zones of trigeminal nerve are too small to be segmented 
directly and which are adjacent to the pons, we segment 
pons at the coarse level for localization of the roots of 
nerves. Then, we calculate the bounding box of pons 
and expanded 5 pixels on the three axis as the input of 
the second stage segmentation network. VB-Net is also 
used to segment the root zones of trigeminal nerve at the 
second stage, and the segmentation results are mapped 
bask to original image. Figure 2a shows the overview of 
the proposed architecture. The two-stage network strat-
egy not only filters out the background and focus on the 
target area in the subsequent processing steps, but also 
greatly reduce the image size input to the second-stage 
network which speeds up the training and inferring of 
the network.

The VB-Net is an improved network which combines 
V-Net [20] with bottleneck structures to reduce the 
parameter and speed up the convergence of network 
[18, 19]. As shown in Fig. 2b, the VB-Net consists of one 
input block, four down block, four up block, and one 
out block. The encoding path consists of an input block 
and four down block which extracts high-level context 
information through 3D convolution layers. The decod-
ing path (four up block and one output block) integrates 
high-level features and local fine-grained image features 
by skip connections. Specifically, the input block is a con-
volution module which includes a convolution module 
(kernel size: 3 × 3 × 3, stride size: 1 × 1 × 1) and followed by 
a BN layer and a ReLU layer; the output block includes a 
convolution module, a global average pooling layer and 
a Softmax layer. In addition, the down/up block consists 

Table 1 Clinical data of CTN patients and healthy controls
CTN patients Healthy controls χ2/t P

Number 165 (48.5) 175 (51.5) / /
Sex(M/F) 58/107 58/117 0.152 0.696a

Age 55.6 ± 13.9 55.2 ± 12.3 0.293 0.770b

CTN: classical trigeminal neuralgia; Pa: Chi-square test; Pb: independent-sample 
t test

Fig. 1 Inclusion and exclusion criteria flow chart of CTN
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of one convolution/ de-convolution module with several 
bottleneck module. In the encoding path, the number of 
bottleneck structure are set as 1, 2, 3, 3 in turn, and the 
decoding path is 3, 3, 2, 1, respectively.

Data preprocessing and augmentation
In the first stage, we resample the image to [1, 1, 1] mm3

, and randomly crop the patch of [96, 96, 96] pixel3 on 
the images to train the network. In the second stage, 
the images are resampled to [0.8, 0.8, 0.8] mm3, and the 
input patch are reshaped to [64, 64, 64] pixel3 (padding 
0). Before these patches fed into network, we use adap-
tive normalization algorithm on these patches. To be spe-
cific, the patch is normalized with Z-score (the mean and 
standard deviation of each image calculated in the inten-
sity range of 0.1 to 99.9), and then the intensity is clipped 
to [-1, 1]. Additionally, data augmentation is applied to 
improve the generalization of network, which includes 
random shifting (0 ∼ 5 mm), slight scaling (0.9 ∼ 1.1), and 
rotation (-10° ~ +10°) on the cropped images.

Loss function
We combine DSC loss and Focal loss to optimize the net-
work, and the weight for each loss is 0.5. The loss func-
tion ( Lhybrid ) for segmentation is defined as:

 
Ldice = 1− 2× VP × VL

VP + VL

 Lfocal = −α (1− Vp)
γ × VLlogVp − (1− α )Vp

γ (1− VL)log(1 − V p)

 Lhybrid = 0.5*Ldice + 0.5*Lfocal

whereVL  and VP denote the ground truth and the pre-
dicted segmentation result.

Implement details
The proposed framework was implemented using Python 
and PyTorch 1.7.0. Kaiming initialization was used to 
initialize kernel weights. The Adam optimizer was used 
with a learning rate of 1e-4, β1 of 0.9, β2 of 0.999 and 
weight decay setting as 0. We performed 5000 epochs to 
train the network, and the batch size was set to 32. All 
experiments were performed on an NVIDIA GeForce 
RTX 2080 Ti graphic card with 12G memory.

Radiomics
Using the uAI research portal (uRP) software [17], 
radiomics feature analysis was performed on the subject’s 
bilateral trigeminal nerve images. The specific steps are 
as follows:

① Feature extraction: This step is carried out based 
on the original image and the region of interest (ROI) 
obtained from the deep learning model. The features are 
categorized into three groups: shape features, texture fea-
tures, and grayscale statistical features. Multiple filtering 
processes are applied to the image during this stage.

② Feature selection: Dimension reduction methods 
employed include variance threshold (0.8), K best (100), 
and least absolute shrinkage and selection operator 
regression (LASSO). LASSO is utilized to select the most 
predictive feature subset and evaluate the corresponding 
coefficient.

③ Model construction: The ratio of the training set and 
test set is randomly set to 0.8 and 0.2, respectively. The 
selected features are weighted by their coefficients, and 
the resulting value is used as a measure called Rad_score. 
This Rad_score is then compared between the training 
set and the test set.

④ Model evaluation: The difference is initially quanti-
fied using the area under the curve (AUC) of the receiver 

Fig. 2 The workflow for identifying patients with TN. a. The two-stage framework for the root entry zone of trigeminal nerves segmentation. b. The archi-
tecture of VB-Net toolkit. c. The process of radiomics analysis
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operating characteristic (ROC) curve. Subsequently, 
a calibration curve is used to estimate the agreement 
between the predictive model and actual outcomes. A 
confusion matrix is employed to evaluate model accu-
racy. Finally, the net clinical benefit of the predictive 
model is visualized through a decision curve. (See Fig. 2c 
for details.)

Statistical methods
SPSS 26.0 and R (Version 4.0.2) were utilized for statis-
tical analysis. Clinical and MRI morphological features 
were assessed using the chi-square test for nominal 
variables and the Wilcoxon test for continuous vari-
ables. The independent samples t-test was employed for 
group comparisons. The receiver operating character-
istic (ROC) curve analysis within the machine learning 
module was used to evaluate model performance, allow-
ing us to obtain model evaluation indicators such as the 
area under the ROC curve (AUC). Decision curve analy-
sis was applied to assess the net benefit of the models at 
different diagnostic thresholds. Lastly, the DeLong and 
McNemar tests were utilized for model comparison. A 
p-value < 0.05 was considered statistically significant for 
all analyses.

Results
The performance of trigeminal nerves (root entry zone) 
segmentation
A total of 179 images are divided into training (123), vali-
dation (20), and testing (36) sets. We optimized the con-
figuration of network and tested the best training epoch 
on the validation set. Figure 3 demonstrates the segmen-
tation flow of two examples (Fig.  3a: NC; Fig.  3b: TN), 

and TN patients show obvious vascular compression on 
the right root zone of trigeminal nerve. In Fig. 3, firstly, 
pons is segmented on the whole images as the first step, 
and then the bounding box cropped based on the pons 
segmentation as the input to the second stage. The sec-
ond VB-Net segments the roots of trigeminal nerve and 
mapping to the original image. Figure  3 shows decent 
agreement between the ground truth and network result. 
On the testing set, we achieved a mean Dice Similar-
ity Cofficient(mDCS) [21] of 0.74 ± 0.08, Average Sym-
metric Surface Distance(ASSD) [22] of 0.65 ± 1.36  mm, 
and Hausdorff Distance(HD) [23] of 2.35 ± 3.32  mm 
(See Table  2 for details). There are few studies directly 
segmenting the root entry zone of the trigeminal nerve, 
though it is clinically significant for trigeminal neuralgia 
patients. Due to variations in imaging modalities, train-
ing data, and segmented regions, direct comparisons 

Table 2 Network parameter comparison experiment
model Dice ASSD(mm) HD(mm)
U-Net 0.42 ± 0.20 6.42 ± 3.47 11.82 ± 5.30
VB-Net 0.53 ± 0.19 5.05 ± 4.07 11.21 ± 8.70
Two stage VB-Net (no expand) 0.62 ± 0.16 1.64 ± 2.74 6.04 ± 6.10
Two stage VB-Net (expand 1 
pixel)

0.62 ± 0.15 1.58 ± 2.69 5.93 ± 6.11

Two stage VB-Net (expand 2 
pixel)

0.64 ± 0.17 1.55 ± 2.70 5.43 ± 6.21

Two stage VB-Net (expand 3 
pixel)

0.68 ± 0.11 1.18 ± 2.04 4.59 ± 7.20

Two stage VB-Net (expand 4 
pixel)

0.70 ± 0.14 1.11 ± 1.91 3.61 ± 4.52

Two stage VB-Net (expand 5 
pixel)

0.74 ± 0.08 0.65 ± 1.36 2.35 ± 3.32

ASSD: Average Symmetric Surface Distance; HD: Hausdorff Distance

Fig. 3 Two examples showing the performance of trigeminal nerves (root entry zone) segmentation. a. segmentation flow of NC. b. segmentation flow 
of TN
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are challenging. Our manuscript reports a Dice score of 
0.74 for segmenting the trigeminal nerve root entry zone, 
comparable to existing literature.

Radiology analysis
A total of 2264 features were extracted from each region 
of interest (ROI). After applying dimension reduc-
tion techniques such as variance threshold (0.8), K best 
(100), and LASSO, 12 features with significant weights 
were selected. These features included Variance, Skew-
ness, Short Run High Gray Level Emphasis (SRHGLE), 
Complexity, Wavelet Energy, Minimum, Range, Depen-
dence Variance, Normalize Energy, Recursive Gaussian 
Energy, Large Dependence Low Gray Level Emphasis, 
and Original Energy. The Rad_score indicated a statis-
tical difference between the trigeminal neuralgia (TN) 
patient group and the healthy control group (p < 0.05). 
The area under the curve (AUC) values for the training 
set and the test set were consistent, indicating a good 
fit for the model. The AUCs of the three models—Gra-
dient Boosting Decision Tree, Gaussian Process, and 
Random Forest—were 0.90, 0.87, and 0.86, respectively. 
The calibration curves for both the training and test sets 
demonstrated the high accuracy of the model. The confu-
sion matrix further confirmed the model’s high accuracy. 
The decision curve analysis proved that the model could 
achieve higher clinical benefit. Overall, all three mod-
els performed well in distinguishing TN patients from 
healthy individuals. (See Fig. 4; Tables 3 and 4 for details.)

Discussion
In this study, we utilized both the positioning and seg-
mentation technology of deep learning and the classi-
fication function of radiomics to identify patients with 
trigeminal neuralgia (CTN) and healthy individuals. The 
research results revealed that Variance, Skewness, Short 
Run High Gray Level Emphasis (SRHGLE), Complexity, 
Wavelet Energy, Minimum, Range, Dependence Vari-
ance, Normalize Energy, Recursive Gaussian Energy, 
Large Dependence Low Gray Level Emphasis, and 
Original Energy had larger weights. Most of the features 
included in the prediction models were based on gray-
scale statistics, which quantitatively describe the distri-
bution of voxel intensities in an image through common 
and basic measures. This may be because the trigeminal 
nerve is displaced or deformed, or even undergoes demy-
elination changes, which subsequently lead to alterations 
in the aforementioned characteristics. The comparisons 
of the area under the curve (AUC) values for different 
models were performed using the DeLong test, while the 
assessments of sensitivity, specificity, and accuracy were 
conducted using the McNemar test. The results from 
Table 4 indicate that there were no significant evaluation 

differences between any two of the three models, and all 
of them demonstrated good classification performance.

VB-Net exhibits superior segmentation performance 
for the trigeminal nerve. Previous research [24] intro-
duced a lightweight and rapid semantic segmenta-
tion network for microvascular decompression (MVD) 
scenes, termed MVD-Net, which achieves a com-
mendable balance between segmentation accuracy and 
speed. The specific methodology involves designing a 
Light Asymmetric Bottleneck (LAB) module within the 
encoder to encode contextual features, and incorporating 
a Feature Fusion Module (FFM) in the decoder to effec-
tively combine high-level semantic features with underly-
ing spatial details. However, the proposed network lacks 
a pre-trained model and specificity for application in 
real-world scenarios. In this study, a total of 179 images 
were allocated to the segmentation network, divided into 
training sets (123), validation sets (20), and test sets (36). 
A two-stage segmentation strategy was employed, fully 
acknowledging that the root entry area of the trigemi-
nal nerve is too small for direct division. The two-stage 
network adopts a “localize first, then segment” approach: 
the brain segmentation network serves as the localiza-
tion network, utilizing the pons area at the entry of the 
trigeminal nerve root for localization. Based on the local-
ization network, VB-Net is used to perform accurate 
segmentation of the trigeminal nerve near the pons area 
of the image at its original resolution. Additionally, the 
two-stage network strategy not only filters out the back-
ground and focuses on the target area in subsequent pro-
cessing steps but also significantly reduces the size of the 
image input to the second-stage network, thereby accel-
erating the training and inference of the network.

Anatomical changes in the trigeminal nerve in CTN 
patients can be detected through radiomics analysis fol-
lowing VB-Net segmentation. Similarly, Mulford et al. 
[25] employed a U-net deep learning method for seg-
menting and analyzing the trigeminal nerve, extracting 
216 features from each nerve. They trained a neural net-
work to distinguish between TN-affected nerves, achiev-
ing an accuracy of 78%, an AUC of 0.83, a sensitivity of 
0.82, and a specificity of 0.76 in a study involving 134 
patients. The three models used in this study—gradient 
descent tree, Gaussian process, and random forest—all 
exhibited good predictive performance in distinguishing 
TN from normal individuals. The AUCs for the test set 
were 0.861, 0.874, and 0.855, respectively. Other studies 
have utilized whole-brain features extracted from MRI to 
identify changes in TN patients. Mo et al. [26] compared 
cortical thickness, surface area, and neocortical myelin 
levels between TN patients and healthy subjects (43:43) 
using MRI. The results revealed reduced cortical indices 
in the anterior cingulate cortex (ACC), middle cingulate 
cortex (MCC), and posterior cingulate cortex (PCC) in 
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patients with TN, indicating that morphological changes 
at the whole-brain level successfully enabled automated 
TN diagnosis with high specificity. Hung et al. [27] 
employed a data-driven approach that combined retro-
spective structural neuroimaging data and support vec-
tor machine-based machine learning to produce robust 

multivariate prediction models of pain relief following 
Gamma Knife radiosurgery for trigeminal neuralgia. They 
found that the best predictor for the regional surface area 
model and the regional cortical thickness model was the 
contralateral superior frontal gyrus and contralateral 
isthmus cingulate gyrus, respectively. Compared to such 

Fig. 4 Feature selection, model construction and evaluation. a. Selection of features with greater weight between the two groups. b. Rad_score of the 
training and testing sets. c. Confusion matrix. d. ROC of training and testing sets. e. Calibration curves of training and testing sets. f. Decision curve
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studies, this study extracted the radiomics features of the 
trigeminal nerve itself, which is a more direct and reliable 
approach than using whole-brain features.

Currently, research both domestically and internation-
ally primarily concentrates on imaging studies of neu-
rovascular conflicts, which are identified by radiologists 
or surgeons during surgical procedures [28–30]. These 
studies seldom involve images of the trigeminal nerve 
obtained solely through MRI scanning. There is a lack of 
intelligent and automated diagnosis methods, especially 
in screening diagnosis. The novelty of this study lies in the 
utilization of the VB-Net deep learning method to accu-
rately locate and segment the trigeminal nerve, and the 
establishment of a diagnostic model through radiomics. 
This approach offers a novel idea for efficient clinical 
diagnosis of CTN. Furthermore, this study directly ana-
lyzes the trigeminal nerve itself, whereas most current 
CTN imaging studies both domestically and internation-
ally still rely on whole-brain analysis.

The limitation of this study is that it did not conduct 
a comparative analysis with other craniofacial pain dis-
eases. Additionally, the sample size at this stage is still 
relatively small, and it is a single-center study. In the 
future, we can continue to broaden the scope of research 
diseases and increase the scale of the study to make the 
data and conclusions more compelling. We can also 
enrich the content of longitudinal research and integrate 
information following MVD surgery to predict and eval-
uate patient outcomes.

Conclusion
In summary, VB-Net demonstrates the ability to accu-
rately locate and segment the trigeminal nerve, and 
radiomics can assist in the clinical diagnosis of CTN. 
CTN is a chronic pain disorder that significantly impacts 
the daily lives of patients, yet its specific pathogenesis 

remains unclear. It is currently hypothesized that it may 
be associated with abnormal structure and function of 
the trigeminal nerve, resulting from a combination of 
congenital and secondary factors. In the early stages, 
patients may not take CTN seriously or it may be misdi-
agnosed as other pain disorders, leading to delayed treat-
ment. Traditional clinical diagnosis methods are subject 
to considerable subjectivity and limitations. However, the 
rapid advancements in neuroimaging in recent years have 
provided more objective and sensitive neurobiological 
indicators for the diagnosis of CTN, which is of great sig-
nificance for early diagnosis and treatment.
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preprocessor classification group AUC sensitivity specificity accuracy precison
L1_normalization GBDT Train cohort 0.983(0.969–0.996) 0.866 0.958 0.914 0.951

Validation cohort 0.861(0.76–0.961) 0.750 0.871 0.814 0.840
GaussianProcess Train cohort 0.832(0.784–0.879) 0.592 0.852 0.728 0.786

Validation cohort 0.874(0.786–0.961) 0.727 0.829 0.779 0.8
RadomForest Train cohort 0.845(0.801–0.889) 0.862 0.599 0.724 0.663

Validation cohort 0.855(0.764–0.947) 0.848 0.657 0.75 0.7
GBDT: Gradient Boosting Decision Tree

Table 4 The P value of validation cohort of Delong and 
McNemar
model comparison AUC sensitivity specificity accuracy
GP VS GBDT 0.202 0.062 1.000 1.000
GP VS RF 0.462 1.000 1.000 1.000
GBDT VS RF 0.060 0.031 1.000 1.000
GP: Gaussian Process; GBDT: Gradient Boosting Decision Tree; RF: Random 
Forest



Page 9 of 9Pan et al. BMC Medical Imaging          (2024) 24:246 

Declarations

Ethics approval and consent to participate
This study was approved by Ethics Committee of Hangzhou First People’s 
Hospital, and informed consent was waived for patients in this retrospective 
study.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 January 2024 / Accepted: 9 September 2024

References
1. Tohyama S, Walker MR, Zhang JY, Cheng JC, Hodaie M. Brainstem trigeminal 

fiber microstructural abnormalities are associated with treatment response 
across subtypes of trigeminal neuralgia. Pain. 2021;162(6):1790–9. https://doi.
org/10.1097/j.pain.0000000000002164

2. Jones MR, Urits I, Ehrhardt KP, et al. A comprehensive review of trigeminal 
neuralgia. Curr Pain Headache Rep. 2019;23(10):74. https://doi.org/10.1007/
s11916-019-0810-0

3. Cruccu G, Di Stefano G, Truini A. Trigeminal Neuralgia. N Engl J Med. 
2020;383(8):754–62. https://doi.org/10.1056/NEJMra1914484

4. Leal PR, Hermier M, Froment JC, Souza MA, Cristino-Filho G, Sindou M. Preop-
erative demonstration of the neurovascular compression characteristics with 
special emphasis on the degree of compression, using high-resolution mag-
netic resonance imaging: a prospective study, with comparison to surgical 
findings, in 100 consecutive patients who underwent microvascular decom-
pression for trigeminal neuralgia. Acta Neurochir (Wien). 2010;152(5):817–25. 
https://doi.org/10.1007/s00701-009-0588-7

5. Gambeta E, Chichorro JG, Zamponi GW. Trigeminal neuralgia: an over-
view from pathophysiology to pharmacological treatments. Mol Pain. 
2020;16:1744806920901890. https://doi.org/10.1177/1744806920901890

6. Sessle BJ. Mechanisms of oral somatosensory and motor functions and 
their clinical correlates. J Oral Rehabil. 2006;33(4):243–61. https://doi.
org/10.1111/j.1365-2842.2006.01623.x

7. Headache Classification Committee of the International Headache Society 
(IHS). The international classification of headache disorders, 3rd edition. 
Cephalalgia. 2018;38(1):1–211. https://doi.org/10.1177/0333102417738202

8. Cruccu G. Trigeminal neuralgia. Continuum (Minneap Minn). 2017;23(2, 
Selected Topics in Outpatient Neurology):396–420. https://doi.org/10.1212/
CON.0000000000000451

9. Zakrzewska JM, Akram H. Neurosurgical interventions for the treat-
ment of classical trigeminal neuralgia. Cochrane Database Syst Rev. 
2011;2011(9):CD007312. https://doi.org/10.1002/14651858.CD007312.pub2

10. Ferguson GG, Brett DC, Peerless SJ, Barr HW, Girvin JP. Trigeminal neuralgia: 
a comparison of the results of percutaneous rhizotomy and microvascular 
decompression. Can J Neurol Sci. 1981;8(3):207–14. https://doi.org/10.1017/
s0317167100043225

11. Wang Y, Yang Q, Cao D, et al. Correlation between nerve atrophy, 
brain grey matter volume and pain severity in patients with primary 
trigeminal neuralgia. Cephalalgia. 2019;39(4):515–25. https://doi.
org/10.1177/0333102418793643

12. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more 
information from medical images using advanced feature analysis. Eur J 
Cancer. 2012;48(4):441–6. https://doi.org/10.1016/j.ejca.2011.11.036

13. Zhong J, Chen DQ, Hung PS, et al. Multivariate pattern classification of 
brain white matter connectivity predicts classic trigeminal neuralgia. Pain. 
2018;159(10):2076–87. https://doi.org/10.1097/j.pain.0000000000001312

14. Willsey MS, Mossner JM, Chestek CA, Sagher O, Patil PG. Classifier using Pon-
tine radial diffusivity and symptom duration accurately predicts recurrence 
of trigeminal neuralgia after microvascular decompression: a pilot study 
and algorithm description. Neurosurgery. 2021;89(5):777–83. https://doi.
org/10.1093/neuros/nyab292

15. Chen DQ, Zhong J, Chu PPW, Fei Li CM, Hodaie M. Trigeminal neuralgia diffu-
sivities using gaussian process classification and merged group tractography. 
Pain. 2021;162(2):361–71. https://doi.org/10.1097/j.pain.0000000000002023

16. Ge X, Wang L, Pan L, et al. Risk factors for unilateral trigeminal neuralgia based 
on machine learning. Front Neurol. 2022;13:862973. https://doi.org/10.3389/
fneur.2022.862973

17. Wu J, Xia Y, Wang X, et al. uRP: an integrated research platform for one-stop 
analysis of medical images. Front Radiol. 2023;3:1153784. https://doi.
org/10.3389/fradi.2023.1153784

18. Han M, Yao G, Zhang W et al. Segmentation of CT thoracic organs by multi-
resolution VB-nets. SegTHOR@ISBI. 2019.

19. Shi F, Hu W, Wu J, et al. Deep learning empowered volume delineation of 
whole-body organs-at-risk for accelerated radiotherapy. Nat Commun. 
2022;13(1):6566. https://doi.org/10.1038/s41467-022-34257-x. Published 
2022 Nov 2.

20. Milletari F, Navab N, Ahmadi SA, Ahmadi. V-net: Fully convolutional neural 
networks for volumetric medical image segmentation, in 2016 Fourth Inter-
national Conference on 3D Vision (3DV), 2016, pp. 565–571: IEEE. https://doi.
org/10.1109/3DV.2016.79

21. Gerig G, Jomier M, Chakos M. Valmet: a new validation tool for assessing 
and improving 3D object segmentation. Int Conf Med Image Comput 
Computer-assisted Intervention SpringerBerlin Heidelberg. 2001. https://doi.
org/10.1007/3-540-45468-3_62

22. Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: 
analysis, selection, and tool. BMC Med Imaging. 2015;15:29. Published 2015 
Aug 12. https://doi.org/10.1186/s12880-015-0068-x

23. Ye S, Ye J. Dice similarity measure between single valued neutrosophic 
multisets and its application in medical diagnosis. Neutrosophic Sets Syst. 
2014;6(1):9–9. https://doi.org/10.5281/zenodo.22448

24. Bai R, Liu X, Jiang S, Sun H. Deep learning based real-time semantic segmen-
tation of cerebral vessels and cranial nerves in microvascular decompression 
scenes. Cells. 2022;11(11):1830. https://doi.org/10.3390/cells11111830

25. Mulford KL, Moen SL, Grande AW, Nixdorf DR, Van de Moortele PF. Identifying 
symptomatic trigeminal nerves from MRI in a cohort of trigeminal neuralgia 
patients using radiomics. Neuroradiology. 2022;64(3):603–9. https://doi.
org/10.1007/s00234-022-02900-5

26. Mo J, Zhang J, Hu W, Luo F, Zhang K. Whole-brain morphological alterations 
associated with trigeminal neuralgia. J Headache Pain. 2021;22(1):95. https://
doi.org/10.1186/s10194-021-01308-5

27. Hung PS, Noorani A, Zhang JY, et al. Regional brain morphology predicts pain 
relief in trigeminal neuralgia. Neuroimage Clin. 2021;31:102706. https://doi.
org/10.1016/j.nicl.2021.102706

28. Brînzeu A, Drogba L, Sindou M. Reliability of MRI for predicting characteristics 
of neurovascular conflicts in trigeminal neuralgia: implications for surgical 
decision making. J Neurosurg. 2018:1–11. https://doi.org/10.3171/2017.8.
JNS171222

29. Hughes MA, Jani RH, Fakhran S, et al. Significance of degree of neurovascular 
compression in surgery for trigeminal neuralgia. J Neurosurg. 2019:1–6. 
https://doi.org/10.3171/2019.3.JNS183174

30. Herta J, Schmied T, Loidl TB, et al. Microvascular decompression in trigeminal 
neuralgia: predictors of pain relief, complication avoidance, and les-
sons learned. Acta Neurochir (Wien). 2021;163(12):3321–36. https://doi.
org/10.1007/s00701-021-05028-2

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://doi.org/10.1097/j.pain.0000000000002164
https://doi.org/10.1097/j.pain.0000000000002164
https://doi.org/10.1007/s11916-019-0810-0
https://doi.org/10.1007/s11916-019-0810-0
https://doi.org/10.1056/NEJMra1914484
https://doi.org/10.1007/s00701-009-0588-7
https://doi.org/10.1177/1744806920901890
https://doi.org/10.1111/j.1365-2842.2006.01623.x
https://doi.org/10.1111/j.1365-2842.2006.01623.x
https://doi.org/10.1177/0333102417738202
https://doi.org/10.1212/CON.0000000000000451
https://doi.org/10.1212/CON.0000000000000451
https://doi.org/10.1002/14651858.CD007312.pub2
https://doi.org/10.1017/s0317167100043225
https://doi.org/10.1017/s0317167100043225
https://doi.org/10.1177/0333102418793643
https://doi.org/10.1177/0333102418793643
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1097/j.pain.0000000000001312
https://doi.org/10.1093/neuros/nyab292
https://doi.org/10.1093/neuros/nyab292
https://doi.org/10.1097/j.pain.0000000000002023
https://doi.org/10.3389/fneur.2022.862973
https://doi.org/10.3389/fneur.2022.862973
https://doi.org/10.3389/fradi.2023.1153784
https://doi.org/10.3389/fradi.2023.1153784
https://doi.org/10.1038/s41467-022-34257-x
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1007/3-540-45468-3_62
https://doi.org/10.1007/3-540-45468-3_62
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.5281/zenodo.22448
https://doi.org/10.3390/cells11111830
https://doi.org/10.1007/s00234-022-02900-5
https://doi.org/10.1007/s00234-022-02900-5
https://doi.org/10.1186/s10194-021-01308-5
https://doi.org/10.1186/s10194-021-01308-5
https://doi.org/10.1016/j.nicl.2021.102706
https://doi.org/10.1016/j.nicl.2021.102706
https://doi.org/10.3171/2017.8.JNS171222
https://doi.org/10.3171/2017.8.JNS171222
https://doi.org/10.3171/2019.3.JNS183174
https://doi.org/10.1007/s00701-021-05028-2
https://doi.org/10.1007/s00701-021-05028-2

	Application research on the diagnosis of classic trigeminal neuralgia based on VB-Net technology and radiomics
	Abstract
	Introduction
	Materials and methods
	Image acquisition
	Clinical data
	Inspection method


	Image segmentation
	The two-stage framework for the root entry zone of trigeminal nerves segmentation
	Data preprocessing and augmentation
	Loss function
	Implement details

	Radiomics
	Statistical methods
	Results
	The performance of trigeminal nerves (root entry zone) segmentation
	Radiology analysis

	Discussion
	Conclusion
	References


