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Abstract 

Many image fusion methods have been proposed to leverage the advantages of functional and anatomical images 
while compensating for their shortcomings. These methods integrate functional and anatomical images while pre-
senting physiological and metabolic organ information, making their diagnostic efficiency far greater than that of 
single-modal images. Currently, most existing multimodal medical imaging fusion methods are based on multiscale 
transformation, which involves obtaining pyramid features through multiscale transformation. Low-resolution images 
are used to analyse approximate image features, and high-resolution images are used to analyse detailed image 
features. Different fusion rules are applied to achieve feature fusion at different scales. Although these fusion methods 
based on multiscale transformation can effectively achieve multimodal medical image fusion, much detailed informa-
tion is lost during multiscale and inverse transformation, resulting in blurred edges and a loss of detail in the fusion 
images. A multimodal medical image fusion method based on interval gradients and convolutional neural networks 
is proposed to overcome this problem. First, this method uses interval gradients for image decomposition to obtain 
structure and texture images. Second, deep neural networks are used to extract perception images. Three methods 
are used to fuse structure, texture, and perception images. Last, the images are combined to obtain the final fusion 
image after colour transformation. Compared with the reference algorithms, the proposed method performs better 
in multiple objective indicators of QEN , QNIQE , QSD , QSSEQ and QTMQI.

Keywords Physiological information, Metabolic information, Interval gradient, Convolutional neural network, 
Perception image

Introduction
Multimodal medical imaging has become an indispen-
sable component of artificial intelligence medicine. 
Additionally, its application has progressed through 
clinical work. Multimodal medical imaging is widely 
used for disease diagnosis and is important for planning, 

implementing, and evaluating the efficacy of surgical pro-
cedures and radiation therapy. Currently, medical imag-
ing can be divided into functional and anatomical images 
based on the information features it reflects. Anatomic 
images describe information about the physiological dis-
secting structure of the human body, including X-ray 
imaging, CT imaging, and MRI imaging. Functional 
images, including PET, SPECT and fMRI images, reflect 
mainly dynamic changes in the metabolism and function 
of human organs or tissues. The information provided by 
multimodal imaging is complementary. Combining mul-
timodal information in multimodal imaging is necessary 
to provide more comprehensive and rich information. 
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Doctors can gain a more comprehensive understanding 
of disease conditions, better determine the location and 
scope of lesions, develop treatment plans, and evaluate 
treatment outcomes by combining multimodal medical 
imaging images with single images to obtain more com-
prehensive and accurate information, improving diagnos-
tic accuracy and treatment outcomes. Therefore, medical 
image fusion technology has a wide range of applications 
in the medical field, such as in neuroscience, cardiovas-
cular disease, radiology, tumour diagnosis, knowledge 
graphs, and data processing.

Medical image fusion consists of three main parts. 
First, transformation algorithms are used to decom-
pose the source image into multifrequency coefficients. 
Second, according to the different coefficients, differ-
ent strategies and methods are adopted for hierarchical 
and directional image fusion. Last, the fusion of medical 
images is achieved through multiscale inverse transfor-
mation. Pyramid transformation is an important multi-
scale transformation method in image fusion that uses 
a series of gradually decreasing resolution image sets 
obtained through row and column downsampling and 
that can effectively highlight important features and 
detailed information of the image, thereby improving 
the quality and visual effect of the fused image. Recently, 
many pyramid algorithms have been proposed. Li et  al. 
[1] proposed Laplacian redecomposition for multimodal 
medical image fusion, Wang et al. [2] proposed a Lapla-
cian pyramid and adaptive sparse representation for mul-
timodal medical image fusion, and Yao et al. [3] proposed 
a Laplacian pyramid fusion network for infrared and vis-
ible image fusion. Singh et al. [4] proposed a multireso-
lution pyramid and bilateral filter for multifocus image 
fusion. He et  al. [5] proposed a deep hierarchical pyra-
mid network for superresolution mapping. Nair et al. [6] 
proposed a multisensor medical image fusion method 
based on pyramid-based DWT. Jin et al. [7] proposed a 
fusion method for visible and infrared images based on 
a contrast pyramid. Xu et  al. [8] proposed an infrared 
and multitype image fusion algorithm based on contrast 
pyramid transform. These methods have achieved good 
performance in image fusion, with different character-
istics and applicable scenarios, and suitable methods 
can be selected according to specific application needs. 
The pyramid transformation algorithm has been widely 
applied because of its high efficiency, ideal fusion effect, 
flexibility and scalability. However, the algorithm also 
has the drawbacks of redundant decomposition and no 
directionality. As the number of pyramid decomposition 
layers gradually increases, the resolution of the image 
gradually decreases, and the boundaries become increas-
ingly blurred. Subsequently, fusion methods based on the 
wavelet transform are proposed. Bhat et al. [9] proposed 

a multifocus image fusion method using neutrosophic-
based wavelet transform. Xu et  al. [10] proposed medi-
cal image fusion via a modified shark smell optimization 
algorithm and hybrid wavelet-homomorphic filter. Agha-
maleki et al. [11] proposed an image fusion method using 
a dual-tree discrete wavelet transform and weight opti-
mization. Geng et al. \* MERGEFORMAT [12] proposed 
adopting the quaternion wavelet transform to fuse mul-
timodal medical images. Yang et al. \* MERGEFORMAT 
[13] proposed a dual-tree complex wavelet transform 
and image block residual-based multifocus image fusion 
method in visual sensor networks. The two wavelet-based 
fusion methods overcome the disadvantages of the wave-
let transform and achieve better fusion results. These 
methods decompose the image into low-frequency and 
multidirectional high-frequency coefficients. Low-fre-
quency coefficients typically represent the overall contour 
and rough structure of an image, whereas high-frequency 
coefficients contain detailed and edge information about 
the image. This decomposition method fully reflects the 
local changes in the image, which enables image fusion or 
other image processing tasks to be performed accurately. 
The advantages of this method include being nonredun-
dant and directional, and it overcomes the shortcom-
ings of pyramid transformation methods. However, the 
wavelet transform does not have translation invariance; 
Therefore, improved wavelet transforms, such as contour 
waves, curved waves, and shear waves, are needed. Yang 
et al. [14] proposed a multimodal sensor medical image 
fusion method based on type-2 fuzzy logic in the NSCT 
domain. Peng et  al. [15] proposed a multifocus image 
fusion approach based on CNP systems in the NSCT 
domain, and Li et al. [16] proposed an infrared and vis-
ible image fusion scheme based on NSCT and low-level 
visual features. Dong et  al. [17] proposed high-quality 
multispectral and panchromatic image fusion technolo-
gies based on the curvelet transform. Arif and Wang [18] 
proposed a fast curvelet transform through a genetic 
algorithm for multimodal medical image fusion. Bha-
dauria and Dewal [19] proposed a medical image denois-
ing method using adaptive fusion of curvelet transform 
and total variation. Gao et al. [20] proposed a multifocus 
image fusion method based on a nonsubsampled shear-
let transform. Vishwakarma and Bhuyan [21] proposed 
an image fusion method using an adjustable nonsub-
sampled shearlet transform. Singh et  al. [22] proposed 
a nonsubsampled shearlet-based CT and MR medical 
image fusion method using a biologically inspired spik-
ing neural network. These methods have both translation 
invariance and directional selectivity. In addition, the 
decomposition level of multiscale transformation is one 
of the key factors affecting the fusion effect. The choice 
of decomposition level determines the depth at which the 
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image is decomposed. The larger the decomposition level 
is, the more detailed the extracted information and the 
higher the fusion quality; however, the fusion time also 
increases. The balance among the decomposition layers, 
fusion quality, and time efficiency remains unresolved. 
The traditional multiscale transformation method using 
predefined fixed layers for feature extraction, such as 
spatial frequency and gradient energy, cannot generalize 
features. New mathematical models have been proposed 
for image fusion, which automatically adjusts the method 
and parameters of feature extraction based on the con-
tent and characteristics of the image, such as sparse rep-
resentation (SR) [23–25] and the latest deep learning 
model based on convolutional neural networks (CNNs) 
[26–28], to achieve adaptive feature extraction.

The CNN is a deep learning algorithm that uses deep 
neural networks to process and analyse data; it is espe-
cially suitable for processing image data because of its 
fast computing speed and high efficiency. Its feature 
extraction is data driven and automatically generates 
parameter values after training with many data sam-
ples. Therefore, the features extracted by CNN methods 
have strong generalizability. As the depth of the network 
increases, its features become more abstract and precise, 
with the characteristics of translation, rotation, and a cer-
tain degree of scaling invariance. The CNN image fusion 
method can learn features hierarchically with more 
diverse feature expressions, stronger discriminative per-
formance, and better generalization performance. How-
ever, its disadvantages include long training times and 
a lack of dedicated training sets. Zhang et  al. [29] pro-
posed a framework (IFCNN) based on a convolutional 
neural network, which is an innovative image processing 
method. This method has good universality and is suit-
able for multimodal image fusion. However, owing to its 
simple network structure, it cannot effectively extract 
deep image features, making the fusion process prone 
to losing detailed information and causing image blur-
ring. Zhang et  al. \* MERGEFORMAT [30] proposed a 
method that learns to search for a lightweight general-
ized network for medical image fusion. This method 
introduces segmentation masks for preserving important 
pathological image region details. Although this method 
preserves important details of pathological image 
regions, it increases the model complexity and reduces its 
adaptability.

In this study, first, a multimodal medical image fusion 
method based on interval gradients and convolutional 
neural networks is proposed in response to the problems 
with existing fusion methods. It first uses interval gradi-
ents to decompose multimodal medical images, obtaining 
structure and texture images. Second, deep convolutional 

neural networks are used to extract perception images 
to obtain detailed features of medical images. Last, three 
different methods are used to fuse the structure, texture, 
and perception images. After colour transformation, the 
final fusion image is obtained. The experimental results 
show that the fusion results of the proposed method are 
significantly better than those of the reference methods 
in terms of details and fusion indicators.

Related work
This section introduces interval gradients [31] and vis-
ual geometry group (VGG) networks [32]. The interval 
gradient is used for structure-texture image decompo-
sition. The VGG network is used for perception image 
extraction.

Interval gradient
First, the problem is defined as ∇I = ∇S +∇T  . In a one-
dimensional discrete signal I , the interval gradient is 
defined as follows:

where grσ (Ip) =
1

kr
n∈�(p)

wσ (n− p− 1)In , glσ (Ip) =
1

kl
∑

n∈�(p)

wσ (p− n)In , grσ and glσ are Gaussian filtering func-

tions with right cropping and left cropping, respectively, 
and where wσ is an exponential weighting function with a 

scaling parameter of σ . wσ (x) =





exp(−

x2

2σ 2
) if x ≥ 0

0 otherwise

 . 

kr and kl are regularization coefficients. kr =
∑

n∈�(p)

wσ (n− p− 1) , and kl =
∑

n∈�(p)

wσ (p− n).

Unlike forwards differentiation, interval gradient meas-
urement considers not only the grayscale or colour infor-
mation of the pixel itself but also the information of its 
surrounding pixels by calculating the difference between 
the weighted average values of the Gaussian filtering 
functions cropped left and right. This weighted average 
is calculated on the basis of the distribution of signals 
around pixels, so it can better reflect the actual changes 
between two pixels. For structure element p , since the 
smoothing kernel, which is typically used to reduce noise 
and detail levels in data or images, amplifies the gradi-
ent, (∇�I)p is greater than (∇I)p . (∇�I)p is smaller than 
(∇I)p because of the cancellation of oscillation gradients 
of different signals for texture element p.

Second, gradient scaling is performed via interval gra-
dients, which increase the difference between the texture 
region and the structure region ( �p is defined here as 
the structure region if and only if the signal increases or 

(1)(∇�I)p = grσ (Ip)− glσ (Ip)
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decreases but never oscillates within the region of �p ). 
The scaling formula is as follows:

where (∇′I)p represents the new gradient and wp repre-
sents the scaling weight. wp = min(1,

|(∇�I)p|+∈s

|(∇I)p|+∈s
) . The 

gradient remains unchanged for the structure edges and 
the smooth changing areas because |(∇�I)p| ≥ |(∇I)p| , 
making wp equal to 1. For texture regions with oscillation 
modes and noise, |(∇�I)p| < |(∇I)p| , making wp < 1.

The cumulative results may still contain small unfil-
tered oscillations due to the local readjustment of gra-
dients by the above method; therefore, it is necessary 
to correct the reconstructed signal. The authors choose 
guided filtering for correction because it can preserve 
edge (corner) information in the image without intro-
ducing gradient distortion or oversharpening edges. For 
two-dimensional images, alternating one-dimensional 
filtering in the x and y directions is adopted for domain 
transformation filtering. Last, the iterations are repeated 
multiple times to obtain the final structure map via inter-
val gradient calculation, gradient smoothing, and itera-
tive one-dimensional filtering, as defined above. The 
structure map is subsequently subtracted from the origi-
nal image to obtain the texture image.

The advantages of using interval gradients for image 
structure and texture decomposition are as follows:

(1) This method does not directly filter the image col-
our but generates high-quality filtering results by 
manipulating the image gradient. This method 
achieved better results than the methods based on 
previous filters.

(2) The interval gradient operator is an effective tool 
for distinguishing image texture and structure.

(3) Compared with existing filtering methods, this 
method avoids gradient inversion of filtering 
results, preserves strong features, and maintains 
simplicity and highly parallel implementation.

VGG network
The VGG was proposed by Oxford’s Visual Geometry 
Group. Since the emergence of AlexNet, many scholars 
have improved their accuracy by improving the AlexNet 
structure in two main directions: small convolution 
kernels and multiple scales. The VGG authors chose 
to increase the network depth. Increasing the network 
depth does impact the final network performance. By 
designing a reasonable network structure and adopting 
appropriate regularization techniques and optimization 

(2)(∇′I)p =

{
(∇I)p · wp if sign((∇I)p) = sign((∇�I)p)

0 otherwise

algorithms, it is possible to slightly balance feature 
extraction ability, generalization ability, and overfitting 
risk, thus obtaining a more efficient deep learning model. 
Two types of VGG structures exist, namely, VGG16 and 
VGG19. The two methods have no fundamental differ-
ence; only the network depth is different. During this 
process, the authors conducted six sets of experiments 
corresponding to six different network models. As the 
depth of these six networks gradually increased, their 
characteristics also increased.

By using stacked small convolution kernels to maintain 
the same receptive field, increasing the network depth 
and reducing the number of parameters can improve 
model performance and reduce computational com-
plexity. Specifically, in VGG, multiple 3 × 3 convolution 
kernels were used instead of 5 × 5 or 7 × 7 convolution 
kernels. This improves the network depth and slightly 
enhances the network performance k while ensuring 
the same perception field. A significant improvement in 
VGG16 over AlexNet is the use of several consecutive 
3 × 3 convolution kernels (step size = 1 and padding = 0) 
to replace the larger kernels in AlexNet, such as 11 × 11, 
7 × 7, and 5 × 5 kernels. The VGGNet achieves a struc-
turally simple and efficient network design by adopting 
a uniformly sized convolutional kernel and maximum 
pooling size. Replacing the large filter (5 × 5 or 7 × 7) con-
volutional layer with a combination of several small filter 
(3 × 3) convolutional layers is an effective strategy, which 
verifies the improvement in model performance by deep-
ening the network structure. The VGG19 network struc-
ture (Fig. 1) consists of 16 convolutional layers and 3 fully 
connected layers, with a total of 19 layers. Although there 
are many VGG structures, because the VGG19 network 
has the deepest layers and extracts more comprehensive 
features, this study uses the VGG19 network. In addition, 
the VGG network was proposed by the Visual Geometry 
Group of the University of Oxford, which validated the 
advantages of the VGG network structure and perfor-
mance through comparative experiments.

Proposed method
Schematic
We use interval gradients for image decomposition to 
obtain structure and texture images to achieve medical 
image fusion. We use VGG19 to extract detailed images 
to enhance the detailed information of the fusion images. 
We use the local pixel mean value for structure images, 
the local pixel maximum value for texture images and the 
spatial frequency for detailed images to achieve fusion. 
After the three images are fused, they are combined, and 
the final fusion image is obtained through colour trans-
formation. The proposed schematic is shown in Fig.  2. 
In the process of image decomposition, the colour image 
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is decomposed into YCbCr three components, and the 
fusion process is achieved using the brightness informa-
tion Y. After the brightness image fusion is completed, 
the colour fused image is obtained through YCbCr 
inverse transformation.

Image decomposition process
Image structure-texture decomposition technology can 
decompose an image into structural components that 

contain the main information and determine the subjec-
tive understanding of the image content and texture com-
ponents that contain the main details and do not affect 
the subjective understanding of the image content based 
on the different characteristics of the image. The percep-
tion images use deep neural networks to extract feature 
images from input images, which have detailed features 
that simulate human visual mechanisms. First, interval 
gradients for image structure and texture decomposition 

Fig. 1 VGG19 network

Fig. 2 Schematic of image fusion based on the interval gradient and VGG19 networks
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are used. Second, the perception images are extracted 
via the VGG19 network. The image structure-texture 
decomposition and perception image extraction pro-
cesses are shown in Figs. 3 and 4, respectively.

Image fusion process
The image fusion process continues after image struc-
ture texture decomposition and perception image 

extraction. First, three rules are used to fuse three 
brightness images: structure, texture, and perception. 
Rule 1 is used for structure image fusion, rule 2 is used 
for texture image fusion, and rule 3 is used for percep-
tion image fusion. After the three image fusion processes 
are completed, rule 4 is used for the final image fusion, 
and colour transformation is performed to obtain the 
final fusion image.

where S is the structure fusion image, X is the decom-
posed structure image, and A is the local pixel mean 
value of the structure image.

(3)

A1
i,j =

1

9
(X1

i−1,j−1 + X1
i−1,j + X1

i−1,j+1 + X1
i,j−1 + X1

i,j + X1
i,j+1 + X1

i+1,j−1 + X1
i+1,j + X1

i+1,j+1)

A2
i,j =

1

9
(X2

i−1,j−1 + X2
i−1,j + X2

i−1,j+1 + X2
i,j−1 + X2

i,j + X2
i,j+1 + X2

i+1,j−1 + X2
i+1,j + X2

i+1,j+1)

Si,j =

{
X1
i,j if A1

i,j ≥ A2
i,j

X2
i,j else

(4)

E1
i,j = max(Y 1

i−1,j−1 + Y 1
i−1,j + Y 1

i−1,j+1 + Y 1
i,j−1 + Y 1

i,j + Y 1
i,j+1 + Y 1

i+1,j−1 + Y 1
i+1,j + Y 1

i+1,j+1)

E2
i,j = max(Y 2

i−1,j−1 + Y 2
i−1,j + Y 2

i−1,j+1 + Y 2
i,j−1 + Y 2

i,j + Y 2
i,j+1 + Y 2

i+1,j−1 + Y 2
i+1,j + Y 2

i+1,j+1)

Ti,j =

{
Y 1
i,j if E1

i,j ≥ E2
i,j

Y 2
i,j else

Fig. 3 Structure and texture decomposition based on the interval gradient

Fig. 4 Perceptual image extraction based on the VGG19 network
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where T  is the texture fusion image, Y  is the decomposed 
texture image, and E is the local pixel maximum value of 
the texture image.

where P is the perception fusion image, Z is the extracted 
perception image, and SF  is the spatial frequency of the 
perception image.

where F  is the final fusion brightness image, C is the car-
toon fusion image, T  is the texture fusion image, and P is 
the perception fusion image.

(5)

SF1
i,j =

√
1

MN

∑M

i=1

∑N

j=2
(Z1

i,j − Z1
i,j−1)

2
+

1

MN

∑M

i=2

∑N

j=1
(Z1

i,j − Z1
i−1,j)

2

SF2
i,j =

√
1

MN

∑M

i=1

∑N

j=2
(Z2

i,j − Z2
i,j−1)

2
+

1

MN

∑M

i=2

∑N

j=1
(Z2

i,j − Z2
i−1,j)

2

Pi,j =

{
Z1
i,j if SF1

i,j ≥ SF2
i,j

Z2
i,j else

(6)Fi,j = Si,j + Ti,j + Pi,j

Results and analysis
This section introduces the experimental methods, 
objective indicators, and experimental comparisons. We 

analysed the differences between the fusion results of the 
proposed method and the reference methods and con-
ducted corresponding indicator comparisons and analy-
ses in the comparative experiments.

Experimental preparation
The corresponding multimodal medical image dataset 
must be prepared before the experiments. We prepared 

Fig. 5 Comparison of 9 different algorithms in the MR-PET image fusion experiments
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90 MR images, 30 CT images, 30 PET images, and 30 
SPECT images. All images were sourced from Harvard 
Medical School, and all sizes were 256 × 256 (the official 
website for the data download is http:// www. med. harva 
rd. edu/ aanlib/ home. html). The parameters of differ-
ent methods are fixed in the comparison experiments, 
including methods based on deep learning. When the 
input images are fed into these algorithms, the fusion 
images can be obtained through computation. There-
fore, we use five indicators, QEN , QNIQE , QSD , QSSEQ 
and QTMQI , to compare the fusion results of different 
algorithms.

The experimental environment is based on a laptop 
computer with a Windows 11 (64-bit) OS, an Intel(R) 
Core (TM) i9-14900HX CPU, 32 cores and 32  GB of 
RAM, MATLAB R2023b software, and an NVIDIA 
GeForce RTX 4060 laptop GPU (8 GB).

Objective evaluation indicators
Objective evaluation indicators are used to evaluate the 
differences between the fusion and input images and 
the fused image quality. This study uses five objective 

evaluation indicators: QEN[33–36] and QTMQI[37]. The 
larger the values of QEN , QSD and QTMQI are, the bet-
ter the image quality and the less information lost. The 
smaller the indicators QNIQE and QSSEQ are, the better the 
image quality.

where QEN represents the distribution and aggregation 
of grayscale values in an image, which reflects the degree 
and distribution characteristics of grayscale values in the 
image. The larger QEN is, the greater the amount of infor-
mation it contains, and vice versa. The formula for QEN is 
as follows:

where i represents a possible value for a random variable 
with grayscale values and pi represents the probability 
of this value, which can be obtained from the grayscale 
histogram.
QNIQE fits a multivariate Gaussian model based on 

specific features extracted from a series of natural 
images. In this way, the difference between the test 

(7)QEN = −

255∑

i=0

E[log
1

pi
] = −

255∑

i=0

pi logpi

Fig. 6 Comparison of 9 different algorithms in the MR-PET image fusion experiments

http://www.med.harvard.edu/aanlib/home.html
http://www.med.harvard.edu/aanlib/home.html
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image and this multivariate distribution can be meas-
ured to evaluate the quality of the fused image. QNIQE 
measures the differences in the multivariate distribu-
tions of the fusion images. The smaller the value of 
QNIQE is, the smaller the difference in the multivariate 
Gaussian distribution (MVN, also known as the mul-
tivariate normal distribution) of the fusion image, and 
the higher the fusion quality. The formula for QNIQE is 
as follows:

where vf  and vn represent the mean vectors of the multi-
variate normal model (MVG) for the fusion images and 
original images, respectively. The mean vector represents 
the centre position on each feature, which is obtained by 
averaging the values in each dimension. σf  and σn are the 
covariance matrices of the multivariate normal distribu-
tion for the fusion images and original images, respec-
tively. The covariance matrix describes the changing 
relationships between different features and the shape 
and direction of the data, which describes the correlation 

(8)QNIQE =

√

(vf − vn)T (
σf + σn

2
)−1(vf − vn)

or covariance relationship between multidimensional 
random variables.
QSD is an objective evaluation indicator for measur-

ing the richness of image information. This indicator 
describes the distribution or degree of dispersion of 
image pixel values. The larger the standard deviation is, 
the richer the information carried by the fusion image, 
and the better the fusion quality.

where I represents the fusion image and M N  represent 
the sizes of the images.
QSSEQ simulated images via local spatial entropy, 

which is calculated based on the probability of grayscale 
appearing in local space, and spectral entropy, which is 
calculated from the normalized power spectrum via 
the entropy function features to evaluate image qual-
ity without reference. This reference-free image quality 
evaluation method avoids the time-consuming and labo-
rious problems of subjective evaluation and can perform 

(9)

QSD =

√
√
√
√ 1

MN

M−1∑

i=0

N−1∑

j=0

(Ii,j −
1

MN

M−1∑

i=0

N−1∑

j=0

Ii,j)2

Fig. 7 Comparison of the 9 different algorithms in the MR-SPECT image fusion experiments
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real-time quality evaluation on large-scale images. The 
smaller QSSEQ is, the better the image quality and the less 
distortion there is.

where sei is the local spatial entropy, which is used 
mainly to describe the characteristics of the spa-
tial structure; fei is the spectral entropy, which 
describes the complexity and randomness of sig-
nals in the frequency domain; m is the number of 
blocks at each image scale; F = (fe1, fe2, · · · , fem) , 
Fc = (fe⌊0.2m⌋, fe⌊0.2m⌋+1, · · · , fe⌊0.8m⌋)  , 
Sc = (se⌊0.2m⌋, se⌊0.2m⌋+1, · · · , se⌊0.8m⌋) ; and 
S = (se1, se2, · · · , sem).
QTMQI is an indicator used to evaluate the quality of 

images generated by the tone-mapped operator (TMO), 
which evaluates the quality of the fused image and the 
original image (also known as the input image or refer-
ence image) in three ways: brightness, contrast, and 
structure. By calculating the specific values of brightness, 
contrast, and structure and combining these values, a 
comprehensive evaluation result is obtained. This evalua-
tion result can objectively reflect the quality of the image 
after tone mapping, which helps select and optimize tone 
mapping operators to generate higher-quality images.
QTMQI is defined as Eq.  (11). The larger QTMQI is, the 

better the fusion quality.

where T  and M are the structural fidelity and statistical 
characteristics, respectively, of the image. The constants 
are set to a = 0.8012 , α = 0.3046 , and β = 0.7088.

Comparison experiments
The experimental results of the proposed method are 
compared with those of various different image fusion 

(10)
QSSEQ = (mean(Sc), skew(S),mean(Fc), skew(F))

(11)QTMQI = aTα
+ (1− a)Mβ

reference methods. There are 9 different image fusion 
methods, including MSLE [38], CNN [39], IILLFD [40], 
SAF [41], CSMCA [42], NSSTPCNN [43], ATBIF [44], 
IFCNN [29], and ALMFnet \* MERGEFORMAT [30]. 
Three fusion experiments were conducted, and compari-
sons of the MRI-CT, MRI-PET, and MRI-SPECT results 
are shown in Figs. 5, 6 and 7, respectively.

Figure 5a and b show the MR images and CT images, 
respectively. Although the anatomical details of Fig.  5c, 
g, h and i are clear, the brightness of their high-density 
bone tissue is low. The anatomical details and brightness 
of the high-density bone tissue in Fig. 5d are unclear and 
low, respectively. The high-density bone tissues in Fig. 5e, 
j and k have high brightness; however, their white matter 
brightness is low. There is a noticeable colour distortion 
in Fig.  5f. Compared with those of the reference meth-
ods, the fusion image of the proposed method has more 
high-density bone tissue and brighter white matter in the 
brain.

Figure 6 shows that Fig. 6a and b are MR images and 
PET images, respectively, of gliomas. The loss of detailed 
glioma information leads to ambiguity in Fig.  6c and d. 

Table 1 Comparison of 5 indicators for MR-CT image fusion via 
different methods

Metrics\Methods QEN QNIQE QSD QSSEQ QTMQI

MSLE 4.6466 4.6335 61.0272 36.7649 0.7449

CNN 4.8972 4.6855 83.5727 38.6993 0.7380

IILLFD 5.4442 5.1168 87.0383 36.8426 0.7637

SAF 4.8472 5.0295 72.0968 38.8271 0.7146

CSMCA 4.6065 4.8064 73.4893 38.4118 0.7350

NSSTPCNN 5.4808 4.7112 82.5737 39.1697 0.7459

ATBIF 5.0296 4.8171 97.6451 39.4895 0.8120

IFCNN 4.8160 4.9661 76.6224 36.0188 0.7503

ALMFnet 4.7329 4.7899 87.5196 38.1332 0.7715

Proposed 5.4404 4.9646 95.8076 33.8225 0.8555

Table 2 Comparison of 5 indicators for MR-PET image fusion via 
different methods

Metrics\Methods QEN QNIQE QSD QSSEQ QTMQI

MSLE 4.2210 6.0820 45.1741 42.9560 0.7447

CNN 4.4071 5.3262 58.3163 43.3657 0.7344

IILLFD 4.6534 6.4310 62.8520 40.6984 0.7454

SAF 4.2149 6.0070 55.7454 43.3833 0.7227

CSMCA 3.8834 5.7297 54.4983 44.1161 0.7303

NSSTPCNN 4.5112 5.4140 62.6580 46.5436 0.7461

ATBIF 4.7968 5.1955 71.3991 42.2596 0.7659

IFCNN 4.1641 5.4674 55.9673 41.0903 0.7453

ALMFnet 4.2749 5.5082 64.1952 41.8377 0.7484

Proposed 5.3918 5.1417 75.9690 37.0941 0.7923

Table 3 Comparison of 5 indicators for MR-SPECT image fusion 
via different methods

Metrics\Methods QEN QNIQE QSD QSSEQ QTMQI

MSLE 4.6025 5.2363 44.3134 38.4644 0.7198

CNN 5.2676 4.5546 59.2894 38.2363 0.7123

IILLFD 5.0084 5.4090 58.8633 35.7919 0.7178

SAF 4.7529 5.0330 57.5773 37.7450 0.7011

CSMCA 3.8587 6.0024 37.0609 41.0763 0.6784

NSSTPCNN 4.8537 4.9774 59.3227 38.3072 0.7133

ATBIF 5.2551 4.4303 65.8140 40.3710 0.7411

IFCNN 4.5679 4.6846 49.9392 37.2265 0.7171

ALMFnet 4.7399 5.1779 56.9947 40.2024 0.7252

Proposed 5.8379 4.3497 73.5825 35.8205 0.7738
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There is a noticeable colour distortion phenomenon in 
Fig. 6f and k. The fusion results of Fig. 6e,  g, h and i are 
similar; however, the glioma brightness is not high. The 
fusion result of Fig. 6j is similar to that of Fig. 6l; however, 
the brightness of the glioma in Fig. 6l is greater.

Figure  7a and b show the MRI images and SPECT 
images, respectively. The brightness values of Fig.  7c, d 
and k are low, and important colour information is lost. 
Colour distortion and considerable noise occur in Fig. 7f. 

The colour information of Fig. 7g is clear, but the bright-
ness of the lesion area is the lowest. The colour infor-
mation of Fig.  7e, h and i is well preserved; however, 
the brightness of the lesion area is not high. Compared 
with the other methods, the proposed method results in 
greater brightness at the lesion site, as shown in Fig. 7l.

The fusion indices of the MR-CT, MR-PET, and MR-
SPECT image pairs are shown in Tables  1, 2  and  3, 
respectively. In these tables, bold numbers indicate 

Fig. 8 Line chart of MR-CT image fusion indicators
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optimal results. In terms of the MR-CT image fusion 
metrics, the proposed method has two optimal metrics: 
QSSEQ and QTMQI . Among the MRI‒PET fusion indi-
cators, five optimal indicators were proposed for this 
method: QEN , QNIQE , QSD , QSSEQ and QTMQI . Among 
the MRI‒SPECT fusion indicators, there are four opti-
mal indicators, namely, QEN , QNIQE , QSD and QTMQI . In 
Table 2, although all the values are similar, the proposed 
algorithm outperforms the comparison algorithm in all 

five metrics. In addition, the details and colour fidelity of 
the proposed algorithm are greater than those of the ref-
erence algorithm in Fig. 6.

To better compare the indicators of different fusion 
methods, the MR-CT, MR-PET, and MR-SPECT indica-
tor line graphs for the three types of images are drawn 
separately, as shown in Figs. 8, 9 and 10. The comparison 
results show that the proposed method performs signifi-
cantly better than the reference methods in terms of QEN , 

Fig. 9 Line chart of MR-PET image indicators
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QSD and QTMQI , indicating that the image fusion quality 
of the proposed method is better.

Conclusion
Medical image fusion technology produces clearer and 
more detailed images by fusing medical image features 
from different modalities, providing more comprehensive 

and accurate information to assist doctors in analysis and 
decision-making and improving diagnostic efficiency and 
accuracy. First, the proposed method uses interval gradi-
ents to achieve structure-texture image decomposition. 
Second, the method uses convolutional neural networks 
to extract perception images, sequentially obtaining 
structure, texture and perception images. Three different 

Fig. 10 Line chart of the MR-SPECT image fusion indicators
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fusion methods are used to fuse these three different 
images to obtain the fusion images. The comparative 
experimental results show that the proposed method 
outperforms the reference methods in multiple indica-
tors, such as QEN , QNIQE , QSD , QSSEQ and QTMQI.
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