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Abstract 

Early screening methods for the thyroid gland include palpation and imaging. Although palpation is relatively sim-
ple, its effectiveness in detecting early clinical signs of the thyroid gland may be limited, especially in children, due 
to the shorter thyroid growth time. Therefore, this constitutes a crucial foundational work. However, accurately deter-
mining the location and size of the thyroid gland in children is a challenging task. Accuracy depends on the expe-
rience of the ultrasound operator in current clinical practice, leading to subjective results. Even among experts, 
there is poor agreement on thyroid identification. In addition, the effective use of ultrasound machines also relies 
on the experience of the ultrasound operator in current clinical practice. In order to extract sufficient texture informa-
tion from pediatric thyroid ultrasound images while reducing the computational complexity and number of param-
eters, this paper designs a novel U-Net-based network called DC-Contrast U-Net, which aims to achieve better 
segmentation performance with lower complexity in medical image segmentation. The results show that compared 
with other U-Net-related segmentation models, the proposed DC-Contrast U-Net model achieves higher segmenta-
tion accuracy while improving the inference speed, making it a promising candidate for deployment in medical edge 
devices in clinical applications in the future.
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Introduction
The thyroid is a crucial gland in the human body, located 
in the front of the neck in the shape of an “H” surround-
ing the trachea, and composed of left and right lobes, 
the isthmus, and the pyramidal lobe [1]. Thyroid follicles 

constitute the primary substance of the thyroid, and the 
epithelial cells within the follicles can secrete thyroid 
hormones. These hormones have diverse effects on the 
human body, making the normal functioning of the thy-
roid an essential foundation for development and health 
[1]. Particularly in the case of pediatric thyroid issues, the 
volume of the thyroid gland is a key factor in analyzing 
the secretion of thyroid hormones in children. Therefore, 
the location and size of the thyroid are also important 
features in diagnosing thyroid diseases in clinical settings. 
Thus, delineating the boundaries of the thyroid gland is 
necessary for evaluating diseases [2]. It is important to 
note that children (up to 14 years old) are not miniature 
versions of adults. Children exhibit significant differ-
ences from adult patients in biological characteristics, 
clinical manifestations, diagnosis, and prevention. Stud-
ies have shown that treatment measures for adult thyroid 
disease patients may not be entirely applicable to chil-
dren. For example, radioactive iodine therapy, a common 
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treatment for hyperthyroidism in adults, is often not rec-
ommended for children due to its potential long-term 
effects on growth and development. Instead, antithyroid 
medications are preferred in pediatric cases to avoid the 
risks associated with radiation exposure [3]. Similarly, 
thyroidectomy, which involves the surgical removal of the 
thyroid gland and is frequently used in adults with thy-
roid cancer or nodules, presents significant challenges for 
children. The risks of complications and the impact on 
growth and hormone regulation make this approach less 
favorable for pediatric patients. Research suggests that 
less invasive options and careful monitoring are gener-
ally recommended for children, with surgery considered 
only in specific cases where other treatments have failed 
or the condition is severe [4].

Improper treatment in children can result in long-term 
damage to their growth. Adult thyroid development is 
generally mature, and the assessment of the severity of 
the disease often revolves around the benign or malig-
nant nature of nodules. For the detection of pediatric 
thyroid diseases in the context of this study, it is note-
worthy that nodules in children have a shorter growth 
period, and cases of tumors in children are relatively rare. 
Moreover, the incidence of nodules in children is much 
lower than in adults. Most thyroid problems in children 
include developmental abnormalities, ectopia, or absence 
of the thyroid. Therefore, the size and location of the thy-
roid are crucial features in diagnosing thyroid diseases in 
children. The early screening methods for the thyroid are 
divided into palpation and imaging examinations. Palpa-
tion is relatively simple but may have limited effective-
ness in detecting early clinical symptoms of the thyroid, 
especially when the thyroid’s growth time is short in chil-
dren. In recent years, with the vigorous development of 
imaging examinations, they have become widely popu-
lar. Unlike palpation, imaging examinations can directly 
visualize internal organ tissues, providing a more intui-
tive display and enabling early diagnosis and treatment 
of thyroid diseases [5]. Common imaging examinations 
include ultrasound diagnosis, computer tomography 
imaging (CT), magnetic resonance imaging (MRI), and 
nuclear imaging. Among them, ultrasound medical imag-
ing, with its advantages of safety, non-invasiveness, real-
time imaging, multi-sectional views, no radiation, and 
cost-effectiveness, plays a significant role in preoperative 
diagnosis and planning, treatment, and postoperative 
monitoring. Currently, ultrasound (US) is the primary 
imaging technology for diagnosing thyroid diseases in 
clinical practice. However, accurately identifying the 
position and size of the thyroid in children is a challeng-
ing task. The accuracy depends on the experience of the 
ultrasound operator in current clinical practice, leading 
to subjective results. Even among experts, the consistency 

in thyroid identification is poor. Additionally, the use of 
ultrasound machines also relies on the experience of the 
ultrasound operator in current clinical practice. In many 
primary hospitals, blood tests are used for the diagnosis 
of pediatric thyroid diseases, which is an invasive exami-
nation. This study aims to use ultrasound detection as a 
non-invasive method for preliminary screening of pedi-
atric thyroid diseases to assist in subsequent treatment. 
Moreover, the imbalance in medical resources can result 
in significant differences in diagnostic accuracy between 
different regions and hospitals. Therefore, the use of 
computer-aided diagnosis (CAD) systems can provide an 
objective, quantitative description of the problem, elimi-
nate the subjectivity of doctors, and offer useful reference 
information and data [6].

Figure  1 displays clinical ultrasound images of pedi-
atric thyroid collected from the ultrasound department 
of a certain hospital. The first column shows transverse 
section (cross-section) images of the thyroid, providing a 
clear and complete observation of the left and right thy-
roid lobes, isthmus, trachea, and esophagus, among other 
positional relationships. The second column shows lon-
gitudinal scan (sagittal section) images, offering a com-
plete view of a single lobe of the thyroid. The illustrated 
clinical pediatric thyroid data contain various irrelevant 
information, such as patient personal details, image scan 
dates, scan location information, etc. The central part 
of the image represents the outline of the thyroid gland, 
surrounded by similar organs and tissues like the esopha-
gus, trachea, nerve tissues, muscles, etc. There are no 
distinctly clear boundaries between these organ tissues. 
In such a complex situation, traditional segmentation 
methods struggle to achieve the segmentation task for 
pediatric thyroid. Additionally, the current study builds 
on existing models and methodologies in medical image 
segmentation. For instance, recent works such as the 
2MGAS-Net, a multi-level multi-scale gated attentional 
squeezed network for polyp segmentation, provide valu-
able insights into advanced segmentation techniques [7]. 
Similarly, convolutional neural-adaptive networks for 
melanoma recognition highlight the use of adaptive tech-
niques in medical imaging [8]. These approaches offer 
valuable context and comparison for evaluating the per-
formance of the proposed DC-Contrast U-Net model in 
this study.

Related works
Thyroid segmentation is a hotspot in the field of ultra-
sound image segmentation. Before deep learning became 
the mainstream segmentation approach, image seg-
mentation typically relied on traditional image process-
ing techniques, which can be categorized into several 
types. The first type is threshold-based methods, which 
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compare pixel values with predefined thresholds to 
achieve binary segmentation. The second type is edge 
detection-based methods, which achieve segmentation 
by detecting edges in the image. The third type is region-
based methods, which divide pixels with high brightness 
similarity into a region for segmentation. The last type is 
contour-based methods, which achieve image segmenta-
tion by minimizing the driving energy function. Tradi-
tional methods are not entirely automated and are mostly 
composed of various algorithms and auxiliary processing 
steps. In contrast, deep learning, especially Convolu-
tional Neural Networks (CNNs), addresses end-to-end 
problems, applying gradient-based learning to the entire 
system, from general features like edges and spots to 
advanced features like shapes.

Medical image segmentation algorithms based 
on traditional imaging genomics
Traditional image segmentation methods refer to the use 
of conventional computer vision techniques to achieve 
image segmentation. The following are introductions 

to several common traditional image segmentation 
methods:

(1)Threshold-Based Segmentation
Threshold segmentation is a simple and widely used 

image segmentation method that partitions grayscale 
images based on different levels, labeling pixels within the 
same category as the same object or background. Prewitt 
et al. [9] proposed the global single-threshold segmenta-
tion method using histogram bimodal analysis. In 1979, 
Nobuyuki Otsu [10] introduced the OTSU algorithm, 
which determines the optimal threshold by maximizing 
the inter-class variance. Kapure et al. [11] later proposed 
the maximum entropy threshold method, which seeks 
the optimal threshold to maximize the sum of entropy for 
object and background parts. However, threshold-based 
methods struggle with complex backgrounds where tar-
get and background grayscale ranges overlap. Alternative 
methods such as edge-based segmentation, region-grow-
ing algorithms, and graph-based segmentation are often 
more effective in these scenarios.

(2)Edge-based Segmentation

Fig. 1 The pediatric thyroid ultrasound images collected by the hospital



Page 4 of 19Peng et al. BMC Medical Imaging          (2024) 24:275 

Edge-based segmentation achieves image segmenta-
tion by detecting edges of different regions. Edge detec-
tion was first introduced by Julez [12] in 1959. In 2010, Li 
[13] proposed optimization criteria based on the OTSU 
algorithm to segment small target defects. In 2015, Du 
[14] introduced the DRLSE algorithm for segmenting 
thyroid nodules in ultrasound images, addressing noise 
and weak echoes but performing poorly with weak edges 
and being sensitive to manual contour initialization. In 
2018, Kuchekar [15] used edge detection to classify rice 
grains based on features like shape and size. In 2020, Qu 
[16] applied homomorphic filtering and an improved 
Canny operator for edge detection in thyroid CT images, 
enhancing noise removal and detail accuracy. However, 
edge detection methods are more suitable for simple 
images, as they struggle with complex images, necessitat-
ing more advanced segmentation techniques.

(3)Region-based Segmentatio
Region-based image segmentation divides an image 

into distinct regions based on pixel brightness similarity. 
Key methods include region growing and region splitting 
and merging. In 1994, Adams et al. [17] introduced a seed 
region method using adjacent pixels, successfully seg-
menting diverse medical images. In 2012, Zhao et al. [18] 
proposed a thyroid nodule segmentation technique using 
Normalized Cut (NC), incorporating multiple filtering 
techniques to address noise suppression and detail pres-
ervation in ultrasound images, although it lacked com-
prehensive quantitative analysis. In 2016, Alrubaidi et al. 
[9] developed a 2D thyroid nodule segmentation method 
for ultrasound images, using variance reduction statis-
tics and radial line edge points, improved with B-spline 
technology for better accuracy. Despite improvements, 
the method is time-consuming, resource-intensive, and 
sensitive to noise, which can lead to segmentation errors. 
Ongoing research seeks to address these challenges and 
improve region-based segmentation algorithms for medi-
cal imaging.

Medical image segmentation algorithms based on deep 
learning
With the rise of neural network models and the devel-
opment of deep learning, many scholars have begun to 
adopt image segmentation techniques based on deep 
learning. These techniques have shown promising results 
in computer-aided diagnosis research, providing valuable 
assistance to medical professionals [10]. In this chapter, 
we will primarily discuss the current research status of 
deep learning image segmentation algorithms from two 
perspectives: research on networks based on the U-Net 
model and research on networks based on non-U-Net 
models.

(1)U-Net Related Models

State-of-the-art image segmentation models lever-
age unique information at different scales, such as Fully 
Convolutional Network (FCN), U-Net, SegNet, PSPNet 
[19], and various DeepLab versions [20]. U-Net, widely 
used in medical image segmentation, combines low-level 
detailed feature maps from the encoder with high-level 
semantic feature maps from the decoder using residual 
connections. Numerous variants of U-Net have been 
proposed. In 2020, Huang proposed UNet 3+, which uses 
comprehensive residual connections to aggregate fea-
ture maps at all scales, yielding good results with fewer 
parameters than U-Net. He [21] introduced a self-atten-
tion mechanism in a deep attention U-Net model for thy-
roid CT images, though its performance on ultrasound 
images remains untested. In 2021, Lou proposed DC-
UNet, which uses dual-channel CNN blocks for higher 
performance with fewer parameters. Hu [22] incorpo-
rated a multi-scale dilated convolution pyramid and a 
spatial boundary attention module into U-Net to address 
morphological and size variations in thyroid images, 
but this model is parameter-heavy and time-consuming. 
Zhang [23] introduced a cascaded U-Net framework for 
thyroid nodule segmentation, using one U-Net for rough 
localization and another for fine segmentation. However, 
it struggles with nodules of varying sizes and positions, 
highlighting the challenge of achieving high precision 
in thyroid nodule segmentation due to their diverse and 
complex characteristics.

(2)Other Models
Deep Convolutional Neural Networks (DCNNs) have 

continuously evolved from traditional neural networks. 
In 1998, “LeNet” [24] formed a complete deep convolu-
tional neural network, but its development was limited by 
computational capacity and data scale. Recent advance-
ments in computer hardware and the rise of big data have 
significantly improved DCNN performance. In 2019, Gu 
[25] proposed CE-Net, which accelerates network con-
vergence and avoids gradient disappearance using feature 
encoders, decoders, and context extraction modules. In 
2021, Gong [26] introduced a thyroid region pre-guided 
feature enhancement model for thyroid nodule segmen-
tation, which aids radiologists but focuses too much on 
global information, neglecting local details. Challenges 
remain in segmenting children’s thyroids due to unclear 
boundaries, limited data, high annotation costs, and vari-
able morphological scales.

To address the unresolved issues in the aforemen-
tioned methods, we propose a new method: DC-Contrast 
U-Net. This method aims to improve the performance 
of existing models in handling medical image segmen-
tation tasks, particularly in terms of key metrics such as 
accuracy and inference speed. Since our method is based 
on the U-Net model, we have compared it with several 
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classic and advanced U-Net models, including U-Net, 
UNet++, and Attention U-Net. These models were 
selected for their widespread application, representative-
ness in the field of medical image segmentation, and their 
performance in handling similar tasks. The experimental 
results will highlight the differences in key metrics such 
as accuracy and inference speed among these models, 
offering an in-depth understanding of the improvements 
and advantages of DC-Contrast U-Net relative to existing 
technologies.

Methodology
This section introduces a segmentation model called 
Deformable Convolutional Contrast U-Net (DC-Con-
trast U-Net) based on the features of pediatric thyroid 
ultrasound images. Built upon the U-Net architecture, 
this model incorporates Contrast Blocks designed to 
accurately extract texture information from pediatric thy-
roid glands. Additionally, to enhance the network’s ability 
to learn texture information from each channel and bet-
ter adapt to the image shape, Compression and Excita-
tion Blocks, along with Deformable Convolution Layers, 
are introduced. The Compression and Excitation Blocks 
serve as auxiliary skip connections from the encoding 
to decoding process, while the Deformable Convolution 
Layers aim to better capture the shape information of 
irregular organs in the images.

Due to the continuous improvement in computer 
image processing capabilities, deep learning has been 
widely applied in various fields. The medical field is also 
exploring the application of deep learning methods to 
medical imaging. In this paper, taking the task of pedi-
atric thyroid medical image segmentation as an example, 
we propose improvements to the semantic segmentation 
network model U-Net. The goal is to extract the thyroid 
target region more accurately from ultrasound images, 
especially in cases where pediatric ultrasound data is 
scarce. The specific improvements are as follows:

(1.) In this paper, we present a state-of-the-art Con-
trast Block design, showcasing its expertise in extract-
ing abundant texture details from ultrasound images. An 
inherent feature of this design is its noteworthy ability to 
substantially reduce the number of parameters and com-
putational intricacies associated with extracting informa-
tion within the network from ultrasound images, thus 
contributing to a more streamlined and efficient image 
processing framework.

(2.) A new network named Contrast U-Net is proposed 
in the study. This network incorporates the Contrast 
Block into the encoder-decoder framework and intro-
duces compression and excitation blocks (Squeeze-and-
Excitation Block) in the skip connections [27]. These 
additions adaptively recalibrate the feature response 

intensity between channels. The proposed network shows 
effective improvements in segmentation accuracy, with a 
substantial reduction in parameters and computational 
workload compared to the U-Net network.

(3.) Ordinary convolutions in the base U-Net network 
are replaced with deformable convolutions [28] (abbrevi-
ated as DC) in this study, addressing spatial deformation 
issues in object space by introducing additional offsets to 
increase spatial sampling positions within the module.

Basic structure of the DC‑Contrast U‑Net network
In Fig.  2, (a) The overall network framework proposed 
in this paper, (b) the Contrast Block, and (c) the Com-
pression and Excitation Block. The model consists of 
four main modules: encoder, decoder, Contrast Block, 
and Compression and Excitation Block. The encoder 
and decoder modules are like the encoder and decoder 
modules in the classical U-Net network, with ordinary 
convolutions replaced by deformable convolutions. DC-
Contrast U-Net uses deformable convolutions and down 
sampling to extract multi-scale features. There are two 
different convolution blocks during down sampling, with 
one block identical to U-Net, stacking two 3 × 3 convo-
lutions with an output channel number twice the input 
channel number. The second layer of deformable con-
volution in this block has the same properties as the 
preceding layer, consisting of a Contrast Block and a con-
volution kernel with a size of 3 × 3, and the output chan-
nel number is the same as the input channel number. The 
proposed Contrast Block and deformable convolution 
results are concatenated to extract texture information 
and extend the channel number. To adaptively recali-
brate the feature response intensity between channels, 
Compression and Excitation Blocks are used at the skip 
connections between the encoder and decoder, replacing 
traditional skip connections.

Contrast Block
A novel operator named Contrast Value Operator (CVO) 
is introduced in the Contrast Block. The Contrast Value 
Operator is an effective operator designed based on 
Pascal’s Triangle. Due to the property of Pascal’s Trian-
gle, whose numbers can be used for computing differ-
ences and gradients, it enables smooth filtering and edge 
detection. As confirmed in previous research [29], the 
Contrast Value Operator is particularly sensitive to fine 
textures in images, making it well-suited for segmenta-
tion tasks. The Contrast Value Operator consists of two 
components: a difference component composed of 1 and 
-1, and a contrast component composed of 1 and 2. As 
shown in Fig.  3, convolution of the difference and con-
trast components in different directions yields Contrast 
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Value Operators in different orientations. With the pres-
ence of the difference component, the Contrast Value 
Operator exhibits high sensitivity to fine textures, while 
the contrast component enhances image contrast.

The proposed Contrast Block is obtained by convolv-
ing the Contrast Value Operator in different directions 
and calculating gradients. The specific structure of the 
Contrast Block is illustrated in Fig. 3, where (a) shows 

the process of generating contrast value operator com-
ponents using Pascal’s Triangle; (b) displays the con-
volution kernel of the contrast value operator in the 
x-direction; and (c) shows the convolution kernel of the 
contrast value operator in the y-direction. The input 
image undergoes convolution with the contrast value 
operator from different directions, followed by the cal-
culation of approximate gradients.

Fig. 2 DC-Contrast U-Net Architecture
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Deformable convolution
Traditional CNN modules in visual recognition have 
certain fixed geometric structure limitations. For exam-
ple, convolutional units’ sample and pool input feature 
maps at fixed positions, reduce spatial resolution and 
regions of interest at a fixed ratio, pool layers segment 
an area of interest into fixed spatial units, and lack 
internal mechanisms for handling geometric transfor-
mations. These limitations result in the same receptive 

field size for all activated units within the same layer. 
In practical visual recognition scenarios requiring pre-
cise localization, the same object at different positions 
should correspond to different scales or deformations. 
Therefore, the adaptive adjustment of scale and recep-
tive field size holds great potential. To address these 
issues, deformable convolutions have been introduced, 
allowing the convolutional kernel to adaptively adjust 
its shape. See Fig. 4.

Fig. 3 Contrast Value Operator Generation Process Schematic

Fig. 4 3×3Illustration of Deformable Convolution
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For a given input feature map, assuming the original 
convolution kernel size is 3 × 3, a new deformable convo-
lution layer is defined to generate offset values. The ker-
nel size of this convolution layer remains 3 × 3, and the 
output feature map has the same dimensions as the input 
map but with a channel number of 2N (representing off-
set values in the x and y directions). Deformable convolu-
tion can be viewed as interpolating the generated offset 
values in the upper part and then performing a regular 
convolution operation.

Traditional convolution can be defined by the formula 
(1):

Where p0 is each position in the output feature map 
y , and pn enumerates positions in the grid R . In deform-
able convolution, the regular grid R is enlarged by offsets 
{δpn = n = 1, . . . ,N } , where N = |R| . Formula (1) evolves 
into formula (2):

Since in deformable convolution, offsets cause the con-
volution kernel positions to not correspond to integer 
pixel points on the feature map, interpolation methods 
are needed to obtain the pixel values after offset. Typi-
cally, bilinear interpolation is used for interpolation cal-
culations, expressed by formula (3):

Here, p represents any position ( p = p0 + pn + δpn ), 
and q is chosen from all positions in the feature map x . 
G(·, ·) is the kernel function for bilinear interpolation, and 
since it is two-dimensional, G(q, p) = g(qx, px) · g(qy, py) . 
The overall meaning of the formula is to set the pixel 
value of the interpolation point as the weighted sum of 
its neighboring four-pixel points. These four-pixel points 
are the closest and exist on the feature map. The weight 
of each pixel point is calculated based on the Euclidean 
distance between its coordinates and those of the inter-
polation point. The term max(0, 1− . . .) in the last line 
of formula (3) limits the distance between neighboring 
points and the interpolation point to be less than 1 pixel.

Compression and Excitation Block
The SE [27] module (Squeeze-and-Excitation Module) 
is a module designed to enhance the performance of 

(1)y(p0) =

pn∈R

w(pn) · x(p0 + pn)

(2)y(p0) =
∑

pn∈R

w(pn) · x(p0 + pn + δpn)

(3)

x(p) =
∑

q
G(q, p) · x(q)

=
∑

q
g(qx , px) · g(qy, py) · x(q)

=
∑

q
max(0, 1− |qx − px|) ·max(0, 1− |qy − py|) · x(q)

convolutional neural networks. It was proposed by Hu 
et al. in 2018 and can be incorporated into existing con-
volutional neural networks. To simulate inter-channel 
dependencies, this paper introduces the Compression 
and Excitation Block (Squeeze-and-Excitation Block) to 
adaptively recalibrate the strength of feature responses 
between channels, explicitly establishing mutual depend-
encies between channels. The Compression and Exci-
tation Block is illustrated in Fig.  3-1(c). As the name 
suggests, the Compression and Excitation Block is 
divided into two parts: Squeeze and Excitation.

The main idea of the SE module is to adjust the chan-
nel weights of the feature map by adaptively learning 
inter-channel correlations. The module consists of two 
steps: the first step involves compressing the features of 
each channel to a scalar through global average pooling, 
referred to as the “squeeze” operation; the second step 
entails using a fully connected layer to weight each sca-
lar of each channel, known as the “excitation” operation. 
This process enables the network to pay more attention 
to important channels, thereby enhancing the expressive-
ness and discriminability of features.

In the SE module, the squeeze and excitation opera-
tions can be expressed as formulas (4) and (5):

In this module, xi,j represents a pixel in the feature 
map, where H and W  represent the height and width of 
the feature map, respectively. The compressed feature 
for each channel is denoted by z , and the weights of the 
fully connected layer are W1 and W2 . The activation func-
tions and sigmoid functions are represented by δ and σ , 
respectively.

The compression part involves a global average pool-
ing operation to obtain a globally compressed feature 
vector, effectively compressing the original feature map 
from H ×W × C (height × width × number of channels) 
to 1× 1× C , which is equivalent to compressing H ×W  
into one dimension. This provides a globally panoramic 
view of the original H ×W  feature map, thereby expand-
ing the receptive field. The excitation part involves two 
fully connected layers concatenated to obtain the weight 
values for each channel. The weighted input is then used 
as the output, resulting in a feature map of size 1× 1× C 
after the compression operation. A fully connected layer 
is added, predicting the importance of each channel. 
After determining the importance of different channels, 
the excitation operation is applied to the corresponding 

(4)z =
1

H ×W

H
∑

i=1

W
∑

j=1

xi,j

(5)s = σ(W2δ(W1z))
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channels in the original feature map. In the excitation 
operation, the parameter 1/r is a scaling parameter aimed 
at reducing the number of channels, thereby reducing 
computational complexity.

Loss function
In pediatric thyroid ultrasound images, there is a sig-
nificant proportion of background regions, with only the 
central part being the region of interest for the pediat-
ric thyroid. This leads to the issue of class imbalance in 
ultrasound images. To optimize the proposed network in 
this paper, Focal Loss (FL) [30] is used as the network’s 
loss function to measure the relationship between pre-
dicted values and ground truth. Focal Loss is a dynami-
cally scaled cross-entropy loss function that reduces the 
weights of easily distinguishable samples during training 
by dynamically adjusting the scaling factor, focusing on 
challenging samples. This approach allows the model to 
pay more attention to difficult-to-distinguish samples, 
thereby improving segmentation accuracy. Difficult-to-
distinguish samples may be positive or negative samples 
but are helpful for training the network, expressed by the 
formula (6):

Among them, pt reflects the degree of proximity 
between predicted values and actual values, and γ is a 
modifiable parameter.

In the field of image segmentation, imbalanced class 
distribution is often encountered, such as in tasks like 
defect detection in industrial products, road extrac-
tion, and segmentation of lesion areas. In scenarios with 
imbalanced class distribution, where the pixel counts for 
different classes vary significantly, models often perform 
poorly in predicting the minority class. Therefore, it is 
necessary to employ methods to address class imbalance 
issues and improve the segmentation accuracy of the 
model. One approach to handling such imbalanced class 
distribution is to use Lovasz Loss.

Lovasz Loss ( LL ) is a convex Lovasz extension loss 
function based on submodular losses, optimized for the 
mean intersection over union (mIoU) loss of neural net-
works. When using Lovasz Loss, different forms of loss 
functions can be chosen, including Lovasz Hinge Loss 
and Lovasz Softmax Loss. Lovasz Hinge Loss is suitable 
for binary classification problems, while Lovasz Soft-
max Loss is suitable for multi-class problems. As mIoU 
aligns more with the intuitive sense of image comparison, 
Lovasz Loss is selected to assist Focal Loss in fine-tuning 
the results. This can be expressed as formula (7):

(6)FL = (1− pt)
γ log(pt)

(7)LL = �J1(m)

Where �J1 represents the Jaccard Loss, and m is the 
optimization algorithm. In summary, the total loss func-
tion can be expressed as formula (8):

Experimental
Dataset creation and preparation
(1) Dataset Preprocessing

The pediatric thyroid ultrasound image dataset used in 
this study is sourced from the ultrasound department of 
the Sichuan Provincial Maternal and Child Health Hos-
pital, totaling 380 original images. Due to incomplete or 
unclear contours of the pediatric thyroid in some data, 
a selection and cleaning process was applied to the raw 
data obtained from the hospital. A total of 310 usable 
pediatric thyroid ultrasound images remained after this 
process. Clinical data was collected from the hospital, 
and after consultation with doctors, professional ultra-
sound doctors used the LabelMe [30] annotation tool 
to annotate the thyroid contours, generating JSON files 
containing coordinate information for the thyroid con-
tour positions.

Given the complexity of the thyroid itself and varia-
tions in human development, there may be some anno-
tation errors, omissions, or duplications in the dataset 
during actual application. To ensure the quality of the 
training data, manual selection of well-annotated image 
data is necessary. Additionally, to protect patient privacy, 
sensitive information needs to be removed and renamed 
before using the image data.

The following preprocessing steps were applied to the 
acquired clinical data in this study, The detailed steps 
are shown in Fig.  5: Since the segmentation network in 
this chapter requires pediatric thyroid ultrasound images 
and corresponding label images, the annotation informa-
tion was extracted from the JSON files and converted 
into corresponding annotated image data. This process 
involves parsing the JSON files using image processing 
libraries such as Python’s PIL (Python Imaging Library) 
or OpenCV. It automatically retrieves contour coordi-
nates in batches from the JSON files and draws corre-
sponding-sized annotation label images based on the 
original image dimensions.

(2) Data Augmentation
Deep learning has achieved tremendous success in the 

task of image segmentation in computer vision, and one 
key factor contributing to this success is the support of 
powerful dataset resources. Improving the model’s gener-
alization ability, allowing it to perform well on unknown 
data, is currently a crucial task. Networks lacking 

(8)Loss = FL+ �LL
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generalization ability are prone to overfitting, meaning 
they perform well on the training set but poorly on the 
test set.

To reduce the bias between the training and test-
ing processes, data augmentation is a highly effective 
technique.

After data augmentation, the segmentation results rep-
resent a more comprehensive combination of informa-
tion, aiming to reduce the discrepancy between training 
information and test data. The premise of implementing 
data augmentation techniques is to ensure translational 
invariance of the image data, meaning transformations 
applied to the images should not alter their intrinsic 
properties.

Due to the limited size of the pediatric thyroid ultra-
sound dataset, to prevent overfitting during network 
training, this study employed a data augmentation strat-
egy to expand the original sample dataset, As shown in 
Fig.  6. Multiple-angle rotations (90◦ , 180◦ , 270◦ ) were 
applied. The original set of 310 clinical pediatric thyroid 
ultrasound images was augmented to 1240 images.

Image segmentation evaluation metrics
A crucial foundation in medical image processing and 
analysis is medical image segmentation. Choosing a good 
segmentation algorithm for image segmentation can 
greatly assist in subsequent diagnostics. Therefore, deter-
mining the quality of an algorithm has become an impor-
tant question. Typically, various evaluation metrics [31] 
are employed to quantitatively assess the segmentation 

results of a network, thereby examining the feasibility 
and accuracy of the network model.

Evaluation metrics include Intersection over Union 
(IoU), Mean Intersection over Union (MIoU), Accuracy, 
Precision, and Recall. All of these metrics can be repre-
sented by the four elements of a confusion matrix. The 
confusion matrix typically consists of four elements: TP 
(True Positive), FP (False Positive), TN (True Negative), 
and FN (False Negative).As shown in Fig. 7.

Where TP represents accurate prediction of true 
positive cases, where the true label is organ tissue or 
lesion area; TN represents accurate prediction of true 
negative cases, where the true label is background 
area; FP represents the misjudgment of background 
area as organ or lesion, indicating false positive cases 
(false alarm); FN represents the misjudgment of organ 
or lesion area as background, indicating false negative 
cases (missed detection). The above evaluation metrics 
can be expressed in terms of these four fundamental 
values:

(9)IoU =
TP

TP + FP + FN

(10)

mIoU =
1

2

(

TP

TP + FN + FP
+

TN

TP + FN + FP

)

(11)Accuracy =
TP

TotalSample

Fig. 5 The Process of Generating Labels
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(12)Precision =
TP

TP + FP

IoU, mIoU, Accuracy, Precision, and Recall all 
have values ranging from 0 to 1, where a higher value 
within this interval indicates a higher degree of over-
lap between the predicted and true labels, and thus a 
more accurate model prediction [32]. These metrics 
are all used to evaluate the overall performance of the 
network in terms of segmentation accuracy. It is impor-
tant to note that in the proposed DC-Contrast U-Net 
in this paper, the contrast block, while enhancing seg-
mentation accuracy, also introduces higher complexity. 
This may limit the improvement of the segmentation 

(13)Recall =
TP

TP + FN

Fig. 6 The Process of Generating Labels

Fig. 7 The Process of Generating Labels
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network in certain scenarios. Therefore, in addition to 
evaluating segmentation accuracy, experimental results 
also consider parameters and time consumption as 
evaluation metrics, providing a more comprehensive 
display of the computational complexity of various seg-
mentation networks.

Experiment settings
(1) Experiment Environment

The experiment was conducted on a workstation run-
ning the Ubuntu 18.04 operating system. The workstation 
is equipped with two E5-2620 central processors with 
a clock frequency of 2.00 GHz, 128 GB RAM, and two 
GeForce RTX 3090 TURBO graphics cards, each with 24 
GB RAM. The hardware configuration of the experiment 
environment is shown in Table 1. The final experiments 
were conducted using Visual Studio Code locally, con-
necting to the container through Remote SSH.

The experiment environment is set up with the 
Ubuntu operating system, and it comes pre-installed 
with the Conda 4.10.1 environment management sys-
tem and open-source software package management 
system. Additionally, the necessary compilation software 
Pycharm and related frameworks required for the experi-
ment are installed, as detailed in Table 2.

(2) Experimental Process
This study utilizes the PyTorch deep learning frame-

work to establish the training environment for the entire 
experiment, which is primarily divided into the training 
and testing processes. To facilitate training and testing, 
the dataset needs to be centrally processed and placed 
in a specified directory. After data augmentation, ultra-
sound images and label data are passed as inputs to 
the model for training, and the model parameters are 
updated during the iterative process. After each itera-
tion, the loss function value is computed using the label 
tensor and the tensor predicted by the network. The loss 

function is then used for backpropagation to update the 
parameters, continuously optimizing the loss function to 
reach its minimum. When the change in the loss func-
tion becomes small or almost negligible, the model is 
considered to have converged, and the model parameters 
are saved for future use. During the testing of the model’s 
performance, the previously saved optimal model param-
eters are loaded. First, the saved model parameters are 
loaded into the model. Then, the test dataset is input into 
the model to obtain the model’s predictions for the test 
data. Finally, by comparing the predicted results with the 
true label data, performance metrics such as mIoU, accu-
racy, precision, and recall are calculated.

(3) Experimental Parameter Settings
This study employs a total of 1240 images, with the 

dataset divided into training and testing sets in an 8:2 
ratio. Consequently, the final experimental training set 
consists of 992 images, and the testing set consists of 
248 images. The input image size for the model is set to 
512×512× 3, and the corresponding label data size is 512×
512× 1. The Batch Size is set to 4. The experiment uti-
lizes the Adam optimizer with a well-optimized effect, 
and the initial learning rate is set to 0.0001. Focal Loss is 
combined with Lovasz Loss as the loss function, and the 
maximum number of iterations is set to 120.

To validate the proposed method in this chapter for thy-
roid ultrasound image segmentation networks in terms of 
performance and effectiveness, and to ensure the fairness 
and effectiveness of the experiments for comparison, vari-
ous segmentation models mentioned in recent literature 
are compared. Ablation experiments demonstrate the 
impact of adding or removing different modules on seg-
mentation performance. All other conditions remain the 
same; thus, all experiments are conducted under identical 
conditions, controlling for other variables.

The decision not to use a validation set was based on 
the following considerations: Firstly, we aimed to maxi-
mize the utilization of the limited dataset to enhance the 
model’s generalization ability. Secondly, since we have 
controlled other variables through ablation studies and 
comparative experiments, ensuring the validity and reli-
ability of the experimental results, the role of a valida-
tion set was deemed less critical in this study. Lastly, by 
directly evaluating the model using the test set, we simpli-
fied the experimental process and ensured a more direct 
and effective assessment of the model’s performance.

Experimental results and analysis
Comparison experiments
Figure 8 illustrates the variation of the loss function for 
the training and testing sets during the training process 
of the proposed method and other networks. The red 
curve represents the loss function curve of the proposed 

Table 1 Experimental Hardware Environment Table

Hardware name Model and size

CPU Intel Xeon E5-2620

GPU NVIDIA RTX3090 Turbo 24G

RAM 128G

Table 2 Experimental Software Environment Table

Software name Version

Host Operating System Ubuntu System

Python 3.8

PyTorch 1.13.1

CUDA 11.8
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method, DC-Contrast U-Net, while the loss func-
tion curves of other networks are indicated by different 
colors, as shown in the legend in the upper right corner 
of the line chart.

In Fig.  8, (a) represents the loss function variation 
curve on the training set, and (b) represents the loss 
function variation curve on the testing set. Combining 
(a) and (b), it can be observed that the proposed method 
in this chapter converges quickly and steadily on both the 
training and testing sets. After epoch=60 on the training 
set, the loss function curve shows no significant fluctua-
tions. Similarly, throughout the entire training process on 
the testing set, there are no noticeable abrupt changes in 
the loss function curve. The proposed method achieves 

faster convergence to the minimum value, with the curve 
almost parallel to the x-axis. Compared to other net-
works, the proposed network exhibits the lowest training 
difficulty.

Figure  9 illustrates the variation curves of the mean 
Intersection over Union (mIoU) on the training and 
testing sets during the training process for the proposed 
method and other networks. The red curve represents 
the mIoU curve of the proposed method, DC-Contrast 
U-Net, while the mIoU curves of other networks are 
indicated by different colors, as shown in the legend in 
the upper right corner of the line chart.

In Fig. 9, (a) represents the mIoU variation curve on 
the training set, and (b) represents the mIoU variation 

Fig. 8 Loss Function Variation Curves of Different Network Models

Fig. 9 Loss Function Variation Curves of Different Network Models
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curve on the testing set. After epoch=60 on the training 
set, the mIoU curve shows no significant fluctuations, 
and it remains relatively stable throughout the entire 
training process on the testing set. Combining (a) and 
(b), it can be observed that the proposed method in this 
chapter achieves the highest mIoU on both the training 
and testing sets, indicating optimal segmentation per-
formance of the model.

Finally, it should be noted that from the graph, it can 
be observed that the CE-Net model and R2U-Net model 
perform poorly on the clinical dataset used in this 
chapter. They have limited relevance to the proposed 
method. Therefore, in the subsequent experiments, only 
the segmentation results of the other four methods are 
compared.

In determining the value of � in the loss function, a 
sensitivity analysis was conducted, and the value of � 
was chosen to be 0.4. The specific results are shown in 
Table 3: From Table 3, it can be observed that the experi-
mental results with different values of � follow a normal 
distribution. The segmentation performance is optimal 
when � is set to 0.4 in the loss function. Therefore, for 
the subsequent experiments in this chapter, � in the loss 
function is consistently set to 0.4.

To validate the effectiveness of the proposed DC-
Contrast U-Net network in the clinical dataset experi-
ment, comparative experiments were conducted using 
DC-Contrast U-Net, U-Net, UNet++, and Attention 
U-Net. The visual representation is shown in Fig.  10, 
which demonstrates the segmentation results of the pro-
posed network compared to other well-performing seg-
mentation networks on a clinical thyroid dataset. This 
figure illustrates the comparison of segmentation results 
between well-performing segmentation networks in 
medical images and the proposed DC-Contrast U-Net 
on a clinical thyroid dataset. The figure showcases five 
sets of pediatric thyroid images from different patients 
and cross-sections. Column (a) displays five randomly 
selected original pediatric thyroid images from the 
testing set, column (b) shows the corresponding label 
images, column (c) presents the segmentation results 
of the proposed method, and columns (d), (e), and (f ) 
depict the segmentation results of U-Net, UNet++, and 
Attention U-Net, respectively. UNet++ can capture 

features at different hierarchical levels, resulting in bet-
ter segmentation performance compared to the baseline 
network U-Net. Although Attention U-Net introduces 
an attention mechanism to enhance the network’s 
focus on important features, UNet++ introduces mul-
tiple branches at each pooling stage, providing the net-
work with better feature representation capabilities. 
The improved DC-Contrast U-Net can extract sufficient 
irregular image information.

From the segmentation results, it can be observed 
that DC-Contrast U-Net performs the best on pedi-
atric thyroid clinical data. In the highlighted red box, 
the proposed method in this chapter tends to be closer 
to the label data compared to other networks. Due to 
the incomplete development of the pediatric thyroid, 
its shape is less regular than the adult thyroid, and the 
boundaries are not clearly separated from surrounding 
tissues. Addressing the specific challenges of pediatric 
data, DC-Contrast U-Net segments the thyroid bounda-
ries closer to the label data than other methods. For 
uncertain thyroid regions, the segmentation by DC-Con-
trast U-Net is more accurate. Next, the effectiveness of 
the proposed method is quantitatively explained.

Table  4 presents the segmentation performance met-
rics of different networks on the clinical pediatric thy-
roid dataset collected by the Sichuan Provincial Maternal 
and Child Health Hospital. For the U-Net network, the 
values of IoU, mIoU, accuracy, precision, and recall are 
0.8444, 0.8159, 0.9079, 0.8319, and 0.7944, respectively. 
In contrast, the proposed DC-Contrast U-Net achieves 
values of 0.8952, 0.8660, 0.9528, 0.9183, and 0.8311 for 
IoU, mIoU, accuracy, precision, and recall, respectively. 
The metrics of IoU, mIoU, accuracy, precision, and recall 
show improvements of 6.01%, 6.14%, 1.5%, 4.95%, and 
4.62%, respectively. In Table 5, the first row displays two 
metrics: Parameters and Multiply-Accumulate Opera-
tions (MACs). Parameters represent the total number 
of parameters in the model, commonly used to meas-
ure the size of deep learning models. For example, a 3 × 3 
convolutional layer has nine parameters for the convolu-
tion operation plus one parameter for the bias operation, 
totaling ten parameters. Another metric is Multiply-
Accumulate Operations, where 1 MAC includes one 
multiplication operation and one addition operation. 

Table 3 Sensitivity Analysis of the Parameter � in the Loss Function

Parameter � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mIoU 0.8432 0.8557 0.8567 0.8660 0.8634 0.8636 0.8559 0.8489 0.8511

Accuracy 0.9431 0.9511 0.9444 0.9528 0.9452 0.9519 0.9433 0.9418 0.9302

Precision 0.9007 0.9032 0.8927 0.9183 0.9103 0.9039 0.8999 0.9034 0.8839

Recall 0.8055 0.8261 0.8293 0.8311 0.8231 0.8136 0.8267 0.8302 0.8156
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This metric is also commonly used to evaluate the com-
putational complexity and size of deep learning models.

From the table, it can be observed that the proposed 
DC-Contrast U-Net has a parameter count of only 2.5M 
and MACs of only 1.2G, much smaller than the other 
networks. By introducing the contrast block into U-Net, 
the convolutional kernels responsible for extracting 
image texture information are fixed, eliminating the need 
to compute the convolution kernels for the contrast block 
during a significant portion of the learning process. This 
reduction results in a decrease in the number of param-
eters and model computation.

Differential experiments
In order to enhance model accuracy without introduc-
ing excessive computational complexity, DC-Contrast 
U-Net has been specifically improved based on the base-
line U-Net. To validate the effectiveness of the proposed 
enhancements, a series of ablation experiments were 

Fig. 10 Demonstrations of the segmentation results of DC-Contrast U-Net and other models on five sets of clinical data

Table 4 Network Performance on Pediatric Thyroid Dataset

Network IoU mIoU Accuracy Precision Recall

U-Net [10] 0.8444 0.8159 0.9079 0.8319 0.7944

UNet++ [33] 0.8740 0.8386 0.9360 0.8758 0.8198

Attention U-Net [34] 0.8147 0.8064 0.9037 0.7758 0.7980

DC‑Contrast U‑Net 0.8952 0.8660 0.9528 0.9183 0.8311

Table 5 Network Performance on Pediatric Thyroid Dataset

Network Number of 
parameters (M)

Multiply‑
accumulate 
operations (G)

U-Net [10] 7.3 4.1

UNet++ [33] 27.8 9.8

Attention U-Net [34] 19.3 16.7

DC‑Contrast U‑Net 2.5 1.2
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conducted using IoU, mIoU, accuracy, precision, and 
recall as performance and feasibility evaluation metrics.

To comprehensively evaluate the performance of DC-
Contrast U-Net, we also conducted comparative experi-
ments with other advanced segmentation models. The 
models selected for comparison include U-Net, UNet++, 
and Attention U-Net, as these models are widely used 
and representative in the field of segmentation technol-
ogy. The comparison is based on key performance indica-
tors such as accuracy and inference speed. The evaluation 
process includes a quantitative analysis of segmentation 
accuracy, involving metrics like Dice coefficient, Intersec-
tion over Union (IoU), and pixel accuracy. Additionally, 
inference speed was measured to assess the efficiency of 
each model in practical applications.An ablation study 
was also performed to investigate the impact of specific 
components in DC-Contrast U-Net. This includes evalu-
ating the contribution of Contrast Blocks and Squeeze-
and-Excitation Blocks to overall performance. By 
systematically removing or modifying these components, 
we analyzed the effect of each element on segmentation 
results and model efficiency. Detailed experimental set-
ups and results of these comparisons are presented in the 
following sections. We provide both visual and quantita-
tive assessments of DC-Contrast U-Net relative to other 
models, offering a deep understanding of its advantages 
and potential areas for improvement.

Firstly, the designed contrast block was added to the 
U-Net encoder-decoder framework, compressing and 
activating blocks were incorporated into skip connec-
tions, and ordinary convolutions were replaced with 
deformable convolutions. This approach is referred to as 
DC-Contrast U-Net. Another method, named Contrast 
U-Net, involves adding the contrast block to the U-Net 
encoder-decoder framework, introducing compressing 
and activating blocks into skip connections, but using 
ordinary convolutions in the convolutional part. Finally, 
DC U-Net involves adding compressing and activating 
blocks to skip connections in U-Net without introduc-
ing the contrast block and still replacing ordinary con-
volutions with deformable convolutions. To verify the 
effectiveness of the introduced contrast block, added 
compressing and activating blocks, and the substitu-
tion of deformable convolutions, ablation experiments 
were conducted on clinical pediatric thyroid ultrasound 
images obtained from the hospital. Table 6 presents the 
quantitative results obtained from the ablation study on 
clinical pediatric thyroid ultrasound images.

As shown in Table  6, different modules were succes-
sively added to the original U-Net network as a base, 
and the trained network model results were obtained 
accordingly. The proposed DC-Contrast U-Net improves 
image segmentation metrics, with mIoU, Dice, accuracy, 

precision, and recall increasing to 0.8660, 0.9528, 0.9183, 
0.8311, respectively. Larger values in the range of 0 to 
1 for these metrics indicate better model segmenta-
tion performance. Comparing Contrast U-Net with 
the baseline U-Net and DC-Contrast U-Net with DC 
U-Net in respective ablation experiments reveals perfor-
mance improvements in mIoU, accuracy, precision, and 
recall. This suggests that the introduced contrast block 
enhances the network’s sensitivity to fine textures in the 
image. Additionally, replacing ordinary convolutions with 
deformable convolutions enhances the segmentation per-
formance of the network. Through ablative experiments, 
the metrics mIoU, accuracy, precision, and recall of the 
DC-Contrast U-Net model have seen improvements. 
The introduced contrast block, compression and excita-
tion blocks, and deformable convolution components 
contribute to the enhanced network performance, allow-
ing the model to focus on fine image textures and exhibit 
increased sensitivity to irregular regions, ultimately 
improving segmentation performance.

To validate the effectiveness of the loss function, abla-
tion experiments were conducted on the loss func-
tion used in the model, and the results are shown in 
Table  7. In Table  7, the proposed Focal Loss (FL) is 
introduced as the loss function to measure the relation-
ship between predicted values and ground truth in the 
network. Considering the specificity of medical image 
segmentation in this study, the Binary Cross-Entropy 
(BCE) loss function is further utilized to assist FL with 
fine-tuning. The fine-tuning exponent is set to 0.4 and 

Table 6 Differential Contrast U-Net and ablative experiments 
with other networks

Network Dataset mIoU Accuracy Precision Recall

U-Net [10] Training Set 0.9547 0.9679 0.9501 0.9563

Test Set 0.7947 0.9472 0.8945 0.8112

Contrast U-Net Training Set 0.9342 0.9483 0.9419 0.9479

Test Set 0.8050 0.9341 0.9012 0.8210

DC U-Net Training Set 0.8900 0.9727 0.9046 0.9455

Test Set 0.7930 0.9346 0.8503 0.8193

DC‑Contrast 
U‑Net

Training Set 0.9754 0.9786 0.9762 0.9524

Test Set 0.8660 0.9528 0.9183 0.8311

Table 7 Loss Function Ablation Experiment

Method mIoU Accuracy Precision Recall

FL 0.7891 0.9090 0.8732 0.7964

LL 0.6259 0.6573 0.8599 0.7712

FL+LL 0.8537 0.9362 0.8813 0.8268

FL+0.4LL 0.8660 0.9528 0.9183 0.8311
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1 for comparative experiments. The introduced loss 
function, Loss = FL+ 0.4 BCE , shows improvements 
in mIoU, accuracy, precision, and recall compared to 
Loss = FL+ BCE , with increases of 1.23%, 1.66%, 3.7%, 
and 0.43%, respectively. The ablation experiments dem-
onstrate the effectiveness of the proposed loss function.

It is important to note that in the above experiments, 
separate training and testing sets were used. The results 
from the training set are primarily used to examine the 
fitting of the model during the training process, aiding 
the training phase and serving as a reference. However, 
they do not indicate the segmentation performance of 
the model. All evaluations of segmentation performance 
in this chapter are based on the segmentation results 
from the testing set.

Additionally, to validate the effectiveness of the pro-
posed improvements, experiments were conducted for 
each individual improvement. First, each improvement 
was separately added to the base model for training and 
testing, with relevant performance metrics recorded. 
Subsequently, different combinations of improvements 
were added step by step, and performance metrics were 
recorded again. Finally, a comparison was made with the 
base model to assess the overall improvement effect. This 
approach ensures a thorough evaluation of each improve-
ment, determining whether the proposed enhancements 
should be adopted.

Discussion
Performance analysis of DC‑Contrast U‑Net
In this paper, we provide a detailed overview of the data 
preparation, preprocessing pipeline, experimental setup, 
and parameter configuration for clinical pediatric thyroid 
ultrasound images. To address the specific characteris-
tics of pediatric thyroid ultrasound tasks, we improved 
the widely used U-Net model and proposed the DC-
Contrast U-Net model, aiming to achieve better segmen-
tation performance with lower complexity in medical 

image segmentation. Compared to the traditional U-Net, 
DC-Contrast U-Net shows significant advantages in 
accurately extracting texture information from pediatric 
thyroid ultrasound images. Traditional U-Net often faces 
challenges such as blurred boundaries of the target and 
a limited number of pediatric thyroid ultrasound images, 
which hinder its ability to fully learn and adapt to image 
features, resulting in lower segmentation accuracy.

In contrast, DC-Contrast U-Net introduces the Con-
trast Block to more accurately extract texture information 
of the pediatric thyroid gland, improving segmentation 
precision and reliability. The Contrast Block excels at 
handling grayscale, brightness, and texture similarities, 
effectively overcoming the shortcomings of traditional 
U-Net in dealing with blurred boundaries. Additionally, 
DC-Contrast U-Net incorporates Squeeze-and-Excita-
tion Blocks and Deformable Convolution Layers, further 
enhancing the model’s ability to learn texture informa-
tion for each channel and adapt to irregular organ shapes, 
significantly improving segmentation performance. The 
performance metrics of the DC-Contrast U-Net model 
show significant improvements, with IoU, mIoU, accu-
racy, precision, and recall metrics enhanced by 6.01%, 
6.14%, 1.5%, 4.95%, and 4.62%, respectively. The results 
are as shown in Table  4. These improvements highlight 
the effectiveness of the proposed model in enhancing 
segmentation quality and efficiency in complex pediatric 
thyroid ultrasound tasks.

Effectiveness analysis of Squeeze‑and‑Excitation Block 
and Deformable Convolution Layer
The introduction of Squeeze-and-Excitation (SE) Blocks 
and Deformable Convolution Layers in DC-Contrast 
U-Net serves specific purposes and brings notable 
improvements, particularly in handling the shapes of 
irregular organs and adapting to the texture information 
of each channel. The structure of the SE block is shown in 
the Fig. 11.

Fig. 11 The structure of the Squeeze-and-Excitation (SE) module
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The primary motivation for introducing the SE Block is 
to enhance the network’s ability to capture and empha-
size important features. In medical image segmentation, 
each channel of the feature map carries different aspects 
of the image, such as intensity, texture, and structure. The 
SE Block is designed to dynamically recalibrate channel-
wise feature responses, thereby improving the network’s 
sensitivity to crucial information. The SE Block performs 
a squeeze operation to aggregate global information from 
each channel, followed by an excitation operation to 
reallocate weights, highlighting important features and 
suppressing less important ones. This process helps the 
network better understand and utilize key information 
in the images. By introducing the SE Block, DC-Contrast 
U-Net can better learn the texture information of each 
channel, improving segmentation accuracy, especially in 
complex and detailed image regions.

Experimental results and performance evaluation
In this study, we compared the performance of DC-Con-
trast U-Net with other segmentation models, includ-
ing U-Net, UNet++, and Attention U-Net, focusing on 
segmentation accuracy and inference speed. The results 
are as shown in Table 4. The experimental results dem-
onstrate that DC-Contrast U-Net excels in both met-
rics. Compared to the traditional U-Net, DC-Contrast 
U-Net shows a significant improvement in segmenta-
tion accuracy when dealing with pediatric thyroid ultra-
sound images, particularly in complex and detailed image 
regions, where it more precisely extracts the texture 
information of the target area. While UNet++ achieves 
better segmentation performance by leveraging features 
at different levels, DC-Contrast U-Net further enhances 
accuracy through the introduction of Contrast Blocks 
and Squeeze-and-Excitation Blocks, particularly excel-
ling in handling irregular boundaries and fine details. 
In terms of inference speed, DC-Contrast U-Net also 
performs better. Its optimized network structure and 
efficient convolution operations significantly improve 
computational efficiency. Compared to the more com-
putationally intensive Attention U-Net, DC-Contrast 
U-Net achieves faster inference while maintaining high 
accuracy. This indicates that DC-Contrast U-Net offers 
a more precise and efficient solution for medical image 
segmentation tasks, especially when dealing with com-
plex and irregular targets.

Summary
In this paper, we provided a detailed overview of the data 
preparation, preprocessing pipeline, experimental setup, 
and parameter configuration for clinical pediatric thyroid 
ultrasound images. Addressing the specific challenges 
of pediatric thyroid ultrasound tasks, we improved the 

widely-used U-Net model and proposed the DC-Con-
trast U-Net model, aiming to achieve better performance 
in medical image segmentation while reducing com-
plexity. The novel contrast block introduced effectively 
handles grayscale, brightness, and texture similarities, 
thereby enhancing segmentation precision. Additionally, 
the compression and excitation blocks added to the skip 
connections improve the adaptability of feature response 
between channels, further boosting segmentation accu-
racy. The use of deformable convolutions enhances the 
model’s ability to adapt to the shapes of irregular organs.
Comparative analysis with other U-Net-based improved 
models demonstrated that DC-Contrast U-Net outper-
forms other related models in both segmentation accu-
racy and inference speed. Specifically, the model showed 
improvements of 6.01% in IoU, 6.14% in mIoU, 1.5% in 
accuracy, 4.95% in precision, and 4.62% in recall. These 
enhancements highlight the effectiveness of DC-Contrast 
U-Net in improving segmentation quality and efficiency 
for complex pediatric thyroid ultrasound tasks. How-
ever, challenges remain, such as accurately segmenting 
regions with fuzzy boundaries and handling significant 
noise. Future research should focus on further optimiz-
ing the proposed medical image segmentation network 
to enhance its performance.
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