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Abstract
Purpose To investigate the application value of support vector machine (SVM) model based on diffusion-weighted 
imaging (DWI), dynamic contrast-enhanced (DCE) and amide proton transfer- weighted (APTW) imaging in predicting 
isocitrate dehydrogenase 1(IDH-1) mutation and Ki-67 expression in glioma.

Methods The DWI, DCE and APTW images of 309 patients with glioma confirmed by pathology were retrospectively 
analyzed and divided into the IDH-1 group (IDH-1(+) group and IDH-1(-) group) and Ki-67 group (low expression 
group (Ki-67 ≤ 10%) and high expression group (Ki-67 > 10%)). All cases were divided into the training set, and 
validation set according to the ratio of 7:3. The training set was used to select features and establish machine learning 
models. The SVM model was established with the data after feature selection. Four single sequence models and one 
combined model were established in IDH-1 group and Ki-67 group. The receiver operator characteristic (ROC) curve 
was used to evaluate the diagnostic performance of the model. Validation set data was used for further validation.

Results Both in the IDH-1 group and Ki-67 group, the combined model had better predictive efficiency than single 
sequence model, although the single sequence model had a better predictive efficiency. In the Ki-67 group, the 
combined model was built from six selected radiomics features, and the AUC were 0.965 and 0.931 in the training and 
validation sets, respectively. In the IDH-1 group, the combined model was built from four selected radiomics features, 
and the AUC were 0.997 and 0.967 in the training and validation sets, respectively.

Conclusion The radiomics model established by DWI, DCE and APTW images could be used to detect IDH-1 
mutation and Ki-67 expression in glioma patients before surgery. The prediction performance of the radiomics model 
based on the combination sequence was better than that of the single sequence model.
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Introduction
Gliomas are the most common malignancies of the ner-
vous system [1]. In the 2021 World Health Organization 
(WHO) brain tumor classification of central nervous 
system, isocitrate dehydrogenase (IDH) plays an impor-
tant role in the classification of glioma [2]. Compared 
with IDH-1 wild-type (IDH-1(-)), the glioma patients 
with IDH-1 mutant-type (IDH-1(+)) have longer survival 
time and better efficacy of chemoradiotherapy [3]. Not 
only IDH-1, Ki-67 index is also an important biomarker 
of the tumor’s biological behavior. The expression level 
of Ki-67 is closely related to the survival rate of patients. 
The higher expression of Ki-67, the lower prognosis of 
patients [4]. Therefore, preoperative evaluation of Ki-67 
expression and IDH-1 mutation in glioma is of great sig-
nificance for formulating treatment plans and evaluating 
prognosis.

MRI is a common technique for noninvasive diag-
nosis of glioma before surgery, but conventional MRI 
mainly provides anatomical information about the 
tumor. Functional magnetic resonance imaging (fMRI) 
plays an important role in evaluating tumor molecular 
metabolism. Dynamic contrast-enhanced (DCE) MRI 
is a common MR perfusion imaging technique, which 
can quantitatively evaluate the density and permeabil-
ity of microvessels, and the proliferation of tumor cells 
in glioma using volume transfer constant (Ktrans) and 
extravascular extracellular volume fraction (Ve). A pre-
vious study had demonstrated the clinical potential of 
DCE-MRI in the evolution of glioma IDH-1 mutation 
[5]. Diffusion-weighted imaging (DWI) can assess the cell 
density and provide complementary biophysical informa-
tion about tumor microstructure [6]. Aminoacyl proton 
transfer-weighted (APTW) is a contrast agent-free MRI 
method and can assess the amount of mobile proteins 
or peptides in the tumor tissue [7]. APTW imaging has 
become a promising method for predicting the glioma 
grade and IDH mutation status [8]. Radiomics is to mine 
high-throughput quantitative image features from stan-
dard medical imaging, extract data and apply them to 
clinical practice. It can improve the accuracy of diagno-
sis and prognosis prediction and is becoming increas-
ingly important in cancer research [9]. Radiomics has 
been widely used to develop differential and prognostic 
models, especially in brain tumors, such as classification 
and genotyping of gliomas, differentiation of gliomas 
from metastases, prediction of prognosis of gliomas, etc. 
[10–12].

But even when combined with radiomics, conventional 
MRI provides limited information for evaluating Ki-67 
expression and IDH-1 mutation. To this end, we aimed 
to develop and validate radiomics models based on DWI, 
DCE, and APTW sequences to evaluate Ki-67 expression 
and IDH-1 mutation in gliomas.

Materials and methods
Subjects
The study was approved by the hospital’s institutional 
review board, and informed consent was waived, given 
the retrospective study and anonymised data of patients. 
We retrospectively collected all patients’ clinical infor-
mation and MRI data from January 2018 to March 2022. 
According to the 2021 WHO brain tumor classifica-
tion of central nervous system, patients with postopera-
tive pathological diagnosis of glioma were included. The 
inclusion criteria were: (1) availability of pathological 
analysis reports; (2) complete preoperative MRI data, 
including CE-T1WI, DWI, DCE, and APTW sequences; 
(3) over 18 years old. A total of 357 patients were enrolled 
in the study. Then, 48 patients were excluded because 
of (1) lack of IDH-1 gene or Ki-67 expression (n = 31), 
(2) motion artifacts on MRI or other artifacts that could 
influence the quality of image severely (n = 6), (3) postop-
erative patients, and previous radiation or chemotherapy 
(n = 11). Finally, 309 eligible subjects were enrolled (123 
patients IDH-1(+), 186 patients IDH-1(-), 132 patients 
with low expression of Ki-67, and 177 patients with high 
expression of Ki-67).

The information of IDH-1 and Ki-67 was obtained 
from the pathology department of the hospital. Standard 
immunohistochemical staining method was used for 
postoperative specimens. In the study, according to the 
percentage of positive staining, Ki-67 was divided into 
two types: Ki-67 ≤ 10% positive staining was considered 
as low expression, and Ki-67 > 10% positive staining was 
regarded as high expression [13]. According to differ-
ent research purposes, patients were divided into IDH-1 
group and Ki-67 group, and 103 patients in each group 
were stratified and randomly sampled into training set 
(70%) and validation set (30%) according to the ratio of 
7:3.

MRI experiments
MRI scans were performed using a clinical 3.0T Scan-
ner (Ingenia CX, Philips Healthcare, Best, the Nether-
lands) with a 32-channel head coil. Conventional MRI 
including T1WI, T2WI, FLAIR, CE-T1WI were col-
lected. DWI parameters were TR/TE = 2025/71ms, field 
of view (FOV) = 230 × 230mm2, b values = 0, 1000s/mm2, 
matrix = 128 × 98, reconstruction matrix = 256, slice num-
ber = 20, slice thickness = 5.5  mm, acquisition time = 12s. 
Two groups T1-Vibe 3D volume interpolated breath-
hold sequence were scanned before contrast injection, 
with the following parameters: TR/TE = 6.00/2.46ms, flip 
Angle (FA) = 5°, FOV = 340 × 340mm2, matrix = 448 × 448, 
slice thickness = 1.5  mm. DCE examination was per-
formed with the following scan parameters: TR/
TE = 6.00/2.46ms, FA = 10°, FOV = 340 × 340mm2, 
matrix = 448 × 448, slice thickness = 1.5  mm, temporal 
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resolution = 4.5  s, total time = 5  min, total phases = 60. 
After scanning the first five non-enhanced phases, gado-
pentate dimeglumine (Gd-DTPA) (Magnevist, Bayer 
Healthcare, Leverkusen) contrast agent was injected 
with a high-pressure syringe at a rate of 3mL/s and a 
total dose of 0.01mmol/kg at the sixth phase, followed 
by saline irrigation. The clinically approved APTW 
sequence was performed by using 3D Turbo Spin Echo 
(TSE) sequences with continuous radio frequency (RF) 
saturation lasting 2s were used with a TSE factor of 
174, TR/TE = 5925/7.8ms, FOV = 230 × 180mm2, voxel 
size = 1.8 × 1.8 × 6mm3, matrix = 252 × 220, reconstruction 
matrix = 256, SENSE acceleration factor = 1.6, slice num-
ber = 14, slice thickness = 6 mm, acquisition time = 342s.

Imaging postprocessing
The DICOM format of ADC maps were acquired by the 
PACS system. The original DCE images were imported 
into Siemens Syngo VIA post-processing workstation, 
and used the MR Tissue 4D module and selected the 
Tofts model to quantitatively calculate the Ktrans map 
and Ve map quantitatively. APTW images were post-
processed on a Philips workstation (IntelliSpace Portal, 
Version 7, Philips Healthcare, Best, the Netherlands) to 
obtain rainbow color-coded images.

Radiomics analysis
Image registration and segmentation
After acquisition, used the 3D-Sliser (version 4.11.2, 
https://download.slicer.org/) to preprocess the images 
as follows: (1) Resampling: all images were resampled 
to 1mm3; (2) Imaging registration: ADC, Ktrans, Ve 
and APTW images were co-registered with CE-T1WI 
images. And then, sketched the region of interest (ROI). 
The solid part of the tumor was determined according to 
the CE-T1WI sequence, and cystic degeneration, necro-
sis, hemorrhage and peritumoral edema of the tumor 
were avoided during delineation. Then, the ROI is trans-
ferred to the registered ADC maps, Ktrans maps, Ve 
maps, and APTW maps. The solid components of glio-
mas are heterogeneous, with different MR signals on dif-
ferent sequences, as shown in Figs. 1 and 2. A radiologist 
with 10 years of experience performed all segmentations. 
Radiomics features are extracted from the delineated 
ROI, so the accuracy of the ROI is critical. To this end, we 
evaluated the robustness of the features using the intra-
group correlation coefficient (ICC). 100 patients were 
randomly selected and then another radiologist with 10 
years of experience delineated the ROI and extracted fea-
tures, retaining the feature with ICC > 0.8.

Fig. 1 A 59-year-old male glioma patient with IDH-1(-) and Ki-67 of 30%. Ktrans (A), Ve (B), and APTW (C) showed irregular lesions in the left temporal 
lobe, and the solid part of the tumor was high signal in the corresponding sequence. ADC (D) showed that the solid part of the tumor was low signal, and 
CE-TIWI (E) showed that the solid part of the tumor was significantly enhanced after enhancement
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Features extraction
Features were extracted from ADC, Ktrans, Ve and 
APTW maps using 3D-Slicer software. 851 features were 
extracted from each sequence, including (1) 14 shape and 
size features; (2) 18 first-order statistical features; (3) 75 
texture features; (4) 744 wavelet features. A total of 3404 
features were extracted from the four sequences. Then 
we used the Z-Score method to normalize all features.

Features selection
To reduce irrelevant and redundant information, Kol-
mogorov-Smirnov test was first performed on the fea-
tures of the training set, independent sample t-test was 
performed on the data conforming to the normal dis-
tribution, and Mann-Whitney U test was performed 
on the data not conforming to the normal distribution. 
Features with P < 0.05 were selected as potential pre-
dictive features. Then the least absolute shrinkage and 
selection operator (LASSO) was used to select features 
from the training set of single and combined sequences 
(ADC + Ktrans + Ve + APTW). LASSO could reduce the 
regression coefficient of features by adjusting the value 
of penalty coefficient (lambda) to delete unimportant 
features [14]. In this process, 10 times of cross-valida-
tion was carried out to determine the minimum value of 
lambda.

Establishment and evaluation of radiomic models
Radial basis function kernel support vector machine 
(RBF-SVM) was used as classifier. Support vector 
machine (SVM) is a powerful binary classifier widely 
used in disease identification, gene typing and prognosis 
prediction [15–17]. Based on the features selected from 
the training set, we adjusted parameters (gamma and 
cost) in RBF-SVM and used SVM to establish the model. 
For predicting IDH-1 mutation state and Ki-67 expres-
sion, four single sequence models (ADC model, Ktrans 
model, Ve model, APTW model) and one combined 
model (ADC + Ktrans + Ve + APTW model) were estab-
lished by SVM. The prediction models produced by the 
training set were evaluated using the receiver operator 
characteristic (ROC) curve and the area under the curve 
(AUC), sensitivity, specificity, accuracy, positive and 

negative prediction rates, and further evaluated with the 
validation set. Figure 3 was the flow chart describing this 
study.

Statistical analysis
Statistical analyses were performed using SPSS 22.0 (IBM 
SPSS Statistics, version 22, Chicago, IL, USA) and R STU-
DIO (version 4.1.1, R package includes “e1071”, " pROC 
“, “glmnet”, etc.). The measurement data were expressed 
as means ± SD. Independent sample t-test was used for 
comparison between groups, and χ2 test was used for 
classification data when evaluating the differences of gen-
der, age, Ki-67 expression and IDH-1 mutation status in 
training and validation sets. The Delong test was used to 
compare the differences in AUC between different mod-
els in the validation set. If P < 0.05, the differences were 
statistically significant.

Results
Demographics and clinical characteristics of the patients
Table  1 showed the demographics and clinical charac-
teristics of the patients. There were no significant differ-
ences in clinical characteristics between the training and 
validation sets in the Ki-67 and IDH-1 groups (P > 0.05).

Robustness and selection of radiomic features
The features with ICC > 0.8 were retained, ADC, APTW, 
Ktrans and Ve retained 851, 850, 804 and 851 fea-
tures, respectively. The independent sample t-test and 
Mann-Whitney U test were performed. In Ki-67 group, 
ADC, APTW, Ktrans and Ve images showed 352, 366, 
412 and 442 tumor features, respectively (all P < 0.05). 
Combined sequence images showed 1511 tumor fea-
tures (P < 0.05). Then, LASSO was used to select 6, 7, 
7, 8, and 6 radiomics features for ADC, APTW, Ktrans, 
Ve and combined images, respectively. In IDH-1 group, 
ADC images showed 367 tumor features, APTW images 
showed 323 tumor features, Ktrans images showed 478 
tumor features, and Ve images showed 321 tumor fea-
tures (all P < 0.05). Combined sequence images showed 
1516 tumor features (P < 0.05). Then LASSO was used to 
select 2, 5, 5, 6 and 4 radiomics features for ADC, APTW, 

Fig. 2 showed a 42-year-old male glioma patient with IDH-1(+) and Ki-67 of 5%. Ktrans (A), Ve (B), and APTW (C) showed irregular lesions in the left 
cerebellar hemisphere, the solid part of the tumor was low signal in the corresponding sequence. ADC (D) showed slightly higher signals intensity in the 
solid part of the tumor, while CE-T1WI (E) showed no significant enhancement in the solid part of the tumor after enhancement
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Ktrans and Ve images and combined sequence images 
respectively. The four single sequence characteristics 
of ADC, APTW, Ktrans and Ve in the two groups were 
shown in the Table 2(A, B, C, D). Table 3 listed selected 
radiomic features from the combined sequence images in 
both groups.

Performance of radiomics models
For the Ki-67 group, the AUC of ADC, APTW, Ktrans, 
Ve and the combined model were 0.879, 0.900, 0.954, 

0.910 and 0.965 in the training set, and 0.812, 0.812, 
0.896, 0.833 and 0.931 in the validation set, respectively. 
The accuracy, sensitivity, and specificity of radiomics 
model were shown in Table 4. The ROC curve was shown 
in Fig. 4(A, B). For the IDH-1 group, the AUC of ADC, 
APTW, Ktrans, Ve and combined model were 0.899, 
0.942, 0.964, 0.932 and 0.997 in the training set, and 
0.783, 0.950, 0.883, 0.850 and 0.967 in the validation set, 
respectively. The accuracy, sensitivity, and specificity of 
the radiomics model were shown in Table  5. The ROC 

Fig. 3 The flow chart of this study. (1): ADC, Ktrans, Ve and APTW images were co-registered with corresponding CE-T1WI images by 3D-Sliser. (2): Manu-
ally delineated the ROI of solid part of tumors. (3): Extracted the radiomics features. (4): Retained the features with ICC > 0.8. (5): Used the LASSO to select 
features. (6): Constructed single and combined sequence radiomics models and compared the AUC, sensitivity, specificity and accuracy of different 
models
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curve was shown in Fig.  5(A, B). In the Ki-67 group, 
the AUC of the combined model in validation set was 
compared to the AUC of ADC, APTW, Ktrans and Ve 
single-sequence model, the differences were statistically 
significant (all P < 0.05). In IDH-1 group, the AUC of the 
combined model in validation set was compared to the 
AUC of ADC, APTW, Ktrans and Ve single-sequence 
model, with P values of 0.032, 0.51, 0.043 and 0.037, 
respectively. Although the difference between the AUC of 
the combined model and the APTW model was not sta-
tistically significant in the validation set, the AUC, sensi-
tivity and accuracy of the combined model were higher 
than those of the APTW model alone. In conclusion, 
both Ki-67 group, and IDH-1 group showed the best effi-
ciency of the combined model.

Discussion
This study showed that the SVM single sequence model 
and combined model based on DWI, DCE, and APTW 
had good diagnostic performance in predicting the 

expression of Ki-67 and IDH-1 mutation in glioma. The 
combined sequence model had the best diagnostic per-
formance in both groups.

Sun et al. found that the tumor radiomics model based 
on T2WI could better predict the expression of Ki-67 
in glioma, and the sensitivity, specificity and AUC were 
0.818, 0.833 and 0.773, respectively [18]. The study of 
Yiming Li et al. demonstrated that radiomic features 
based on T2WI could efficiently and non-invasively pre-
dict Ki-67 expression and survival in lower-grade glio-
mas [19]. The study of GAO et al. on using CE-T1WI 
sequence combined with machine learning algorithms 
to distinguish the expression of Ki-67 in glioma achieved 

Table 1 Demographics and clinical characteristics of the patients
Characters KI-67 group P IDH-1 group P

Training set (N = 216) Validation set (N = 93) Training set (N = 216) Validation set (N = 93)
Gender >0.05 >0.05
Male 117 57 108 48
Female 99 36 108 45
Age(years) 42.36 ± 10.90 44.36 ± 12.90 >0.05 41.36 ± 10.42 40.36 ± 11.93 >0.05
Ki-67(-) 43.06%(93/216) 41.94

(36/93)
>0.05 - -

Ki-67(+) 56.94%(123/216) 58.06%(54/93) >0.05 - -
IDH-1(+) - - 40.28%(87/216) 38.71%(36/93) >0.05
IDH-1(-) - - 59.72%(129/216) 61.29%(57/93) >0.05
Note Ki-67(-): low expression of Ki-67, Ki-67(+): high expression of Ki-67

Table 2A The radiomic features of ADC in Ki-67 group and IDH-1 
group
Group MRI 

sequences
Feature 
number

Individual features

Ki-67 ADC 6 ADC - waveletLHL-glcm-
Correlation (P = 0.0008)
ADC -waveletLHH-glcm-
Id(P = 0.006)
ADC -waveletLHH-glcm-
Idm (P = 0.0057)
ADC -waveletLHH-ngtdm-
Contrast (P = 0.014)
ADC -waveletHLH-glszm-
LowGrayLevelZoneEmpha-
sis (P = 0.00189)
ADC -waveletHHL-fir-
storder-Skewness(P = 0.005)

IDH-1 ADC 2 ADC -waveletLHH-glcm-
DifferenceEntropy (P = 0.02)
ADC -waveletHHL-glszm-
ZoneVariance (P = 0.01)

Table 2B The radiomic features of APTW in Ki-67 group and 
IDH-1 group
Group MRI 

sequences
Feature 
number

Individual features

Ki-67 APTW 7 APTW-original-ngtdm-Coarse-
ness (P = 0.005)
APTW-waveletLLH-glcm-
MaximumProbability(P = 0.009)
APTW-waveletLHH-glszm-
LowGrayLevelZoneEmphasis 
(P = 0.003)
APTW-waveletHLL-firstorder-
Median (P = 0.01)
APTW-waveletHLH-glszm-
ZoneEntropy (P = 0.005)
APTW-waveletHHH-glcm-
DifferenceAverage(P = 0.018)
APTW-waveletHHH-glcm-
InverseVariance(P = 0.018)

IDH-1 APTW 5 APTW-waveletHLL-glrlm-
ShortRunEmphasis(P = 0.009)
APTW- waveletLHL-glszm-
ZoneVariance (P = 0.01)
APTW- waveletHLH-glcm-
Imc1 (P = 0.03)
APTW- waveletHHH-firstorder-
Skewness (P = 0.03)
APTW- waveletHLH-ngtdm-
Complexity (P = 0.02)
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good results, and the sensitivity, specificity and AUC 
were 0.91, 0.80 and 0.85, respectively [20]. However, 
most of these radiomics studies were limited to conven-
tional MRI. Conventional MRI sequences, such as T1WI 
and T2WI, mostly reflect the anatomical information of 
tumors, CE-T1WI sequence can partly reflect the blood 
supply of tumors. Still, the influence of the blood-brain 
barrier should also be considered. MR perfusion tech-
niques, DCE, can reflect the density of microvessels and 
vascular permeability of tumor. In our study, radiomics 
model based on DCE had high value for predicting the 
expression of Ki-67 in glioma. ADC reflects the degree 
of limited diffusion of water molecules, to some extent, 
it reflects the density of tumor. In our study, compared 
with the ADC, the AUC of DCE model for predicting the 
expression of Ki-67 in glioma was higher, whether in the 
training set or the verification set. Studies have shown 
that the ability of DWI sequence to distinguish glioma 
heterogeneity was weaker than that of DCE sequence 
[21], which was consistent with our study. However, DCE 
needs to inject the contrast agent intravenously. APTW 
is a novel, noninvasive MRI sequence, and can measure 
the endogenous moving proteins and peptides, which 
indirectly reflects the changes in the internal environ-
ment. The study of Yuan Li et al. concluded that APTW 
imaging was a feasible approach for detecting Ki-67 
expression of type I EC, and the Ki-67 positively moder-
ately correlates with APTW [22]. In the study on rectal 
adenocarcinoma, APT was positively related to Ki-67 
expression in rectal adenocarcinoma. APT imaging may 
serve as a noninvasive biomarker for assessing genetic 
prognostic factors of rectal adenocarcinoma [23]. How-
ever, the radiomics based on APTW study on Ki-67 
expression in tumors have not been reported. Our study 
about radiomics based on APTW showed that APTW 
had high predictive value for the expression of Ki-67 in 
glioma, and the AUC in the training set and validation 
set were 0.900 and 0.812, respectively. Although each sin-
gle sequence model had high predictive value for Ki-67 
expression in glioma, the diagnostic performance of our 
combined sequence model was better than that of previ-
ous studies, which was consistent with our hypothesis.

IDH is an important basis for the pathological classifi-
cation of gliomas and reflects the patients’ prognosis. In 
recent years, more and more radiomics studies have been 
conducted on IDH, and the radiomics studies on the 
combination of fMRI are a current research hotspot [24]. 
The radiomics model based on T1 enhancement, T2WI 
and ASL sequences achieved good results in predicting 
IDH mutation of glioma, and the sensitivity, specificity 
and AUC were 0.765, 0.776 and 0.823, respectively [25]. 
Studies have shown that the combination of T1 enhance-
ment, T2-FLAIR, DWI and DSC sequences can bet-
ter predict IDH mutation in low-grade glioma, and the 

Table 2C The radiomic features of ktrans in Ki-67 group and 
IDH-1 group
Group MRI 

sequences
Feature 
number

Individual features

Ki-67 Ktrans 7 ktrans-waveletLHL-firstorder-
Skewness (P = 0.04)
ktrans-original-gldm-
DependenceVariance(P = 0.002)
ktrans-waveletLHH-firstorder-
Mean(P = 0.003)
ktrans-original-glcm-JointAver-
age (P = 0.002)
ktrans-waveletLHH-glcm-
Imc1(P = 0.005)
ktrans-original-shape-
Maximum3Ddiameter(P = 0.013)
ktrans-waveletLHL-firstorder-
Mean(P = 0.005)

IDH-1 Ktrans 5 ktrans-waveletLLH-glcm-Maxi-
mumProbability (P = 0.001)
ktrans-original-firstorder-Root-
MeanSquared (P = 0.002)
ktrans-waveletHLL-glszm-Zone-
Variance (P = 0.03)
ktrans-waveletLLH-glszm-
LargeAreaEmphasis (P = 0.03)
ktrans-original-gldm-Depen-
denceEntropy (P = 0.002)

Table 2D The radiomic features of Ve in Ki-67 group and IDH-1 
group
Group MRI 

sequences
Feature 
number

Individual features

Ki-67 Ve 8 Ve-original-shape-Maximum3DDi-
ameter (P = 0.013)
Ve-waveletLHL-glcm-
Correlation(P = 0.0013)
Ve-waveletHLL-firstorder-Maximum 
(P = 0.0003)
Ve-original-glcm-Imc2 (P = 0.01)
Ve-waveletHLL-firstorder-Range 
(P<0.001)
Ve-waveletHLH-glcm-
ClusterShade(P = 0.02)
Ve-waveletHHH-glszm-
ZoneEntropy(P = 0.007)
Ve-waveletLLL-firstorder-
Maximum(P<0.001)

IDH-1 Ve 6 original-gldm-DependenceVarian-
ceP = 0.01)
waveletLHL-firstorder-Mean(P = 0.01)
waveletHLH-gldm-
DependenceVariance(P = 0.006)
waveletLHH-ngtdm-Contrast 
(P = 0.04)
waveletHLH-gldm-DependenceNo-
nUniformityNormalized (P = 0.008)
waveletHHL-glcm-
ClusterShade(P = 0.02)
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Table 3 The radiomic features of combined sequence images in Ki-67 group and IDH-1 group
Group MRI sequences Feature number Individual features
Ki-67 Ktrans + Ve + APTW + ADC 6 APTW- waveletHLH-glszm-ZoneEntropy(P = 0.005)

ktrans-original-gldm-DependenceVariance(P = 0.002)
ktrans-waveletLHL-firstorder-Mean(P = 0.005)
ktrans-waveletLHH-glcm-Imc1(P = 0.005)
Ve-waveletHLL-firstorder-Range(P<0.001)
Ve-waveletLLL-firstorder-Maximum(P<0.001)

IDH-1 Ktrans + Ve + APTW + ADC 4 APTW-waveletHLL-glrlm-ShortRunEmphasis(P = 0.009)
ADC-waveletHHL-glszm-ZoneVariance(P = 0.010)
ktrans-original-firstorder-RootMeanSquared(P = 0.002)
Ve-waveletHLH-gldm-DependenceVariance(P = 0.006)

Table 4 The effectiveness of each model in the Ki-67 group
Model Group AUC(95%CI) SEN SPE ACC PPV NPV
Ktrans Training set 0.954(0.887-1.000) 0.972 0.750 0.893 0.875 0.938

Validation set 0.896(0.774-1.000) 0.750 0.778 0.760 0.857 0.636
Ve Training set 0.910(0.824–0.995) 0.944 0.750 0.875 0.871 0.882

Validation set 0.833(0.648-1.000) 0.875 0.889 0.880 0.933 0.800
APTW Training set 0.900(0.801–0.999) 1.000 0.700 0.893 0.857 1.000

Validation set 0.812(0.605-1.000) 0.938 0.667 0.840 0.833 0.857
ADC Training set 0.879(0.780–0.978) 0.944 0.700 0.857 0.850 0.875

Validation set 0.812(0.627–0.998) 0.875 0.444 0.720 0.737 0.667
Ktrans + Ve + APTW + ADC Training set 0.965(0.916-1.000) 1.000 0.900 0.964 0.947 1.000

Validation set 0.931(0.833-1.000) 0.875 0.889 0.880 0.933 0.800

Table 5 The effectiveness of each model in the IDH-1group
Model Group AUC(95%CI) SEN SPE ACC PPV NPV
Ktrans Training set 0.964(0.913-1.000) 0.857 0.864 0.861 0.800 0.905

Validation set 0.883(0.700-1.000) 0.833 0.800 0.813 0.714 0.889
Ve Training set 0.932(0.832-1.000) 0.786 0.909 0.861 0.846 0.870

Validation set 0.850(0.554-1.000) 0.833 0.900 0.875 0.833 0.900
APTW Training set 0.942(0.864-1.000) 0.786 1.000 0.917 1.000 0.880

Validation set 0.950(0.843-1.000) 1.000 0.800 0.875 0.750 1.000
ADC Training set 0.893(0.758-1.000) 0.714 0.955 0.861 0.909 0.840

Validation set 0.817(0.596-1.000) 1.000 0.400 0.625 0.500 1.000
Ktrans + Ve + APTW + ADC Training set 0.997(0.988-1.000) 0.929 1.000 0.972 1.000 0.957

Validation set 0.967(0.888-1.000) 1.000 0.900 0.938 0.857 1.000

Fig. 4 A: The ROC curve of Ki-67 training set model. B: The ROC curve of Ki-67 validation set model
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sensitivity, specificity, and AUC values were 0.707, 0.800, 
and 0.795, respectively [26]. Wang et al. established 
an SVM model combining DCE and DWI sequences, 
which predicted the IDH-1 mutation of glioma wonder-
fully, and the sensitivity, specificity and AUC were 0.893, 
0.976, and 0.939, respectively [27]. All these studies indi-
cated that the combination of MR perfusion techniques 
and radiomics had significant advantages in reflecting 
the IDH mutation status of glioma. In our study, both 
Ktrans and Ve single-parameter models of DCE achieved 
good diagnostic performance, which was consistent with 
previous studies. However, it is still limited to reflecting 
tumor heterogeneity only by the degree of tumor vascu-
lar proliferation and cell density. The study of Guo et al. 
on using APTW sequence and four diffusion-weighted 
sequences to distinguish IDH mutation status, showed 
that APTW was a very valuable MR sequence to iden-
tify IDH mutation status [28]. Hou H et al. stated that 
3D-APTW and 3D-pCASL imaging could be used to 
evaluate IDH mutation status, and the diagnostic per-
formance could be improved by combining the two tech-
niques [29]. However, the hotspot research of APTW was 
relatively subjective and could not fully exploit imaging 
information. Han et al. established an SVM model based 
on APTW sequence, which achieved a good effect in dis-
criminating the IDH mutation status of glioma, and the 
accuracy and AUC were 0.892 and 0.952 [30]. Neverthe-
less, the available radiomics information obtained only 
based on a single sequence, which does not well reflect 
the heterogeneity of tumors. Radiomic studies on the 
combination of DWI, DCE and APTW sequences have 
not been reported at present. Therefore, combined with 
the hot spots of previous studies, we established the 
SVM model based on DWI, DCE and APTW sequences 
to predict IDH mutation status, and achieved the best 
prediction effect. At the same time, the diagnostic per-
formance of the combined model was better than that of 
the single sequence model, which indicated that the three 

sequence combinations did have a complementary role in 
the single sequence diagnosis of IDH-1 mutation.

This study consisted of two independent parts (IDH-1 
and Ki-67), and each part adopted stratified sampling, 
which greatly reduced the sampling error. In the study 
of glioma grading based on ADC map, Lee et al. showed 
that avoiding necrotic and cystic areas could better dis-
tinguish high-grade and low-grade gliomas [31]. The dif-
ferentiation of glioma heterogeneity by DWI, DCE and 
APTW sequences is based on the cell density, the prolif-
eration of blood vessels and the content of mobile pro-
teins in solid areas of tumor, while the necrotic and cystic 
areas reflect less information. Therefore, we selected 
the solid area of the tumor as the ROI to minimize the 
interference of the necrotic and cystic areas. At the same 
time, this study also existed some limitations. Firstly, 
because the patient needed a complete image of all three 
fMRIs, the sample size was relatively small. Then, includ-
ing other clinical characteristics (age, gender, etc.) is 
extremely easy to make the model fitting. Therefore, this 
study mainly compared the diagnostic performance of 
different image models, we will expand the sample size 
for the later research. Moreover, clinical factors will be 
included to try to build a clinical-imaging comprehensive 
model. Secondly, this study was a single-center study, and 
it would be more rigorous if collect data from other cen-
ters were to form a test group. Finally, this study selected 
only the tumour itself as the ROI. The study of Li et al. 
on the radiomics of glioma established the intratulotu-
mor multi-region model and peritulotumor model, and 
the results showed that the radiomics model containing 
multiple regions was better than the single-region model 
for predicting the mutation status of IDH-1 [32], which 
opened up ideas for subsequent ROI delineation.

Conclusion
SVM models based on DWI, DCE and APTW were 
highly significant for evaluating the expression of Ki-67 
and IDH-1 mutation status in glioma. The combined 

Fig. 5 A: The ROC curve of IDH-1 training set model. B: The ROC curve of IDH-1 validation set model
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model of three sequences was better than the sin-
gle sequence model and could better reflect glioma 
heterogeneity.
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