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Abstract 

Recently emerged SAM-Med2D represents a state-of-the-art advancement in medical image segmentation. Through 
fine-tuning the Large Visual Model, Segment Anything Model (SAM), on extensive medical datasets, it has achieved 
impressive results in cross-modal medical image segmentation. However, its reliance on interactive prompts may 
restrict its applicability under specific conditions. To address this limitation, we introduce SAM-AutoMed, which 
achieves automatic segmentation of medical images by replacing the original prompt encoder with an improved 
MobileNet v3 backbone. The performance on multiple datasets surpasses both SAM and SAM-Med2D. Current 
enhancements on the Large Visual Model SAM lack applications in the field of medical image classification. There-
fore, we introduce SAM-MedCls, which combines the encoder of SAM-Med2D with our designed attention modules 
to construct an end-to-end medical image classification model. It performs well on datasets of various modalities, 
even achieving state-of-the-art results, indicating its potential to become a universal model for medical image 
classification.
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Introduction
Segmentation and classification are two foundational 
tasks in medical image analysis. Segmentation involves 
extracting regions of interest such as organs, tissues, or 
lesions from medical images, while classification entails 
determining disease types or conducting disease grad-
ing based on image features such as color, texture, and 
shape. The accuracy of segmentation and classification 
is crucial for clinical applications, including disease diag-
nosis, treatment progress monitoring, and rehabilitation 
assessment. Traditionally, medical image segmentation 

or classification relied on manual recognition and anno-
tation by knowledgeable medical professionals, which 
is time-consuming and labor-intensive. In recent years, 
machine learning, particularly deep learning, has played 
a significant role in medical image analysis. Its end-to-
end model structure enables the automatic learning of 
complex image features.However, this approach has limi-
tations, namely its task-specific nature. As illustrated in 
Fig.  1, unlike natural images, medical images come in 
multiple modalities, including computed tomography 
(CT) scans, endoscopic imaging, magnetic resonance 
imaging (MRI), ultrasound imaging, microscopic imag-
ing and others. The pixel intensities, textures, and color 
layer characteristics of images from different modalities 
vary significantly, leading to notable performance dis-
crepancies of the same deep learning model across differ-
ent modal data. Hence, it becomes imperative to design 
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specific model structures and preprocessing pipelines tai-
lored to individual modalities.

The recent emergence of the Large Visual Model SAM 
[1] has transformed this landscape. Its zero-shot and 
few-shot generalization capabilities, honed on extensive 
image segmentation datasets, have garnered widespread 
attention. Particularly, the SAM model, fine-tuned on 
large-scale medical segmentation datasets like Med-
SAM [2] and SAM-Med2D [3], has established itself as 
the foundational universal model in medical image seg-
mentation. This advancement enables a single model to 
adeptly handle images from various modalities. How-
ever, SAM and its derivatives necessitate users to pro-
vide prompts for segmentation masks through interactive 
clicks, bounding boxes, etc., which may pose limitations 
on certain devices and may not deliver optimal perfor-
mance on specific medical image datasets. To address 
this, we have enhanced it into an end-to-end auto-
matic segmentation model. Concurrently, we utilize the 
encoder of SAM-Med2D to establish a medical classifi-
cation model, thereby expanding SAM’s utility in down-
stream tasks. In summary, this paper contributes the 
following: 

1.	 We propose SAM-AutoMed, an entirely automated 
medical image segmentation model based on SAM-
Med2D. We have devised a MobileNet v3 architec-

ture, enhancing the SE block, to substitute the inter-
active prompt encoder. This substitution enables 
automatic segmentation of medical images, dem-
onstrating outstanding performance across various 
medical image segmentation datasets.

2.	 By leveraging the encoder from SAM-Med2D, we 
introduce an end-to-end model, SAM-MedCls, 
which incorporates prior knowledge for medical 
image classification. Figure 2 delineates the architec-
ture of SAM-MedCls. By amalgamating the encoder 
from SAM-AutoMed with straightforward attention 
modules, SAM-MedCls augments expression and 
feature extraction capabilities, surpassing state-of-
the-art methods across various medical image clas-
sification datasets.

Related work
Segment anything model
Inspired by large language models like ChatGPT, 
researchers have developed large visual models capable 
of rapidly adapting to target tasks and exhibiting excel-
lent zero-shot and few-shot generalization capabilities [1, 
4–7]. One such model is the Segment Anything Model 
(SAM), proposed by Meta AI. As illustrated in Fig.  2, 
SAM consists of three sub-networks: an image encoder 
based on Vision Transformer (ViT) [8], a prompt encoder, 
and a transformer-based [9] mask decoder. The image 

Fig. 1  a CT. b Endoscopy. c Fundus. d Dermoscopy. e Microscopy. f MRI. g Ultrasound. h X-ray. i PET. j Histopathology
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encoder encodes the image into vectors, which are then 
combined with prompt vectors from the prompt encoder 
and decoded by the mask decoder to generate the final 
mask prediction. Prompts can take various forms, includ-
ing point prompts, prompt boxes, arbitrary masks, and 
text with positional information. SAM is trained on the 
SA-1B dataset, which comprises 110 million high-res-
olution images and over 1 billion high-quality segmen-
tation masks. This training data empowers SAM with 
robust segmentation capabilities, demonstrating strong 
versatility in downstream tasks such as instance segmen-
tation [10], object hiding segmentation [11], and video 
tracking [12]. However, SA-1B lacks images from special-
ized domains such as medical imaging and remote sens-
ing, leading to suboptimal segmentation performance 
in corresponding professional fields. Consequently, 
many researchers have fine-tuned the SAM base model 
with domain-specific knowledge, achieving outstanding 
results [2, 3, 10, 13].

Segment medical images based SAM
SAM provides an excellent general framework for inter-
active image segmentation, but there exists a significant 
gap between natural images and medical images. This 

leads to a notable decrease in performance when apply-
ing SAM to medical image segmentation. Therefore, 
current research focuses on fine-tuning SAM with spe-
cialized medical image datasets. Ma et al. [2] collected 11 
different modality medical datasets with over 1 million 
masks to fine-tune SAM’s mask decoder while retain-
ing the original box prompts. Zu et  al. [13] fine-tuned 
SAM’s encoder and mask decoder using adapter layer. 
As illustrated in Fig.  2, Cheng et  al. [3, 14] proposed 
the SAM-Med2D model, which constructs a large-scale 
medical image segmentation dataset, SA-Med2D-20M, 
containing ten modalities (CT, Endoscopy, PET, Fundus, 
Microscopy, MR, Dermoscopy, X-ray, Ultrasound, His-
topathology), over 100 categories, and 4.6 million images 
and 19.7 million masks ,and comprehensively fine tune 
the encoder and decoder by adding adapter layer to the 
encoder.As shown in Fig. 2, Shaharabany et al. [15] intro-
duced AutoSAM, which replaces the prompt encoder. It 
inputs the image into the encoder simultaneously as a 
prompt, freezing the encoder and mask decoder during 
training, thereby achieving automatic segmentation of 
medical images. Although AutoSAM has achieved auto-
matic segmentation based on SAM, its encoder has not 
been fine-tuned with medical data, which may reduce 

Fig. 2  a The model structure of SAM. b The model structure of SAM-Med2D. c The model structure of AutoSAM
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segmentation performance when transferring to the 
medical domain. We believe the SAM encoder, trained 
on the SA-1B dataset and fine-tuned on large-scale medi-
cal datasets, already possesses visual potential and gen-
eralization capabilities. However, there is currently a lack 
of research on applying SAM to medical classification.
Based on these existing issues, we propose a solution in 
this paper.

Methods
This section presents the methodology of using SAM-
AutoMed for medical image segmentation, including 
details of improved Squeeze and Excitation block [16] 
and the loss function used for training. Then we intro-
duce the methodology of using SAM-MedCls for medical 
image classification and propose the attention module.

SAM‑AutoMed
SAM-Med2D represents an enhanced iteration of SAM, 
specifically tailored for medical image segmentation. 
This enhancement is accomplished through fine-tuning 
on the extensive medical image segmentation dataset, 
SA-Med2D-20M. As depicted in Fig.  2, SAM-Med2D 
is designed with three components: an encoder with 
adapter layers added for fine-tuning, a prompt encoder 
supporting sparse prompts such as points and boxes, as 
well as dense mask prompts, and a mask decoder.Ini-
tially, the encoder computes the image embedding EI 
of the input image I. Subsequently, the prompt encoder 
generates the corresponding prompt vector PI based on 
the selected prompt interaction type. Finally, the mask 
decoder predicts the segmentation mask MI based on the 
image embedding EI and the prompt vector PI . Similar 
to SAM, SAM-Med2D still requires manual prompts to 
generate predicted masks. To address this, we propose 
an end-to-end approach to automate mask generation.
As illustrated in Fig.  5, we introduce a MobileNet v3 

[17] with an improved Squeeze and Excitation block as 
the image prompt encoder, replacing the original prompt 
encoder. The image prompt encoder takes the image I as 
input and generates prompt encodings as query vectors 
QI for the transformer module of the mask decoder. As 
shown in Figs. 2 and 3, unlike AutoSAM, during fine-tun-
ing, we only freeze the encoder, while the image encoder 
and mask decoder are trained. It is worth noting that 
SAM-AutoMed employs a lightweight convolutional neu-
ral network. This is because SAM-AutoMed is fine-tuned 
for a specific dataset, which can lead to overfitting when 
the dataset has too few samples. This issue is particularly 
pronounced since the mask decoder has a certain number 
of parameters and also needs to be fine-tuned, exacerbat-
ing the problem. Unlike AutoSAM, which faces similar 
issues, we did not use simple convolutional block stack-
ing but opted for MobileNet v3. This choice allows us to 
fully leverage the pre-trained advantages of MobileNet 
v3 while maintaining a smaller parameter size, result-
ing in better performance compared to AutoSAM. Simi-
larly, SAM-MedCls also uses MobileNet v3 as the image 
prompt encoder to address the overfitting problem when 
the dataset has too few samples.

Improved squeeze and excitation block
Incorporating the Squeeze and Excitation block into the 
MobileNet v3 block, as depicted in Fig.  4, involves two 
main steps: Squeeze and Excitation. In the Squeeze step, 
a global average pooling operation is performed on the 
original feature map, yielding a compressed feature vec-
tor called the squeezed feature map. In the Excitation 
step, the squeezed feature map is processed through two 
1 × 1 convolutional layers to first reduce and then increase 
the dimensionality, resulting in channel-wise weights 
for each channel of the squeezed feature map. These 
weights are then multiplied with the original feature 
map to restore its original size. The motivation behind 

Fig. 3  SAM-AutoMed consists of MobileNet v3 with improved SE block, SAM-Med2D encoder, and SAM-Med2D mask decoder
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Fig. 4  The structure diagram of MobileNet v3 block. The feature map is first dimensionalized through convolutional layers, then SE blocks, then 
dimensionality is reduced through 1x1 convolutional layers, and finally added to the original feature map. SE block is essentially a channel attention 
mechanism

Fig. 5  The improved SE block. adds a parallel spatial attention mechanism and uses residual design to add it to the original feature map 
before inputting the next module
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introducing MobileNet v3, a lightweight convolutional 
neural network, is to quickly obtain feature vectors con-
taining spatial information from images for input into the 
mask decoder of SAM-AutoMed and the channel atten-
tion module of SAM-MedCls. However, the Squeeze and 
Excitation block inherently lacks spatial information as 
it primarily focuses on channel attention mechanisms. 
To address this limitation, we improve the Squeeze and 
Excitation block as shown in Fig.  5. We introduce two 
parallel branches to compute channel attention and spa-
tial attention separately. In the channel attention branch, 
the feature X ∈ R

C×H×W  is processed through global 
average pooling and global maximum pooling opera-
tions to obtain Cavg ∈ R

C×1×1 and Cmax ∈ R
C×1×1 , 

respectively. These two results are concatenated to obtain 
C ∈ R

2C×1×1 , which is then processed through a 1 × 1 
convolutional layer and a Sigmoid activation function to 
obtain channel weights C ∈ R

C×1×1 . These weights are 
then multiplied with the original feature map to restore 
its original size, resulting in XC ∈ R

C×H×W  . In the spa-
tial attention branch, the feature X ∈ R

C×H×W  is pro-
cessed through a 1 × 1 convolutional layer and a Sigmoid 
activation function to obtain spatial weights S ∈ R

H×W  , 
which are then multiplied with the original feature map 
to restore its original size, resulting in XS ∈ R

C×H×W  . 
Before being passed to the next layer, we add X , XC , and 
XS . Throughout this process, we avoid using fully con-
nected layers, resulting in minimal increase in computa-
tional complexity.

Loss function
To address the issue of class imbalance in medical image 
segmentation, when training SAM-AutoSAM, we utilize 
two loss functions to compute the loss: Focal Loss and 
Dice Loss.

(1)LSeg = LFocal + LDice

where α and γ are 0.25 and 1, respectively. TP, FN, and FP 
respectively represent true positives, false negatives, and 
false positives between the ground truth mask Sgt and the 
output mask Spred.

SAM‑MedCls
The structure of SAM-MedCls is illustrated in Fig.  6, 
consisting of the encoder SAM-Med2D, MobileNet v3, 
attention modules, and the final MLP layer. Initially, 
medical images are fed through SAM-Med2D encoder 
and enhanced MobileNet v3 to obtain features enriched 
with prior knowledge and fundamental image char-
acteristics (color features, texture features, and cru-
cial spatial information). Subsequently, the features 
enriched with prior knowledge are passed through the 
spatial attention module [18] to enhance the repre-
sentation of important region information. Following 
this, they are combined with the fundamental features 
obtained from MobileNet v3 and fed into the channel 
attention module to enhance semantic features and rec-
ognition capability. Finally, classification is performed 
through the MLP layer. During training, we freeze the 
encoder SAM-Med2D. Next, we introduce the spatial 
and channel attention modules.

Spatial attention module
Traditional spatial attention mechanisms require cal-
culating similarity between pixels, which not only is 
inefficient but also tends to bias towards larger objects 
due to their higher pixel count. Therefore, we devised 

(2)

LFocal =
α 1− Spread

y
log Spread , y = 1

−(1− a)S
y
pread log 1− Spread , y = 0

(3)

LDice = 1−
2TP(Spred , Sgt )+ 1

2TP(Spred , Sgt )+ FN (Spred , Sgt )+ FP(Spred , Sgt )+ 1

Fig. 6  SAM-MedCls consists of MobileNet v3 with improved SE block, SAM-Med2D encoder, attention module, and finally MLP layer
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a cascaded pyramid pooling layer to acquire highly 
abstracted multiscale context. Then, instead of com-
puting pixel-to-pixel similarity, we calculate similar-
ity between pixels and multiscale context to obtain the 
spatial attention map. As depicted in Fig.  7, the cas-
caded pyramid pooling layer takes the given feature 
X ∈ R

C×H×W  and produces feature maps of different 
sizes through adaptive average and adaptive maximum 
2D pooling. These feature maps are unfolded and con-
catenated to form multiscale context Z ∈ R

C×M , where 
M is the number of contexts. In particular, the output 
length of the adaptive 2D pooling layer is n ∈ [1, 2, 3, 6] 
(the length and width of the output are equal, and the 
number of channels is equal to the input), that is, each 
feature map is C × n× n . Expand and concatenate all 
feature maps to obtain multi-scale context Z ∈ R

C×M , 
M =

∑

n∈[1,2,3,6] n
2 = 50 . Due to the simultaneous use 

of adaptive average pooling and adaptive 2D pool-
ing, M = 100 . Initially, we reduce the dimensional-
ity of the feature X with a 1× 1 convolutional layer 
(original feature dimension: 256, reduced to 128) to 
obtain Q ∈ R

C ′×H×W  . Then, Q is reshaped to N × C ′ , 
where N is the total number of pixels. Subsequently, 
the feature X is passed through the cascaded pyramid 
pooling layer to obtain multiscale context Z, which is 
further processed by 1× 1 convolutional layers to derive 
K ∈ R

C ′×M and V ∈ R
C×M . Next, we perform matrix 

multiplication between Q and K, followed by a softmax 
layer to compute the similarity θ ∈ R

M×N  between pix-
els and context. Finally, matrix multiplication between 

θ and V yields semantic features XS calibrated by spatial 
attention. The spatial attention module adopts a resid-
ual design, where the output is added to the original 
feature map before being sent out. The overall formula 
can be expressed as (4):

where f represents the impact of multi-scale context on 
pixels, i ranges in [1, ···· , H × W] represents the number 
of pixels, and M represents the number of multi-scale 
contexts.

Channel attention module
Each channel map can be viewed as a representation of 
some abstract feature, and the semantic information of 
different channel features is interrelated. Therefore, we 
constructed a channel attention module to model the 
interdependencies between channels and enhance the 
representation of semantic features. We concatenate 
the features enriched with prior knowledge processed 
by the SAM-Med2D encoder and the representation 
of fundamental image characteristics processed by the 
MobileNet v3 encoder, then input them into the chan-
nel attention module. The structure of the channel atten-
tion module, as depicted in Fig. 8, reshapes the original 
feature X ∈ R

C×H×W  to RC×N . Then, matrix multiplica-
tion is performed between X and its transpose, followed 
by a softmax layer to obtain the channel attention map 
θ ∈ R

C×C . The formula is as (5), where θij represents the 

(4)XSi =
∑M

j=1
f
(

xi, zj
)

· zj + xi

Fig. 7  a Spatial attention module. b Cascaded pyramid pooling layer. c The process of adaptive max pooling:adjusting kernel-size,stripe, 
and padding based on the size of the output feature map
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influence of channel j on channel i. Subsequently, we per-
form matrix multiplication between θ and the reshaped 
X to obtain the features calibrated by channel attention. 
The channel attention module also adopts a residual 
design, where the original feature map is added before 
the final output is produced. The overall formula can be 
expressed as (6):

Experimental results
In this section, we present the experimental details and 
results of the proposed SAM-AutoMed and SAM-Med-
Cls, and compare them with the latest research findings.

(5)θij =
exp(Xi · Xj)

∑C
j=1 exp(Xi · Xj)

(6)XCi =
∑C

j=1
(θijAj)+ Xi

Datasets
As shown in the Figs.  9 and 10, we conducted experi-
ments on six different medical image datasets, includ-
ing three for medical image segmentation and three for 
medical image classification, selecting datasets from 
various modalities whenever possible. Three tasks 
were employed to validate the performance of SAM-
AutoMed, including optic disc segmentation in reti-
nal images, colon polyp segmentation in endoscopic 
images, and segmentation of pigment skin lesions in 
dermoscopy images. Three tasks were utilized to assess 
the performance of SAM-MedCls, including brain 
tumor classification on brain MRI images, classification 
of X-ray images for pneumonia detection, and classifi-
cation of lung and colon cancer tissues in microscopic 
images.For optic disc segmentation, experiments were 
conducted on the REFUGE2 [19] dataset. For colon 
polyp segmentation, we use the clinic [20] dataset. For 
segmentation of pigment skin lesions, experiments 
were performed on the HAM10000 [21] dataset, a sub-
set of ISIC. For brain tumor classification, experiments 
were conducted on the Brain Tumor MRI dataset 
obtained from the Kaggle repository, which comprises 

Fig. 8  Channel attention module

Fig. 9  a Sample image from REFUGE2. b Sample image from clinic. c, d Sample images from HAM10000
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a combination of datasets from Figshare [22], SARTAJ 
[23], and Br35H [23], containing a total of 7023 images 
categorized into glioma, meningioma, no tumor, and 
pituitary tumor classes. For pneumonia image classifi-
cation, experiments were carried out on the COVID-
19 Radiography Database [24, 25], consisting of 21165 
images categorized into normal, viral pneumonia, lung 
opacity, and COVID-19 classes. Finally, for lung and 
colon cancer tissue classification, experiments were 
conducted on the LC25000 [26] dataset, which includes 
25000 images categorized into colon adenocarcinoma, 
benign colon tissue, lung adenocarcinoma, lung squa-
mous cell carcinoma, and benign lung tissue classes.

Experiment details
In the preprocessing stage, we standardized the images 
and resized them to 256×256 dimensions. If both the 
height and width of an image were less than zero, we 
padded the edges of the image with zeros. Otherwise, 
we adjusted the image size using bilinear interpolation. 
For SAM-MedCls, we employed the same data aug-
mentation techniques, including random horizontal 
flipping, random vertical flipping, and random rota-
tion (with a scale range of (-40,40)). During the train-
ing phase, we conducted training on an NVIDIA2080 
GPU. For SAM-AutoMed, we utilized the Adam opti-
mizer with an initial learning rate of 1e-4 and trained 

for 30 epochs with a batch size of 2. For SAM-MedCls, 
we employed the Adam optimizer with an initial learn-
ing rate of 1e-3, a weight decay regularization param-
eter set to 0.4, and an epoch size of 50 with a batch size 
of 10.

Evaluation metrics
To evaluate the performance of our SAM-AutoMed model 
in image segmentation tasks, we used Mean Intersection 
over Union (mIoU) and Mean Dice Similarity Coefficient 
Score (mDSC). The mathematical expressions for IoU and 
DSC are as (7) and (8). Where S is the predicted segmenta-
tion mask, and G is the original ground truth mask of the 
image.

For evaluating the performance of our SAM-Med-
Cls model in image classification tasks, we mainly used 
four evaluation metrics: Accuracy, Precision, Recall, and 
F1-Score. The formulas for these evaluation metrics are 
provided below, where TP denotes true positive, TN 
denotes true negative, FP denotes false positive, and FN 
denotes false negative.

(7)IoU(S,G) =
|S ∩ G|

|S ∪ G|

(8)DSC(S,G) =
2× |S ∩ G|

|S| + |G|

Fig. 10  Overview of brain tumor MRI dataset, COVID-19 radiography database and LC25000
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Evaluation results on SAM‑AutoMed
We validated the effectiveness of our SAM-AutoMed 
on medical image segmentation tasks using three differ-
ent datasets, as shown in Tables 1, 2, and 3. Our model 
achieved mIoU scores of 88.1%, 86.5%, and 89.9% on the 
REFUGE2, clinic, and HAM10000 datasets, respectively, 
with corresponding mDSC scores of 93.6%, 92.2%, and 
94.2%. In all three tables, we observed that on the REF-
UGE2 dataset, our model outperformed the previous 
state-of-the-art (Swin-UNetr), by 0.2% in mIoU. On the 
HAM10000 dataset, our model surpassed the SOTA by 
6.2% in mIoU and 3.9% in mDSC. Although our model 
performed 2.5% lower in mIoU and 1.6% lower in mDSC 
compared to SOTA on the clinic dataset, it is worth not-
ing that these methods often excel in their respective 
modalities or specific datasets. When applied to other 
domains, their performance may degrade. In contrast, 
our approach constructs an end-to-end model with sim-
ple and generalizable image preprocessing methods, 
which we believe can fully unleash its potential in the 
future. It is worth noting that, as shown in Table 4, SAM-
AutoMed outperformed AutoSAM by 2.5%, 11.2%, and 

(9)Precision(pre) =
TP

TP + FP

(10)Recall(rec) =
TP

TP + FN

(11)F1-score(F1) =
2× pre × rec

pre + rec

(12)Accuracy(acc) =
TP + TN

TP + TN + FP + FN

1.6% in mIoU on the three datasets, respectively (under 
the same conditions for comparison). We attribute this 
improvement to two factors: first, SAM-AutoMed is an 
improvement over SAM-Med2D, with its encoder and 
mask decoder fine-tuned on large-scale medical data-
sets and thus having learned medical knowledge. As 
demonstrated in Table 4, the segmentation performance 
of MedSAM-2D was significantly improved over SAM 
after fine-tuning on all three medical datasets. Second, 
we designed an image encoder with parallel channel and 
spatial attention mechanisms SEblock, which provides 
stronger spatial perception compared to AutoSAM’s 
encoder consisting of only simple convolutional lay-
ers.We visualized the segmentation results, as shown in 
Fig. 11, demonstrating the segmentation performance of 
SAM, SAM-Med2D, AutoSAM, and SAM-MedSAM on 
three datasets. From (c), it can be seen that SAM’s seg-
mentation performance is suboptimal across all three 
datasets, especially in fitting the segmentation masks to Table 1  The comparison of SAM-AutoMed with state-of-the-art 

segmentation methods on REFUGE2

Method mDSC(%) mIoU(%)

ResUNet [27] 92.9 85.8

BEAL [28] 93.7 86.1

TransBTS [29] 94.1 87.2

EnsemDiff [30] 94.3 87.8

UltraUNet [31] 91.5 82.8

FAT-Net [32] 91.8 84.8

SegDiff [33] 92.6 85.2

nnUNet [34] 94.7 87.3

TransUNet [35] 95.0 87.7

UNetr [36] 94.9 87.5

Swin-UNetr [37] 95.3 87.9

SAM-AutoMed 93.6 88.1

Table 2  The comparison of SAM-AutoMed with state-of-the-art 
segmentation methods on clinic

Method mDSC(%) mIoU(%)

U-Net [38] 82.3 75.5

U-Net++ [39] 79.4 72.9

SFA [40] 70.0 60.7

MSEG [41] 90.9 86.4

DCRNet [42] 89.6 84.4

ACSNet [43] 88.2 82.6

PraNet [44] 89.9 84.9

EU-Net [45] 90.2 84.6

SANet [46] 91.6 85.9

Polyp-PVT [47] 93.7 88.9

FCN-Hardnet85 [48] 92.0 86.9

3P-SEG [49] 93.8 89.0
SAM-AutoMed 92.2 86.5

Table 3  The comparison of SAM-AutoMed with state-of-the-art 
segmentation methods on HAM10000

Method mDSC(%) mIoU(%)

Double U-Net [50] 84.3 81.2

U-Net [38] 78.1 77.4

SegNet [51] 81.6 82.1

Saha et al. [52] 89.1 81.9

Abraham et al. [53] 85.6 -

Shahin et al. [54] 90.3 83.7

Bissoto et al. [55] 87.3 79.2

Ibtehaz et al. [56] - 80.3

SAM-AutoMed 94.2 89.9
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ground truth for polyp segmentation and pigment skin 
lesion segmentation tasks, attributed to the distinctive 
textures and boundaries in medical images compared to 
natural images. From (d) and (e), it is evident that SAM-
Med2D and AutoSAM possess the ability for cross-modal 
medical image segmentation. However, SAM-Med2D 
sometimes excludes the optic cup during optic disc 
segmentation, showcasing its sensitivity to color fea-
tures, which, though demonstrating its capability, is not 
medically trustworthy, emphasizing the necessity of 
task-specific fine-tuning. While AutoSAM undergoes 
task-specific fine-tuning, its lack of spatial awareness and 
training the decoder in a frozen manner may result in 
completely erroneous segmentations for certain samples, 
albeit with a low probability, which is intolerable. (f ) pre-
sents the segmentation results of SAM-AutoMed, which 
essentially addresses the aforementioned issues.

Evaluation results on SAM‑MedCls
The experimental results of SAM-MedCls on the three 
datasets, Brain Tumor MRI dataset, COVID-19 Radiog-
raphy Database, and LC25000, are illustrated in Fig. 12 
and presented in Table  5. The training loss curve and 
accuracy curve on three datasets are shown in Fig. 13. 
Based on the confusion matrix in Fig. 12, we calculated 
the accuracy, recall, F1-score, and overall accuracy for 
each class in the three datasets as listed in Table  5. 
From the results, except for slightly lower recall rates 
in the pituitary class for the Brain Tumor MRI dataset, 
COVID-19 class for the COVID-19 Radiography Data-
base, and lung adenocarcinoma class for LC25000, all 
other classification metrics are high, indicating effective 
classification performance.To provide more convincing 
experimental results, we compared SAM-MedCls with 
state-of-the-art methods, as shown in Tables  6, 7, and 
8. Our method achieved accuracies of 98.2%, 97.5%, 
and 97.7% on the three datasets, respectively. Under the 

Table 4  Comparison of SAM-AutoMed with SAM, SAM-Med2D, and AutoSAM on REFUGE2, clinic, and HAM10000

REFUGE2 clinic HAM10000

Method mDSC(%) mIoU(%) mDSC(%) mIoU(%) mDSC(%) mIoU(%)

SAM 71.1 57.1 85.3 75.8 87.1 77.5

SAM-Med2D 91.9 85.1 89.6 82.4 93.1 87.2

AutoSAM 92.0 85.6 83.5 75.3 93.3 88.3

SAM-AutoMed 93.6 88.1 92.2 86.5 94.2 89.9

Fig. 11  Visualization of segmentation effects on three datasets(REFUGE2,clinic,HAM10000). a Images. b Ground truth. c SAM. d SAM-Med2D. e 
AutoSAM. f SAM-AutoMed
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Fig. 12  a Confusion matrix of Brain Tumor MRI dataset. b Confusion matrix of COVID-19 Radiography Database. c Confusion matrix of LC25000

Fig. 13  a The training loss curve and accuracy curve of Brain Tumor MRI dataset. b The training loss curve and accuracy curve of COVID-19 
Radiography Database. c The training loss curve and accuracy curve of LC25000

Table 5  Classification performance evaluation metrics (Precision, Recall, F1-Score and Accuracy) of SAM-MedCls on Brain Tumor MRI 
Dataset, COVID-19 Radiography Dataset and LC25000

Dataset Class Precision(%) Recall(%) F1-Score(%)

Brain Tumor MRI Dataset glioma 97.7 98.3 98.0

meningioma 95.5 97.4 96.4

no tumor 99.8 99.8 99.8

pituitary 99.3 96.7 98.0

Accuracy(%) 98.2

COVID-19 Radiography Dataset COVID-19 99.5 94.0 96.7

normal 95.2 100.0 97.6

lung opacity 96.6 98.5 97.5

viral 99.0 97.5 98.2

Accuracy(%) 97.5

LC25000 colon adenocarcinoma 99.5 100.0 99.8

benign colon tissue 100.0 99.5 99.7

lung adenocarcinom 97.8 91.0 94.3

benign lung tissue 99.5 100.0 99.8

lung squamous cell carcinoma 92.0 98.0 94.9

Accuracy(%) 97.7
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same dataset conditions for brain tumor classification 
(MRI), our method outperformed the state-of-the-art 
by 1.1% in accuracy. Although SAM-MedCls did not 
achieve the highest accuracy among the methods com-
pared on the respective datasets, it is worth noting that 
the datasets we used are larger in terms of both image 
and class quantities, which, to some extent, also reflects 
the advancement of SAM-MedCls. Similarly, on the 
COVID-19 Radiography Database, SAM-MedCls out-
performed the state-of-the-art by 1.7% in accuracy. On 
the LC25000 dataset, our method achieved a slightly 
lower accuracy by 1.2% compared to the state-of-the-
art. It is worth mentioning that our method achieved 
good results on datasets from three different modalities 

Table 6  The comparison of SAM-MedCls with state-of-the-art classification methods on Brain Tumor MRI Dataset

Reference Model Dataset Classes Best Model Accuracy (%)

ref. [57] CNN Multi Scale Nanfang Hospital 3 - 97.3

ref. [58] CNN REMBRANDT 3 - 96.1

ref. [59] TL SARTAJ 3 InceptionResNetV2 98.9

ref. [60] CNN and SVM Figshare 3 - 95.8

ref. [61] Dense Efficient-Net Figshare 3 Dense EfficientNet 99.9

ref. [62] LeNet Inspired Model Figshare,Brainweb, Radiopedia 3 - 88.0

ref. [63] TL and DeepTumorNet Figshare 3 DeepTumorNet 99.7

ref. [64] MobileNetV2 and TL Figshare and BraTS 2018 3 Hybrid MobileNetV2 98.9

ref. [65] GoogLeNet and TL BR35H 2 GoogLeNet 99.1

ref. [66] TumorResNet and TL BTD-MRI dataset 2 TumorResNet 99.3

ref. [67] Generic CNN and six TL models Brain Tumor MRI dataset 4 InceptionV3 97.1

this work SAM-MedCls Brain Tumor MRI dataset 4 - 98.2

Table 7  The comparison of SAM-MedCls with state-of-the-art classification methods on COVID-19 Radiography Database

Reference Dataset CXR 
Images

Classes Best Model Accuracy (%)

ref. [24] 3487 3(COVID-19, Viral Pneumonia, Normal) DenseNet201 97.9

ref. [68] 7406 2(COVID-19, Viral Pneumonia) ResNet101 99.5

ref. [69] 6432 3(COVID-19, Pneumonia, Normal) Xception 98.0

ref. [25] 18479 3(COVID-19, Lung opacity, Normal) ChexNet 96.3

ref. [70] 458 3(COVID-19, Pneumonia, Normal) SqueezeNet 99.3

ref. [71] 1125 3(COVID-19, Pneumonia, No Findings) DarkCovidNet 98.1

ref. [72] 13975 3(COVID-19, Pneumonia, Normal) COVID-Net 93.3

ref. [73] 1251 4((COVID-19, Viral Pneumonia, Bacterial Pneumonia, Normal) CoroNet 89.6

ref. [74] 9000 3(COVID-19, Pneumonia, No Findings) Multiscale deep CNN 97.2

ref. [75] 450 3(COVID-19, Pneumonia, Normal) QuNet 92.9

ref. [76] 21165 4(COVID-19, Viral Pneumonia, Normal, Lung Opacity) Modified MobileNetV2 95.8

SAM-MedCls 21165 4(COVID-19, Viral Pneumonia, Normal, Lung Opacity) - 97.5

Table 8  The comparison of SAM-MedCls with state-of-the-art 
classification methods on LC25000

Reference Method Accuracy(%)

ref. [77] RESNET50 93.9

RESNET18 93.0

RESNET34 93.0

ref. [78] Ensemble 91.0

ref. [79] CNN-D 94.6

ref. [80] CNN 97.2

ref. [81] Shallow-CNN 97.9

ref. [82] DL-based CNN 96.3

ref. [83] UKSSL 98.9

this work SAM-MedCls 97.7
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(MRI, X-ray, and microscopic imaging) without spe-
cific image processing tailored to a particular modality 
or dataset. This demonstrates the advancement of our 
method and its potential as a universal medical classi-
fication model.

Ablation experiment
We conducted ablation experiments to validate the effec-
tiveness of our proposed SAM-AutoMed and SAM-Med-
Cls design methods, improved SE block, and designed 
attention modules. Ablation experiments on ham10000 
were performed on SAM-AutoMed, as shown in Table 9. 
When we replaced the encoder of SAM-Med2D with 
SAM’s encoder, the mIoU decreased by 9.3% and mDSC 
decreased by 5.9% on ham10000, demonstrating that 
using SAM-Med2D’s encoder significantly improves 
segmentation performance. When we trained SAM-
AutoMed using the frozen decoder training method of 
AutoSAM, the performance decreased by 3% and 1.9% in 
mIoU and mDSC, respectively, indicating the effective-
ness of our training method. When we did not use the 
improved SE block, the performance decreased by 1.4% 
and 0.8% in mIoU and mDSC, respectively, demonstrat-
ing that our improved SE block effectively extracts spatial 
information from the images.

We conducted ablation experiments on SAM-Med-
Cls using the Brain Tumor MRI dataset, as shown in 

Table 10. When only the encoder of SAM-Med2D was 
used, followed by pooling layers and two MLP layers, 
the accuracy on the Brain Tumor MRI dataset was 
only 67.9%. Using MobileNet v3 for classification with-
out the improved SE block yielded an accuracy of only 
86.2%. However, incorporating the improved SE block 
into MobileNet v3 increased the classification accu-
racy by 3.3%. When concatenating the output features 
of SAM-Med2D’s encoder with those of MobileNet v3 
equipped with the improved SE block and feeding them 
into fully connected layers without passing through our 
designed attention module, the classification accuracy 
was 93.1%. In contrast, the classification accuracy of 
our SAM-MedCls was 98.2%, demonstrating the effec-
tiveness of our proposed attention module.

Conclusions
In this paper, we propose two models based on SAM-
Med2D for medical image analysis: SAM-AutoMed for 
automatic segmentation and SAM-MedCls for gen-
eral medical image classification. For SAM-AutoMed, 
we replace the original encoder with a MobileNet v3 
equipped with an improved SE block and design mul-
tiple loss functions to address class imbalance issues. 
This model achieves automatic segmentation of medi-
cal images, outperforming SAM, SAM-Med2D, and the 
previous method AutoSAM on multiple datasets. As 
for SAM-MedCls, we introduce a novel model struc-
ture that combines features with prior knowledge from 
SAM-Med2D and spatial information from MobileNet. 
These features pass through our designed spatial atten-
tion module and channel attention module before 
classification. This model achieves state-of-the-art per-
formance on various datasets with different modali-
ties, demonstrating its potential to become a universal 
model for medical image classification.
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